If a worm gets into an improper host such as humans the juveniles migrate through the body. The juveniles begin a typical tissue migration. They do not undergo development nor do they complete the normal migration, instead they will randomly wander through the body. Visceral larva migrans (VLM) is the resulting disease.
Toxocara canis infection is largely preventable. Worming pets often, with worming agents (such as antihelmintics: fenbendazole, piperazine, and Dichlorvos) from a veterinarian will reduce the possibility of human infection. This drugs also help in human treatment. Also careful and prompt disposal of dog feces will help. Humans should also wash their hands and the hands of children after handling dogs or dog feces, and especially before handling food. Lastly, parents and childcare givers need to watch out for toddlers eating soil and try to prevent it.
Nematodes within the Secernentea have phasmids, which are unicellular glands. Phasmids likely function as chemoreceptors. Females may produce pheromones to attract males.
Nematodes in general have papillae, setae and amphids as the main sense organs. Setae detect motion (mechanoreceptors), while amphids detect chemicals (chemoreceptors).
Communication Channels: tactile ; chemical
Other Communication Modes: pheromones
Perception Channels: tactile ; chemical
US Federal List: no special status
CITES: no special status
Toxocara canis is a canid parasite. Humans acquire the parasite as accidental hosts. In the tissues of all dogs, in many birds, and other mammals, the larval form of T. canis is found. The dog or canid host is the definitive host and only there will T. canis develop further than the larval stage. The name for the disease when in T. canis is in a host is Toxocariasis. Many animals such as mice, rabbits, and monkeys can serve as paratenic hosts.
Regardless of the path T. canis larvae take to get to the canid intestine once there the third stage larvae molt into adults. The adult worm remains in the intestine and produces an enormous number of eggs each day. Not until the fifth day post-infection do the eggs begin to appear in the canid feces.
Toxocara canis has a complex life cycle. Similar to other nematodes, T. canis is not infectious immediately when it leaves the definitive host. It needs to grow and develop into the stage that is infectious, ensheathed L3. Only this stage can infect other definitive hosts. There is strong evidence of two molts taking place inside the developing eggs, before the eggs even hatch. The molting process involves a separation of the cuticle from the epidermis. This causes a formation of the new cuticle, which is arising from the outermost surface of the epidermis. It also includes the shedding of the old cuticle.
Toxocara canis is widespread, causing disease in many mammals including humans. Many humans are infected with T. canis larvae. The larvae can cause serious damage to the human paratenic host. It can be found in wealthy and well-developed countries just as much as poor and under-developed places. In the United States about 98% of puppies and 20% of adult dogs are infected with T. canis. The means the risk of exposure to humans in the United States is very high. Most cases go unreported or are unrecognized. All small mammals can be paratenic hosts especially small children. The disease is most common in children between the ages one and three. Ingesting embryonated eggs from the feces of dogs and other canids spreads the diease. Often pet owners take their dog for a walk in the park. During the walk the dog may deposit egg-bearing feces in the park soil or sand. The next day an unsuspecting parent brings their small child to play in the park. The young child is at an age where everything is picked up and tasted, including the contaminated soil. The eggs of T. canis are most commonly ingested this way. The eggs once excreted from the definitive host can survive for 10-20 days in the external environment. This means even long after the dog has been in the park humans can still be infected. In Britain, one study showed that the climate conditions there allow for some T. canis eggs to survive in the soil for up to three years!
Many of the wandering larvae end up in the brain causing serious reactions, which can lead to death of the host. The most common place in the body of infection is the liver, but it can be found in every organ. The amount of damage is related to the number of juveniles in the body of the host. One of the more serious results of visceral larva migrans is blindness. The worms that infect the eye are called ocular larval migrans. Blindness occurs from the infection when a larva becomes trapped in the blood vessels at the back of the eye.
Negative Impacts: injures humans (causes disease in humans ); causes or carries domestic animal disease
Toxocara canis is a canid parasite. Humans acquire the parasite as accidental hosts. In the tissues of all dogs, in many birds, and other mammals, the larval form of T. canis is found. The dog or canid host is the definitive host and only there will T. canis develop further than the larval stage. The name for the disease when in T. canis is in a host is Toxocariasis. Many animals such as mice, rabbits, and monkeys can serve as paratenic hosts.
Ecosystem Impact: parasite
Species Used as Host:
The location of T. canis in hosts is in the small intestine. There they feed on intestinal contents. The adults have a specialized anaerobic metabolism. This specialized metabolism gives the adult worms an extra ATP. Adult T. canis worms are very host specific.
Pharyngeal glands and intestinal epithelium produce digestive enzymes to feed on the hosts’ body fluids. Extracellular digestion begins within the lumen and is finished intracellularly.
Animal Foods: body fluids
Primary Diet: carnivore (Eats body fluids)
Toxcocara canis has a worldwide distribution. It is prevalent in all locations that have domestic dogs, puppies, and other canids. Toxocara canis is also found in places that have other various mammals such as mice, pigs, birds, and foxes, but these hosts are only paratenic hosts. Hosts are terrestrial mammals and therefore T. canis is mainly found in terrestrial terrain.
Biogeographic Regions: nearctic ; palearctic ; oriental ; ethiopian ; neotropical ; australian
Other Geographic Terms: cosmopolitan
The eggs of T. canis are excreted in the feces of an infected canid host. The embryonated eggs can live in the feces for up to three weeks. The feces are often deposited in soil or sandy areas. A host must ingest the eggs for the life cycle to continue. If ingested, the new habitat becomes the internal organs of the host. The gut is the first area T. canis larvae reside. If the host has not been previously infected, hatched juveniles go throught the circulation to the lungs, then back to the gut. If in a canid host, they take up residence in the intestine and develop into adults. If hosts have been previously "immunized" junveniles go to the body tissues and become dormant as if they were in a paratenic host. Often the infectious larvae stay in the mammary glands until a pregnancy where they are passed on to a nursing pup. If in a human or other non-canid host the larvae will wonder throughout the organs. These wandering larvae are called visceral larva migrans. They may travel to the eyes, lungs, brain, heart, muscles, liver, and other organs. Here they do not develop further but can cause severe local reactions.
Habitat Regions: terrestrial
Terrestrial Biomes: desert or dune ; savanna or grassland ; chaparral ; forest ; rainforest ; scrub forest ; mountains
Other Habitat Features: urban ; suburban ; agricultural
Toxocara canis is smaller than most of the other species in the family Ascarididae. It has a complete gut in the form of a simple tube. It is a "round worm" implying the shape of the outer layer to be round (if seen in a cross section ). Depending on the host the worm gets into T. canis will have different number of larval stages. Most worms have three larval stages before becoming infective.
Toxocara canis is dioecious having morphology distinctly different for the male and female. Males, 4-6 cm long, are smaller than females. The male's posterior end is curved ventrally and the tail is bluntly pointed. The male has a single tubular testis. He also has simple spicules, which allows for direct sperm transfer. The female worms are generally around 6.5 cm but can be as long as 15 cm long. In the female the vulva is about one-third the body length from the anterior end. The ovaries are very large and extensive. The uteri contain up to 27 million eggs at a time.
Both males and females have three prominent lips. Each lip has a dentigerous ridge. The lateral hypodermal cords are visible with the naked eye. No gubernacullum is present. In both sexes there are prominent cervical alae. The eggs are brownish and almost spherical. The eggs measure 75-90 micrometers. The eggs are embryonated when laid and have surficial pits. These eggs are very resistant to various weather and chemical conditions.
Range length: 4 to 15 cm.
Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry
Sexual Dimorphism: female larger; sexes shaped differently
These parasites are usually not preyed on directly, but are ingested from host to host.
Females may produce a phermomone to attract males. The male coils around a female with his curved area over the female genital pore. The gubernaculum, made of cuticle tissue, guides spicules which extend through the cloaca and anus. Males use spicules to hold the female during copulation. Nematode sperm are amoeboid-like and lack flagella. The adult worm remains in the intestine and produces an enormous number of eggs each day. Not until the fifth day post-infection do the eggs begin to appear in the canid feces. There is strong evidence of two moults taking place inside the developing eggs.
Key Reproductive Features: sexual ; fertilization (Internal ); oviparous
Parental Investment: pre-fertilization (Provisioning); pre-hatching/birth (Provisioning: Female)