dcsimg
Image of Sphaeronectes Huxley 1859

Hydrozoans

Hydrozoa Owen 1843

Behavior

provided by Animal Diversity Web

All hydrozoans have tactile and chemical sensing structures. Some also have eyespots that detect light, and/or statocysts that detect gravity. They communicate mainly by chemical signals. Some free-swimming hydrozoans, including many siphonophores have bioluminescent structures. It's not known what function these serve. It is unlikely that they communicate with other hydrozoans (their light sensors are too simple for this). Possibly they are lures for prey or have some predator defense function.

Communication Channels: visual ; chemical

Other Communication Modes: photic/bioluminescent ; pheromones

Perception Channels: visual ; tactile ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

The conservation status of the vast majority of hydrozoan species is unknown. Species in two families, the fire corals (Milleporidae) and the lace corals (Stylasteridae), have been commercially harvested, and in some places over-exploited. They are now listed in Appendix I of CITES, the international treaty limiting trade in wildlife. Also the IUCN has evaluated many species of Millepora and rated several of them Endangered.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Hydrozoans have a complex life cycle, usually with two or three morphologically different stages. The classic cycle starts with fertilized eggs developing into small, free swimming larvae called planulae, which may be able to enter a dormant resting state to resist unsuitable environmental conditions. Planulae transform into sessile polyps, usually attached to substrate, but free-floating in some groups. Polyps duplicate themselves asexually by budding, often producing colonies of hundreds or thousands of polymorphic individual polyps. Polyps produce "adult" sexually-reproducing medusae by budding. Medusae are solitary, free-swimming, dieocious. They release sperm and eggs into the water, where fertilization occurs. This is the basic cycle, but there is an enormous range of variations. In nearly half of species (e.g. Hydra) the the medusa stage is entirely suppressed; polyps produce gametes directly. In others the medusa are formed, but never detach from the parent polyp, and produce gametes while still attached. In some cases these fused combinations form elaborate structures. In other taxa the polyp stage is suppressed, and planulae transform directly into tiny medusae, or form a polyp, produce a medusa, and resorb the polyp. Numerous taxa have suppressed the planula as well.

Development - Life Cycle: metamorphosis ; colonial growth

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Comprehensive Description

provided by Animal Diversity Web

The Hydrozoa is a subgroup of cnidarians containging approximately 3700 species. It is a diverse group with a variety of life cycles, growth forms, and specialized structures. Like many cnidarians, hydrozoans have both polyp and medusa stages in their life cycle. They are distinguished from other groups by their complex life cycle, by the growth of medusae from buds rather than strobilae or from metamorphosis, by the presence of a velum inside the bell of the medusa, and by the production of gametes from ectodermal, rather than endodermal, tissue. Most hydrozoans are marine, and hydrozoan species are found in nearly every marine habitat type; a very few species live in freshwater. Most hydrozoans form colonies of asexual polyps and free-swimming sexual medusae. Colonies are usually benthic, but some, notably the siphonophores, are pelagic floaters. Colonial polyps often have some division of function, with certain polyps specialized for defense, feeding, or reproduction. Most hydrozoans are predators or filter-feeders, though a few have symbiotic algae (zooxanthellae), in the same way that other other groups of cnidarians do.

Better-known hydrozoans include Portuguese man-o-wars (Physalia physalis), the freshwater genus Hydra, fire coral (Milleporidae), and by-the-wind sailors (Velella velella).

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

The stings of some hydrozoans (most famously the Portuguese man-o-war, Physalis physalis), are dangerous to humans. Also, the fire corals (Milleporidae) get their name from the painful sensation divers get if they touch them.

Hydrozoans are common members of "fouling communities" -- the benthic organisms that naturally attach to hard substrates, and so grow on the hulls of ships and on submerged water pipes, interfering with their function.

Negative Impacts: injures humans (bites or stings, venomous )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Hydrozoans are important parts of many marine food chains, and so directly or indirectly support desirable food sources. Species in two families that have colonies with calcareous exoskeletons (Milleporidae, Stylasteridae) have been harvested commercially, and probably still are. There are now limits on their trade and some are considered endangered (see Conservation Status).

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Hydrozoans are both predators and prey for many marine organisms, and large seasonal blooms of medusae may strongly affect local fish and zooplankton populations. Some species of polyps are hosts for symbiotic algae, and many large pelagic forms have symbiotic hyperiid amphipods living on or in them. There is even a small species of fish, Nomeus gronovii, that lives in association with Portuguese man-o-wars. Some polyp colonies grow on the shells of hermit crabs, providing them protection.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Hydrozoans vary in their feeding habits. Many trap small zooplankton with their tentacles. Some filter suspended particles (such as fish eggs and fecal pellets) from the water column. Some consume phytoplankton. A few groups contain symbiotic algae, and may get most of their nutritional needs from their symbiotes.

Pelagic hydrozoans, including siphonophore colonies and medusae, are known to show some selectivity in prey types, some taking mainly fish larvae, others taking soft-bodied invertebrates, others micro-crustaceans. They are also sensitive to chemicals produced by prey, and will move towards higher concentrations of these chemicals.

Large populations of hydromedusae may be significant ecological factors in pelagic marine ecosystems.

Foraging Behavior: filter-feeding

Primary Diet: carnivore (Eats eggs, Eats non-insect arthropods); planktivore ; detritivore

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Hydrozoans are found in all the oceans, at all latitudes. A few species occur in fresh and brackish water on all continents except Antarctica.

Biogeographic Regions: nearctic (Native ); palearctic (Native ); oriental (Native ); ethiopian (Native ); neotropical (Native ); australian (Native ); oceanic islands (Native ); arctic ocean (Native ); indian ocean (Native ); atlantic ocean (Native ); pacific ocean (Native ); mediterranean sea (Native )

Other Geographic Terms: cosmopolitan

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Hydrozoans are found in nearly all marine habitats, except perhaps heavy surf zones. They are most abundant and diverse in warm shallow waters, probably as a reflection of food abundance. The small number of freshwater species occur in both lotic and lentic habitats, and are more abundant in eutrophic and mesotrophic waters.

Habitat Regions: temperate ; tropical ; polar ; saltwater or marine ; freshwater

Aquatic Biomes: pelagic ; benthic ; reef ; oceanic vent ; lakes and ponds; rivers and streams; temporary pools; coastal ; abyssal ; brackish water

Wetlands: marsh ; swamp

Other Habitat Features: estuarine ; intertidal or littoral

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Most hydrozoan species have a planktonic larval stage called a planula. Planulae are radially symmetric ovoids, often covered with flagellate cells for swimming. They may be very simple embryos or have cells differentiated into several types. Planulae most often settle onto a benthic substrate and develop into a polyp.

Polyps are radially symmetric, and may be urn-shaped, conical, cylindrical, or club-shaped. In most species they are only a few millimeters tall, though the largest grow up to many centimeters, and one, Branchiocerianthus imperator can be 2 meters tall. At their base hydrozoan polyps have basal disks or elongate processes for attaching to substrate, or they may be attached to other polyps. Often there will also be connections here to hollow tubes (called stolons) that connect the polyp to others in its colony, and allow the exchange of food between polyps. Above the base is a ring of contractile cells called the sphincter. These can contract to isolate the contents of the polyp from the stolons, preventing undigested food from entering the stolons. Above this is the gastric column, which usually contains a digestive chamber with a single opening, a mouth at the apex of the column. A ring of tentacles is attached to the column below the apex and above the sphincter. The number, shape and size of tentacles varies greatly, but there are usually between and 8 and 50 on a single polyp (some have many more, and some specialized polyps may have fewer). Most colonial hydrozoans are polymorphic, with different structures reflecting different functions. Some are armed with large spines tentacles for defense but have no mouth, some have tentacles and functional mouths for feeding, and some are only reproductive, with no tentacles or mouth, and produce medusae (see below) or gametes.

Like all cnidarians, hydrozoans have special ectodermal cells called cnidocytes, each containing a single intracellular structure called a cnida (aka nematocyst). Cnidae are unique to the Cnidaria. Each cnida, when triggered by a mechanical or chemical stimulus, shoots out a tiny hollow tube at high speed. Some cnidae are is equipped with sharp spines, and/or venomous or acidic compounds, but some are adhesive and have neither spines nor toxins. Hydrozoans use different types of cnidae to capture prey, to repel predators, and to attach to substrate.

Most hydrozoan species are colonial. A founding polyp produces new polyps by budding, and these grow a network of interconnecting hollow tubes (stolons) formed of living tissue, collectively called the coenosarc. Colony growth forms vary between species, some may form a single layer of polyps spreading across the substrate, others growing as erect stems, with polyps growing off the stems. Polyps and the coenosarc may secrete chitinous sheaths, or stems, or calcareous coatings (the latter forming structures similar to the anthozoan Scleractinia, the stony corals). In many colonies, polyps are polymorphic, with different structures reflecting different functions. Some have no mouth, but are armed with large spines or cnidae-equipped tentacles for defense, some have tentacles and functional mouths for feeding, and some, with neither mouth nor tentacles, are strictly reproductive, and produce medusae (see below) or gametes.

The medusa is the sexually reproducing stage in most hydrozoans. They are often formed by budding from polyps, and are usually solitary free-swimming organisms. They are similar in structure to an inverted polyp, radially symmetric, and often have four-fold symmetry. Their main body part is the umbrella, a bell or cone shaped gelatin-filled structure, which floats with the opening down. Medusa are usually small, usually 1-50 mm in diameter, though a few are larger, the largest (genus g. Rhacostoma) grow to 400 mm in diameter. Around the inside of the opening is a muscular ring of tissue called the velum. The velum can contract and relax, changing the diameter of the opening, and playing an important role in swimming The presence of the velum is a diagnostic character for Hydrozoa, only one genus, Obelia, has lost it. Around the outside of the opening of the umbrella is a ring of tentacles, which vary greatly among species in number, shape, and degree of arming with cnidocytes. Inside the umbrella, suspended like the clapper of a bell, is the manubrium, which contains the gastric cavity, and ends in a mouth. Structures that produce gametes form on the sides of the manubrium. Most species have dioecious medusae, each individual producing only eggs or sperm. Some are monoecious, but usually not simultaneously hermaphrodite. In some species sex is determined by environmental conditions, mainly temperature.

Both polyps and medusae have networks of nerves, but no brain or central ganglion. Some have light-sensitive structures called ocelli, and many have statocysts that allow them to detect gravity and their orientation.

These structural patterns are common, but there is great variation in the life cycles of hydrozoans. Some have suppressed or reduced one or more stages. In the Siphonophora and a few other groups of hydrozoans, colonies of polyps are pelagic, and float at the surface by means of a gas-filled tissue. They often retain medusae as part of the colony.

Other Physical Features: ectothermic ; heterothermic ; radial symmetry ; polymorphic ; venomous

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Despite their protective stinging cells, hydrozoans are prey for many types of predators. A variety of snails and worms graze on polyps and stolons, as do some fish and crustaceans. Fish also consume medusae and pelagic colonial hydrozoans, as do some sea turtles (especially leatherbacks), ctenophores, and other cnidarians, including larger hydrozoans.

A variety of predators have the ability to consume the stinging cells of hydrozoans without triggering them. These predators then sequester the stinging cells in their body to defend them against their own predators. Nudibranchs are particularly well known for this ability, but some species of ctenophores, turbellarian flatworms, and priapulids can store cnidocysts as well.

Nearly all hydrozoans protect themselves with their cnidocysts. Some colonial species have specialized polyps that grow large tentacles armed with dense batteries of these stinging cells or grow large rigid spines. Many colonial polyps secrete a rigid protective layer over stolons and polyp tubes. This layer is often made of chitin, some groups produce a mineral skeleton. Free-swimming medusae cannot use rigid protection, but do defend themselves with stinging cells. There is evidence that some also contain toxic compounds that discourage predators from eating them. Most hydrozoan medusae also follow the diel migration pattern common to many planktonic organisms -- sinking below the limit of light penetration to avoid visual predators during the day, and then rising towards the surface at night in pursuit of prey.

Known Predators:

  • leatherback sea turtle (Dermochelys coriacea)
  • Nudibranchia
  • Ctenophora
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Hydrozoans are mostly broadcast spawners. In some species only sperm is shed, and eggs are retained on the parent. Eggs release sperm-attracting compounds.

Mating System: polygynandrous (promiscuous)

Hydrozoan polyps reproduce asexually by budding, creating daughter polyps, medusae, or both. In some species medusae reproduce asexually as well, by fission or budding. Medusae (if present in the life cycle) or polyps produce gametes. Most hydrozoan species are dioecious, a few are sequential hermaphrodites. Eggs and sperm are most often released into the water column and fertilization is external. In some species eggs are retained and fertilized internally, in which case embryos may be releases as larvae or retained until even more developed.

Key Reproductive Features: iteroparous ; seasonal breeding ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sequential hermaphrodite; sexual ; asexual ; fertilization (External , Internal ); ovoviviparous ; oviparous

Most hydrozoan species have minimal parental investment. Eggs and sperm are released into the water, and left to survive on their own. In a few species, eggs are retained in special structures on the parent, and the embryos are retained as brood, developing to the planula or even young polyp stage. In the latter case we have no information on whether the young are nourished by their parent, or just protected.

Parental Investment: no parental involvement; female parental care ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Protecting: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hammond, G. 2009. "Hydrozoa" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Hydrozoa.html
author
George Hammond, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Hydrozoa

provided by wikipedia EN

Hydrozoa (hydrozoans; from Ancient Greek ὕδωρ (húdōr) 'water', and ζῷον (zôion) 'animal') is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

Some examples of hydrozoans are the freshwater jelly (Craspedacusta sowerbyi), freshwater polyps (Hydra), Obelia, Portuguese man o' war (Physalia physalis), chondrophores (Porpitidae), and pink-hearted hydroids (Tubularia).

Anatomy

Most hydrozoan species include both a polypoid and a medusoid stage in their life cycles, although a number of them have only one or the other. For example, Hydra has no medusoid stage, while Liriope lacks the polypoid stage.[2]

Polyps

The hydroid form is usually colonial, with multiple polyps connected by tubelike hydrocauli. The hollow cavity in the middle of the polyp extends into the associated hydrocaulus, so that all the individuals of the colony are intimately connected. Where the hydrocaulus runs along the substrate, it forms a horizontal root-like stolon that anchors the colony to the bottom.

The hydroid Tubularia indivisa, fertile, Gulen Dive resort, Norway

The colonies are generally small, no more than a few centimeters across, but some in Siphonophorae can reach sizes of several meters. They may have a tree-like or fan-like appearance, depending on species. The polyps themselves are usually tiny, although some noncolonial species are much larger, reaching 6 to 9 cm (2.4 to 3.5 in), or, in the case of the deep-sea Branchiocerianthus, a remarkable 2 m (6.6 ft).[2]

The hydrocaulus is usually surrounded by a sheath of chitin and proteins called the perisarc. In some species, this extends upwards to also enclose part of the polyps, in some cases including a closeable lid through which the polyp may extend its tentacles.[2]

In any given colony, the majority of polyps are specialized for feeding. These have a more or less cylindrical body with a terminal mouth on a raised protuberance called the hypostome, surrounded by a number of tentacles. The polyp contains a central cavity, in which initial digestion takes place. Partially digested food may then be passed into the hydrocaulus for distribution around the colony and completion of the digestion process. Unlike some other cnidarian groups, the lining of the central cavity lacks stinging nematocysts, which are found only on the tentacles and outer surface.

All colonial hydrozoans also include some polyps specialized for reproduction. These lack tentacles and contain numerous buds from which the medusoid stage of the life cycle is produced. The arrangement and type of these reproductive polyps varies considerably between different groups.

In addition to these two basic types of polyps, a few colonial species have other specialized forms. In some, defensive polyps are found, armed with large numbers of stinging cells. In others, one polyp may develop as a large float, from which the other polyps hang down, allowing the colony to drift in open water instead of being anchored to a solid surface.[2]

Medusae

The medusae of hydrozoans are smaller than those of typical jellyfish, ranging from 0.5 to 6 cm (0.20 to 2.36 in) in diameter. Although most hydrozoans have a medusoid stage, this is not always free-living and in many species exists solely as a sexually reproducing bud on the surface of the hydroid colony. Sometimes, these medusoid buds may be so degenerated as to entirely lack tentacles or mouths, essentially consisting of an isolated gonad.[2]

The body consists of a dome-like umbrella ringed by tentacles. A tube-like structure hangs down from the centre of the umbrella and includes the mouth at its tip. Most hydrozoan medusae have just four tentacles, although a number of exceptions exist. Stinging cells are found on the tentacles and around the mouth.

The mouth leads into a central stomach cavity. Four radial canals connect the stomach to an additional, circular canal running around the base of the bell, just above the tentacles. Striated muscle fibres also line the rim of the bell, allowing the animal to move along by alternately contracting and relaxing its body. An additional shelf of tissue lies just inside the rim, narrowing the aperture at the base of the umbrella, and thereby increasing the force of the expelled jet of water.[2]

The nervous system is unusually advanced for cnidarians. Two nerve rings lie close to the margin of the bell, and send fibres into the muscles and tentacles. The genus Sarsia has even been reported to possess organised ganglia. Numerous sense organs are closely associated with the nerve rings. Mostly these are simple sensory nerve endings, but they also include statocysts and primitive light-sensitive ocelli.[2]

Life cycle

Hydroid colonies are usually dioecious, which means they have separate sexes—all the polyps in each colony are either male or female, but not usually both sexes in the same colony. In some species, the reproductive polyps, known as gonozooids (or "gonotheca" in thecate hydrozoans) bud off asexually produced medusae. These tiny, new medusae (which are either male or female) mature and spawn, releasing gametes freely into the sea in most cases. Zygotes become free-swimming planula larvae or actinula larvae that either settle on a suitable substrate (in the case of planulae), or swim and develop into another medusa or polyp directly (actinulae). Colonial hydrozoans include siphonophore colonies, Hydractinia, Obelia, and many others.[3]

In hydrozoan species with both polyp and medusa generations, the medusa stage is the sexually reproductive phase. Medusae of these species of Hydrozoa are known as "hydromedusae". Most hydromedusae have shorter lifespans than the larger scyphozoan jellyfish. Some species of hydromedusae release gametes shortly after they are themselves released from the hydroids (as in the case of fire corals), living only a few hours, while other species of hydromedusae grow and feed in the plankton for months, spawning daily for many days before their supply of food or other water conditions deteriorate and cause their demise.

Additionally, some hydrozoan species (particularly in Turritopsis genus) share an unusual life cycle among the animals - they can transform themselves from sexually mature medusae stage back to their juvenile hydroid stage.[4]

Systematics and evolution

The highly apomorphic Siphonophorae—like this Portuguese man o' war (Physalia physalis)—have long misled hydrozoan researchers.

The earliest hydrozoans may be from the Vendian (late Precambrian), more than 540 million years ago.[5]

Hydrozoan systematics are highly complex.[6] Several approaches for expressing their interrelationships were proposed and heavily contested since the late 19th century, but in more recent times a consensus seems to be emerging.

Historically, the hydrozoans were divided into a number of orders, according to their mode of growth and reproduction. Most famous among these was probably the assemblage called "Hydroida", but this group is apparently paraphyletic, united by plesiomorphic (ancestral) traits. Other such orders were the Anthoathecatae, Actinulidae, Laingiomedusae, Polypodiozoa, Siphonophorae and Trachylina.

As far as can be told from the molecular and morphological data at hand, the Siphonophora for example were just highly specialized "hydroids," whereas the Limnomedusae—presumed to be a "hydroid" suborder—were simply very primitive hydrozoans and not closely related to the other "hydroids." So, the hydrozoans now are at least tentatively divided into two subclasses, the Leptolinae (containing the bulk of the former "Hydroida" and the Siphonophora) and the Trachylinae, containing the others (including the Limnomedusae). The monophyly of several of the presumed orders in each subclass is still in need of verification.[1]

In any case, according to this classification, the hydrozoans can be subdivided as follows, with taxon names emended to end in "-ae":[1]

Class Hydrozoa

ITIS uses the same system, but unlike here, does not use the oldest available names for many groups.

In addition, there exists a cnidarian parasite, Polypodium hydriforme, which lives inside its host's cells. It is sometimes placed in the Hydrozoa, though its relationships are currently unresolved—a somewhat controversial 18S rRNA sequence analysis found it to be closer to the also parasitic Myxozoan. It was traditionally placed in its own class, Polypodiozoa, and this view is often seen to reflect the uncertainties surrounding this highly distinct animal.[7]

Other classifications

Limnomedusae like the flower hat jelly (Olindias formosa) were long allied with Anthomedusae and Leptomedusae in the "Hydroida".

Some of the more widespread classification systems for the Hydrozoa are listed below. Though they are often found in seemingly authoritative Internet sources and databases, they do not agree with the available data. Especially the presumed phylogenetic distinctness of the Siphonophorae is a major flaw that was corrected only recently.

The obsolete classification mentioned above was:

Fire corals used to be considered a separate order. They are actually a family of the Anthomedusae.

A very old classification that is sometimes still seen is:

Catalogue of Life uses:

Some place the anthomedusan family Porpitidae in a separate order "Chondrophora".

Animal Diversity Web uses:

References

  1. ^ a b c Schuchert, Peter. "World Hydrozoa Database". Retrieved 2016-02-05.
  2. ^ a b c d e f g Barnes, Robert D. (1982). Invertebrate Zoology. Philadelphia: Holt-Saunders International. pp. 122–139. ISBN 978-0-03-056747-6.
  3. ^ Bouillon, J.; Gravili, C.; Pagès, F.; Gili, J.-M.; Boero, F. (2006). An introduction to Hydrozoa. Mémoires du Muséum national d'Histoire naturelle, 194. Muséum national d'Histoire naturelle: Paris, France. ISBN 2-85653-580-1. 591pp. + 1 cd-rom
  4. ^ Rich, Nathaniel (2012-11-28). "Can a Jellyfish Unlock the Secret of Immortality?". The New York Times. ISSN 0362-4331. Retrieved 2022-08-29.
  5. ^ Waggoner, Ben M.; Smith, David. "Hydrozoa: Fossil Record". UCMP Berkeley. Retrieved 19 January 2019.
  6. ^ Boero, Ferdinando; Bouillon, Jean (January 2000). "The hydrozoa: A new classification in the light of old knowledge". researchgate.net. doi:10.1285/I15910725V24P3. S2CID 82373673.{{cite journal}}: CS1 maint: url-status (link)
  7. ^ Zrzavý & Hypša 2003
  • Zrzavý, Jan & Hypša, Václav (2003): Myxozoa, Polypodium, and the origin of the Bilateria: The phylogenetic position of "Endocnidozoa" in light of the rediscovery of Buddenbrockia. Cladistics 19(2): 164–169. doi:10.1111/j.1096-0031.2003.tb00305.x (HTML abstract)

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Hydrozoa: Brief Summary

provided by wikipedia EN

Hydrozoa (hydrozoans; from Ancient Greek ὕδωρ (húdōr) 'water', and ζῷον (zôion) 'animal') is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

Some examples of hydrozoans are the freshwater jelly (Craspedacusta sowerbyi), freshwater polyps (Hydra), Obelia, Portuguese man o' war (Physalia physalis), chondrophores (Porpitidae), and pink-hearted hydroids (Tubularia).

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN