dcsimg
Image of platypus
Creatures » » Animal » » Vertebrates » » Synapsids » » Cynodonts » Mammals » Monotremes » Platypus »

Duck Billed Platypus

Ornithorhynchus anatinus (Shaw 1799)

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 22.6 years (captivity) Observations: One captive specimen was at least 22.6 years old when it died (Richard Weigl 2005).
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Habitat

provided by Animal Diversity Web

Duck-billed platypuses inhabit rivers, lagoons, and streams (Pasitschniak-Artsand Marinelli, 1998). They prefer areas with steep banks that contain roots, overhanging vegetation, reeds, and logs (Grant and Temple-Smith, 1998). The rivers and streams are usually less than 5 meters in depth (Grant and Temple-Smith, 1998). There have been records of them living in aquatic habitats at elevations above 1000 meters (Grant and Temple-Smith, 1998).

Range elevation: 1000 (high) m.

Range depth: 5 (high) m.

Habitat Regions: temperate ; tropical ; terrestrial ; freshwater

Terrestrial Biomes: mountains

Aquatic Biomes: lakes and ponds; rivers and streams

Other Habitat Features: riparian

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

The geographic range of Ornithorhynchus anatinus is restricted to the wetter regions of eastern Australia and Tasmania.

Biogeographic Regions: australian (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Duck-billed platypuses eat primarily aquatic invertebrates in streams and lakes (Grant and Tempple-Smith, 1998). They also eat shrimp, fish eggs, and small fish (Pasitschniak-Arts and Marinelli, 1998).

Animal Foods: fish; eggs; mollusks; aquatic or marine worms; aquatic crustaceans

Foraging Behavior: stores or caches food

Primary Diet: carnivore (Eats non-insect arthropods, Molluscivore )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

There is little information about how duck-billed platypuses affect their ecosystem. However, especially by foraging on aquatic invertebrates, they play an integral role in the food webs of the streams, rivers, and billabongs in which they are found.

Ecosystem Impact: parasite

Commensal/Parasitic Species:

  • protozoans (Protozoa)
  • cestode (Cestoda)
  • trematodes (Trematoda)
  • nematodes (Nematoda)
  • fleas (Siphonaptera)
  • mites (Acari)
  • ticks (Parasitiformes)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Duck-billed platypus skins were harvested by fur traders to make hats, slippers, and rugs. Harvesting was ended by a law passed in 1912 that protected platypuses from being hunted (Grant and Temple-Smith, 1998).

Positive Impacts: body parts are source of valuable material

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Duck-billed platypuses eat trout (Salmonidae), which are considered a food source for humans. However, trout streams are not privately-owned in Australia so the effect of platypus predation on trouts is neither widely noticed nor regulated. They can harm humans with their venomous spurs if provoked (Grant and Temple-Smith, 1998).

Negative Impacts: injures humans (venomous )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Duck-billed platypuses are currently protected by the Australian government (Pasitschniak-Arts and Marinelli, 1998). Populations are considered healthy and they are not listed as a species of concern on global conservation lists.

US Federal List: no special status

CITES: no special status

IUCN Red List of Threatened Species: no special status

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Duck-billed platypuses make some sounds, but their role in communication hasn't been defined yet (Pasitschniak-Arts and Marinelli, 1998).

Communication Channels: tactile ; acoustic

Other Communication Modes: vibrations

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

There is little information on the longevity of duck-billed platypuses. They can live up to 12 years in the wild.

Range lifespan
Status: wild:
12 (high) years.

Average lifespan
Status: captivity:
17.0 years.

Average lifespan
Status: wild:
17.0 years.

Average lifespan
Status: captivity:
17.0 years.

Average lifespan
Status: captivity:
17.0 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Duck-billed platypuses are one of three species of monotremes. These species are unique among mammals in that they retain the ancestral characteristic of egg laying. They have a cloaca through which eggs are laid and both liquid and solid waste is eliminated. Duck-billed platypuses are stream-lined and elongated, they have fur ranging from medium brown to dark brown on the dorsal side and brown to silver-gray on the ventral side. They have bills that closely resemble those of ducks, and flat and broad tails resembling those of beavers (Grant and Temple-Smith, 1998). Two nostrils are located on top of their bills and their eyes and ears are on either side of their heads. They have short limbs, naked soles, webbed forefeet and partially-webbed hind feet. Each foot contains five digits each consisting of a broad nail for the forefeet and sharp claws for the hind feet. Males are generally larger than females, and have two venom glands attached to spurs on their hind legs. Females have mammary glands but no nipples. The young have milk teeth while the adults have grinding plates. The young are smaller than adults in size. There is a significant reduction in body fat after winter for both young and adults (Pasitschniak-Arts and Marinelli, 1998).

Range mass: 0.8 to 2.5 kg.

Average mass: 1.52 kg.

Range length: 390 to 600 mm.

Average length: 465 mm.

Average basal metabolic rate: 468 cm3.O2/g/hr.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry ; venomous

Sexual Dimorphism: male larger; ornamentation

Average basal metabolic rate: 1.931 W.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Predators of duck-billed platypuses include foxes, humans, and dogs (Grant and Temple-Smith, 1998). Others are snakes, birds of prey, feral cats, and large eels (Pasitschniak-Arts and Marinelli, 1998).

Known Predators:

  • foxes (Vulpes vulpes)
  • dogs (Canis lupus familiaris)
  • dingos (Canis lupus dingo)
  • large snakes (Serpentes)
  • birds of prey (Falconiformes)
  • feral cats (Felis silvestris)
  • eels (Anguilliformes)
  • humans (Homo sapiens)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Male duck-billed platypuses initiate most mating interactions but successful mating relies entirely on the willingness of females. Mating is seasonal and varies with population. Male and female platypuses touch as they swim past each other. The male grabs the tail of the female with his bill and if the female is unwilling, she will try to escape by swimming through logs and other obstacles until she is set free. However, if she is willing, she will stay near the male and will allow him to grab her tail again if he dropped it. The male then curls his body around the female, his tail underneath her to one side of her tail. Then he moves forward and bites the hair on her shoulder with his bill. Other details of the mating patterns of platypuses are mainly unknown due to their secretive, aquatic nature. There is a higher proportion of spur wounds in males than females, which may be explained by aggressive encounters between males during mating season.

Mating System: polygynous

Duck-billed platypuses are one of the three mammal species that lay eggs. There is little available information on breeding, estimated gestation periods are 27 days and incubation periods are 10 days. Lactation lasts three to four months. Most juvenile females do not begin to breed until they are four years old (Grant and Temple-Smith, 1998).

Breeding interval: Duck-billed platypuses probably breed once each year.

Breeding season: Duck-billed platypuses breed in late winter or autumn.

Range number of offspring: 1 to 3.

Range weaning age: 3 to 4 months.

Range age at sexual or reproductive maturity (female): 2 (low) years.

Range age at sexual or reproductive maturity (male): 1.5 (low) years.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization ; oviparous

Average gestation period: 17 days.

Average number of offspring: 2.

Female duck-billed platypuses build burrows in which to protect and nurse their young. During the incubation period, the female platypus will incubate eggs by pressing the egg to her belly with her tail. The incubation period usually lasts for 6 to 10 days. Duck-billed platypuses generally lay two to three eggs.

Parental Investment: altricial ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Ojo, E. 2008. "Ornithorhynchus anatinus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ornithorhynchus_anatinus.html
author
Evelyn Ojo, University of Maryland, Baltimore County
editor
Kevin Omland, University of Maryland, Baltimore County
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Biology

provided by Arkive
During the hours of daylight, the platypus remains in an individual, oval-shaped burrow, dug three to eight metres into an earth bank (8). Emerging at dusk, it spends most of the night foraging in shallow water for bottom-dwelling invertebrates, such as crustaceans, worms and molluscs and the larvae of freshwater insects (3) (8). Throughout the 20 to 40 second dives, the platypus probes the muddy bottom with its highly sensitive bill, aided by an array of electro-receptors capable of detecting the small muscle activity of prey (3) (6) (7) (8). Although platypus home ranges often overlap, these solitary animals generally only come together to mate (7) (8). Breeding occurs from late winter to spring, with mating taking place in the water (3) (8). Around 21 days after mating, the female lays from one to three, leathery-shelled eggs in an elaborate nesting burrow, up to 30 metres long and comprised of multiple chambers (6) (7) (8). The tiny, naked young hatch after an incubation period of just 10 days, but remain in the burrow for three to four months, during which time they feed on milk sucked from the fur around the female's mammary glands (3) (6) (8). Emerging from the burrow in summer, the young enter the water and begin to feed on the benthic organisms on which the adults thrive (3). In the wild the platypus may live for up to 20 years (1).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Conservation

provided by Arkive
The platypus is legally protected in all the states in which it occurs and populations are found in several protected national parks and reserves. Furthermore, fishing regulations, including the use of nets with larger mesh sizes, have helped to reduce the number of accidental deaths. In the absence of a reliable data, it is vital that research is carried out to determine baseline platypus population levels and trends (1) (6). This is to be supported by further research into platypus biology and the effects of human activities on the species, which will be used to inform conservation strategies (6). In addition, given the current threat of the spread of Mucormycosis, research into the fungal disease is also considered a huge priority (1) (9).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Description

provided by Arkive
So seemingly incongruous was the appearance of platypus specimens shipped to England at the end of the 18th century, that many observers assumed it was the fraudulent work of a skilled taxidermist (3) (4) (5). Even after the specimens were found to be authentic, it was sometime before scientists concluded that the 'amphibious mole' was in fact a mammal, albeit the most evolutionary distinct mammal alive (3) (5) (6). The distinctive features that make the platypus so instantly recognisable are its duck-like bill, dense, waterproof fur, webbed feet, and broad, flattened tail (3) (7) (8). The plush pelage that covers its stream-lined body is deep brown above, and silvery grey to yellow underneath (3) (6) (8). The limbs are extremely short, with the heavily webbed front-feet providing propulsion through water, while the hind-feet act more like rudders (3). In male platypuses, the rear ankles are equipped with a horny spur connected by a duct to venom gland, which is used to inflict wounds on natural predators and other males (3) (7) (8). Although, the characteristic muzzle of the platypus resembles that of a duck, it is actually soft and rubbery, and contains no true teeth (3) (6) (8).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Habitat

provided by Arkive
Found mainly in streams and rivers with earth banks suitable for burrows, but also occurs in lakes and farm dams (3) (6) (8).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Range

provided by Arkive
The platypus is endemic to Australia, where it occurs in eastern Queensland and New South Wales, eastern, central and south-western Victoria, and throughout Tasmania. In addition there is an introduced population on Kangaroo Island, South Australia (1).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Status

provided by Arkive
Classified as Least Concern (LC) on the IUCN Red List (1).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Threats

provided by Arkive
Although the platypus was hunted intensively for its fur until the early 20th century, its population has recovered well and is now thought to be fairly abundant (1) (6). However, owing to the species' specialised habitat requirements, it is seen as being increasingly vulnerable to the effects of habitat change (3) (8). In particular, one of the major concerns is the impact of reduced stream and river flow, resulting from prolonged periods of drought and the industrial and domestic extraction of water. Paradoxically, excessive flooding in the past has also been responsible for increased mortality and a decline in the number of young being born. In parts of its range, accidental drowning in nets and traps set for fish and crustaceans is a further problem (1) (6). There are also growing concerns about the potential impact of a fungal disease, Mucormycosis, currently restricted to Tasmania. Platypuses that become infected with the disease develop ulcers on their body that can lead to death, due to secondary infection and an inability to control body temperature. It is not yet known what impact the disease is having on the abundance and distribution of the Tasmanian platypus population (8) (9).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Genetics

provided by EOL authors
In yet another unusual characteristic of the Platypus, sex determination does not arise from a simple combination of one X and one Y chromosome. Grutzner et al (2004) demonstrate that the platypus has five male-specific chromosomes (Y chromosomes) and five X chromosomes present in one copy in males but in two copies in females (X chromosomes). At meiosis these ten chromosomes form an alternating pattern XYXYXYXYXY and XXXXXXXXXX to then segregate into sex determining sperm each with 5X or 5Y chromosomes.
license
cc-by-3.0
original
visit source
partner site
EOL authors

ARKIVE: Platypus videos, photos and facts - Ornithorhynchus anatinus | ARKive

provided by EOL authors

ARKIVE species profile page

license
cc-publicdomain
original
visit source
partner site
EOL authors

Australian Platypus Conservancy

provided by EOL authors

"The Australian Platypus Conservancy is a non-profit organisation dedicated to conserving the platypus and Australian water-rat and, more broadly, protecting the biodiversity values of freshwater habitats."

license
cc-publicdomain
original
visit source
partner site
EOL authors

EDGE: 318. Platypus (Ornithorhynchus anatinus)

provided by EOL authors

EDGE (Evolutionarily Distinct & Globally Endangered) species profile page

license
cc-publicdomain
original
visit source
partner site
EOL authors

IUCN Red List: Ornithorhynchus anatinus (Duck-billed Platypus, Platypus)

provided by EOL authors

IUCN Red List species profile page (current status: Near Threatened)

license
cc-publicdomain
original
visit source
partner site
EOL authors

Vertebrate Associates on Kangaroo Island, Australia

provided by EOL authors

The most notable mammal present on Kangaroo Island is the endemic Kangaroo Island Kangaroo (Macropus fuliginosus fuliginosus), the icon for whom the island was named upon European discovery in 1802. A smaller marsupial present on the island is the Tammar Wallaby (Macropus eugenii). An endemic dasyurid is the Critically Endangered Kangaroo Island Dunnart (Sminthopsis aitkeni), which is found only in the west of the island in Eucalyptus remota/E. cosmophylla open low mallee, E. baxteri low woodland or E. baxteri/E. remota low open woodland. The Common Brush-tailed Possum (Trichosurus vulpecula) is a widespread folivore native to Australia.

Monotremes are also represented on the island. There is also an introduced population of the Duck-billed Platypus (Ornithorhynchus anatinus) in the western part of the island in Flinders Chase National Park. The Short-beaked Echidna (Tachyglossus aculeatus) is also found moderately widespread on Kangaroo Island.

Chiroptera species on Kangaroo Island include the Yellow-bellied Pouched Bat (Saccolaimus flaviventris), which species is rather widespread in Australia and also occurs in Papua New Guinea. Australia's largest molossid, the White-striped Free-tail Bat (Tadarida australis) is found on Kangaroo Island. Another bat found on the island is the Southern Forest Bat (Eptesicus regulus), a species endemic to southern Australia (including Tasmania).

Several anuran species are found on Kangaroo island: Brown Tree Frog (Litoria ewingii), Spotted Marsh Frog (Limnodynastes tasmaniensis), Painted Spadefoot Frog (Neobatrachus pictus), Brown Toadlet (Pseudophryne bibroni) and Brown Froglet (Crinia signifera).

The Heath Monitor (Varanus rosenbergi ) is a lizard that grows up to a metre in length, preying on smaller reptiles, juvenile birds and eggs; it is frequently observed on warmer days basking in the sunlight or scavenging on roadkill. The Black Tiger Snake (Notechis ater) is found on Kangaroo Island. Another reptile particularly associated with this locale is the Kangaroo Island Copperhead (Austrelaps labialis).

The Glossy Black Cockatoo (Calyptorhynchus lathami) is found on the island, especially in the western part, where its preferred food, fruit of the Drooping Sheoak, is abundant. The Kangaroo Island Emu (Dromaius baudinianus) became extinct during the 1820s from over-hunting and habitat destruction due to burning.

Marine mammals that are observed on the island include the Australian Sea Lion (Neophoca cinerea) and New Zealand Fur Seal (Arctocephalus forsteri), each species of which is native to Kangaroo Island, and abundant at Admiral's Arch as well as at Seal Bay.

Kangaroo Island is not so adversely impacted by alien species grazers as parts of the mainland. No rabbit species are present on the island, and introduced (but escaped) Domestic Goats (Capra hircus) and pigs (Sus scrofa) have generated only minor issues. However, a Koala (Phascolarctos cinereus) population introduced to the island in the 1920s has caused significant damage to certain woodland communities, especially to Manna Gum trees.

license
cc-by-3.0
copyright
C. Michael Hogan
original
visit source
partner site
EOL authors

Platypus

provided by wikipedia EN

The platypus (Ornithorhynchus anatinus),[3] sometimes referred to as the duck-billed platypus,[4] is a semiaquatic, egg-laying mammal endemic to eastern Australia, including Tasmania. The platypus is the sole living representative or monotypic taxon of its family (Ornithorhynchidae) and genus (Ornithorhynchus), though a number of related species appear in the fossil record.

Together with the four species of echidna, it is one of the five extant species of monotremes, mammals that lay eggs instead of giving birth to live young. Like other monotremes, it senses prey through electrolocation. It is one of the few species of venomous mammals, as the male platypus has a spur on the hind foot that delivers a venom, capable of causing severe pain to humans. The unusual appearance of this egg-laying, duck-billed, beaver-tailed, otter-footed mammal baffled European naturalists when they first encountered it. In 1799, the first scientists to examine a preserved platypus body judged it a fake, made of several animals sewn together.

The unique features of the platypus make it an important subject in the study of evolutionary biology, and a recognisable and iconic symbol of Australia. It is culturally significant to several Aboriginal peoples of Australia, who also used to hunt the animal for food. It has appeared as a mascot at national events and features on the reverse of the Australian twenty-cent coin, and the platypus is the animal emblem of the state of New South Wales. Until the early 20th century, humans hunted the platypus for its fur, but it is now protected throughout its range. Although captive-breeding programs have had only limited success, and the platypus is vulnerable to the effects of pollution, it is not under any immediate threat.

As of 2020, the platypus is a legally protected species in all states where it occurs. It is listed as an endangered species in South Australia and vulnerable in Victoria. The species is classified as a near-threatened species by the IUCN, but a November 2020 report has recommended that it is upgraded to threatened species under the federal EPBC Act, due to habitat destruction and declining numbers in all states.

Taxonomy and naming

Frederick Nodder's illustration from the first scientific description in 1799 of "Platypus anatinus"

When the platypus was first encountered by Europeans in 1798, a pelt and sketch were sent back to Great Britain by Captain John Hunter, the second Governor of New South Wales.[5] British scientists' initial hunch was that the attributes were a hoax.[6] George Shaw, who produced the first description of the animal in the Naturalist's Miscellany in 1799, stated it was impossible not to entertain doubts as to its genuine nature,[7] and Robert Knox believed it might have been produced by some Asian taxidermist.[6] It was thought that somebody had sewn a duck's beak onto the body of a beaver-like animal. Shaw even took a pair of scissors to the dried skin to check for stitches.[8][7]

The common name "platypus" literally means 'flat-foot', deriving from the Greek word platúpous (πλατύπους),[9] from platús (πλατύς 'broad, wide, flat')[10] and poús (πούς 'foot').[11][12] Shaw initially assigned the species the Linnaean name Platypus anatinus when he described it,[13] but the genus term was quickly discovered to already be in use as the name of the wood-boring ambrosia beetle genus Platypus.[14] It was independently described as Ornithorhynchus paradoxus by Johann Blumenbach in 1800 (from a specimen given to him by Sir Joseph Banks)[15] and following the rules of priority of nomenclature, it was later officially recognised as Ornithorhynchus anatinus.[14]

There is no universally-agreed plural form of "platypus" in the English language. Scientists generally use "platypuses" or simply "platypus". Colloquially, the term "platypi" is also used for the plural, although this is a form of pseudo-Latin;[8] going by the word's Greek roots the plural would be "platypodes". Early British settlers called it by many names, such as "watermole", "duckbill", and "duckmole".[8] Occasionally it is specifically called the "duck-billed platypus".

The scientific name Ornithorhynchus anatinus literally means 'duck-like bird-snout',[13] deriving its genus name from the Greek root ornith- (όρνιθ ornith or ὄρνις órnīs 'bird')[16] and the word rhúnkhos (ῥύγχος 'snout', 'beak').[17] Its species name is derived from Latin anatinus ('duck-like') from anas 'duck'.[13][18] The platypus is the sole living representative or monotypic taxon of its family (Ornithorhynchidae).[19]

Description

In David Collins's account of the new colony 1788–1801, he describes coming across "an amphibious animal, of the mole species". His account includes a drawing of the animal.[20]

The body and the broad, flat tail of the platypus are covered with dense, brown, biofluorescent fur that traps a layer of insulating air to keep the animal warm.[8][14][21] The fur is waterproof, and the texture is akin to that of a mole.[22] The platypus uses its tail for storage of fat reserves (an adaptation also found in animals such as the Tasmanian devil[23]). The webbing on the feet is more significant on the front feet and is folded back when walking on land. The elongated snout and lower jaw are covered in soft skin, forming the bill. The nostrils are located on the dorsal surface of the snout, while the eyes and ears are located in a groove set just back from it; this groove is closed when swimming.[14] Platypuses have been heard to emit a low growl when disturbed and a range of other vocalisations have been reported in captive specimens.[8]

A colour print of platypuses from 1863

Weight varies considerably from 0.7 to 2.4 kg (1 lb 9 oz to 5 lb 5 oz), with males being larger than females. Males average 50 cm (20 in) in total length, while females average 43 cm (17 in),[14] with substantial variation in average size from one region to another. This pattern does not seem to follow any particular climatic rule and may be due to other environmental factors, such as predation and human encroachment.[24]

The platypus has an average body temperature of about 32 °C (90 °F) rather than the 37 °C (99 °F) typical of placental mammals.[25] Research suggests this has been a gradual adaptation to harsh environmental conditions on the part of the small number of surviving monotreme species rather than a historical characteristic of monotremes.[26][27]

Modern platypus young have three teeth in each of the maxillae (one premolar and two molars) and dentaries (three molars), which they lose before or just after leaving the breeding burrow;[14] adults have heavily keratinised pads called ceratodontes in their place, which they use to grind food.[14][28][29] The first upper and third lower cheek teeth of platypus nestlings are small, each having one principal cusp, while the other teeth have two main cusps.[30] The platypus jaw is constructed differently from that of other mammals, and the jaw-opening muscle is different.[14] As in all true mammals, the tiny bones that conduct sound in the middle ear are fully incorporated into the skull, rather than lying in the jaw as in pre mammalian synapsids. However, the external opening of the ear still lies at the base of the jaw.[14] The platypus has extra bones in the shoulder girdle, including an interclavicle, which is not found in other mammals.[14] As in many other aquatic and semiaquatic vertebrates, the bones show osteosclerosis, increasing their density to provide ballast.[31] It has a reptilian gait, with the legs on the sides of the body, rather than underneath.[14] When on land, it engages in knuckle-walking on its front feet, to protect the webbing between the toes.[32]

Venom

The calcaneus spur found on the male's hind limb is used to deliver venom.

While both male and female platypuses are born with ankle spurs, only the spurs on the male's back ankles deliver venom,[33][34][35] composed largely of defensin-like proteins (DLPs), three of which are unique to the platypus.[36] The DLPs are produced by the immune system of the platypus. The function of defensins is to cause lysis in pathogenic bacteria and viruses, but in platypuses they also are formed into venom for defence. Although powerful enough to kill smaller animals such as dogs, the venom is not lethal to humans, but the pain is so excruciating that the victim may be incapacitated.[36][37] Oedema rapidly develops around the wound and gradually spreads throughout the affected limb. Information obtained from case histories and anecdotal evidence indicates the pain develops into a long-lasting hyperalgesia (a heightened sensitivity to pain) that persists for days or even months.[38][39] Venom is produced in the crural glands of the male, which are kidney-shaped alveolar glands connected by a thin-walled duct to a calcaneus spur on each hind limb. The female platypus, in common with echidnas, has rudimentary spur buds that do not develop (dropping off before the end of their first year) and lack functional crural glands.[14]

The venom appears to have a different function from those produced by non-mammalian species; its effects are not life-threatening to humans, but nevertheless powerful enough to seriously impair the victim. Since only males produce venom and production rises during the breeding season, it may be used as an offensive weapon to assert dominance during this period.[36]

Similar spurs are found on many archaic mammal groups, indicating that this is an ancient characteristic for mammals as a whole, and not exclusive to the platypus or other monotremes.[40]

Electrolocation

The platypus has secondarily acquired electroreception. Its receptors are arranged in stripes on its bill, giving it high sensitivity to the sides and below; it makes quick turns of its head as it swims to detect prey.[41]

Monotremes are the only mammals (apart from at least one species of dolphin-- the Guiana Dolphin)[42] known to have a sense of electroreception: they locate their prey in part by detecting electric fields generated by muscular contractions. The platypus's electroreception is the most sensitive of any monotreme.[43][41]

The electroreceptors are located in rostrocaudal rows in the skin of the bill, while mechanoreceptors (which detect touch) are uniformly distributed across the bill. The electrosensory area of the cerebral cortex is contained within the tactile somatosensory area, and some cortical cells receive input from both electroreceptors and mechanoreceptors, suggesting a close association between the tactile and electric senses. Both electroreceptors and mechanoreceptors in the bill dominate the somatotopic map of the platypus brain, in the same way human hands dominate the Penfield homunculus map.[44][45]

The platypus can determine the direction of an electric source, perhaps by comparing differences in signal strength across the sheet of electroreceptors. This would explain the characteristic side-to-side motion of the animal's head while hunting. The cortical convergence of electrosensory and tactile inputs suggests a mechanism that determines the distance of prey that, when they move, emit both electrical signals and mechanical pressure pulses. The platypus uses the difference between arrival times of the two signals to sense distance.[41]

Feeding by neither sight nor smell,[46] the platypus closes its eyes, ears, and nose each time it dives.[47] Rather, when it digs in the bottom of streams with its bill, its electroreceptors detect tiny electric currents generated by muscular contractions of its prey, so enabling it to distinguish between animate and inanimate objects, which continuously stimulate its mechanoreceptors.[41] Experiments have shown the platypus will even react to an "artificial shrimp" if a small electric current is passed through it.[48]

Monotreme electrolocation probably evolved in order to allow the animals to forage in murky waters, and may be tied to their tooth loss.[49] The extinct Obdurodon was electroreceptive, but unlike the modern platypus it foraged pelagically (near the ocean surface).[49]

Eyes

In recent studies it has been suggested that the eyes of the platypus are more similar to those of Pacific hagfish or Northern Hemisphere lampreys than to those of most tetrapods. The eyes also contain double cones, which most mammals do not have.[50]

Although the platypus's eyes are small and not used under water, several features indicate that vision played an important role in its ancestors. The corneal surface and the adjacent surface of the lens is flat while the posterior surface of the lens is steeply curved, similar to the eyes of other aquatic mammals such as otters and sea-lions. A temporal (ear side) concentration of retinal ganglion cells, important for binocular vision, indicates a role in predation, while the accompanying visual acuity is insufficient for such activities. Furthermore, this limited acuity is matched by a low cortical magnification, a small lateral geniculate nucleus and a large optic tectum, suggesting that the visual midbrain plays a more important role than the visual cortex, as in some rodents. These features suggest that the platypus has adapted to an aquatic and nocturnal lifestyle, developing its electrosensory system at the cost of its visual system; an evolutionary process paralleled by the small number of electroreceptors in the short-beaked echidna, which dwells in dry environments, whilst the long-beaked echidna, which lives in moist environments, is intermediate between the other two monotremes.[44]

Biofluorescence

In 2020, research in biofluorescence revealed that the platypus glows a bluish-green color when exposed to black light.[51]

Distribution, ecology, and behaviour

Dentition, as illustrated in Knight's Sketches in Natural History
Platypus swimming
Swimming underwater at Sydney Aquarium, Australia

The platypus is semiaquatic, inhabiting small streams and rivers over an extensive range from the cold highlands of Tasmania and the Australian Alps to the tropical rainforests of coastal Queensland as far north as the base of the Cape York Peninsula.[52]

Inland, its distribution is not well known. It was considered extinct on the South Australian mainland, with the last sighting recorded at Renmark in 1975,[53] until some years after John Wamsley had created Warrawong Sanctuary (see below) in the 1980s, setting a platypus breeding program there, and it had subsequently closed.[54][55] In 2017 there were some unconfirmed sightings downstream, outside the sanctuary,[53] and in October 2020 a nesting platypus was filmed inside the recently reopened sanctuary.[56] There is a population on Kangaroo Island[57] introduced in the 1920s, which was said to stand at 150 individuals in the Rocky River region of Flinders Chase National Park before the 2019–20 Australian bushfire season, in which large portions of the island burnt, decimating all wildlife. However, with the SA Department for Environment and Water recovery teams working hard to reinstate their habitat, there had been a number of sightings reported by April 2020.[58]

The platypus is no longer found in the main part of the Murray-Darling Basin, possibly due to the declining water quality brought about by extensive land clearing and irrigation schemes.[59] Along the coastal river systems, its distribution is unpredictable; it appears to be absent from some relatively healthy rivers, and yet maintains a presence in others, for example, the lower Maribyrnong, that are quite degraded.[60]

In captivity, platypuses have survived to 17 years of age, and wild specimens have been recaptured when 11 years old. Mortality rates for adults in the wild appear to be low.[14] Natural predators include snakes, water rats, goannas, hawks, owls, and eagles. Low platypus numbers in northern Australia are possibly due to predation by crocodiles.[61] The introduction of red foxes in 1845 for hunting may have had some impact on its numbers on the mainland.[24] The platypus is generally regarded as nocturnal and crepuscular, but individuals are also active during the day, particularly when the sky is overcast.[62][63] Its habitat bridges rivers and the riparian zone for both a food supply of prey species, and banks where it can dig resting and nesting burrows.[63] It may have a range of up to 7 km (4.3 mi), with a male's home range overlapping those of three or four females.[64]

The platypus is an excellent swimmer and spends much of its time in the water foraging for food. It has a very characteristic swimming style and no external ears.[65] Uniquely among mammals, it propels itself when swimming by an alternate rowing motion of the front feet; although all four feet of the platypus are webbed, the hind feet (which are held against the body) do not assist in propulsion, but are used for steering in combination with the tail.[66] The species is endothermic, maintaining its body temperature at about 32 °C (90 °F), lower than most mammals, even while foraging for hours in water below 5 °C (41 °F).[14]

Dives normally last around 30 seconds, but can last longer, although few exceed the estimated aerobic limit of 40 seconds. Recovery at the surface between dives commonly takes from 10 to 20 seconds.[67][68]

When not in the water, the platypus retires to a short, straight resting burrow of oval cross-section, nearly always in the riverbank not far above water level, and often hidden under a protective tangle of roots.[65]

The average sleep time of a platypus is said to be as long as 14 hours per day, possibly because it eats crustaceans, which provide a high level of calories.[69]

Diet

The platypus is a carnivore: it feeds on annelid worms, insect larvae, freshwater shrimp, and freshwater yabby (crayfish) that it digs out of the riverbed with its snout or catches while swimming. It uses cheek-pouches to carry prey to the surface, where it is eaten.[65] The platypus needs to eat about 20% of its own weight each day, which requires it to spend an average of 12 hours daily looking for food.[67]

Reproduction

Platypus's nest with eggs (replica)

When the platypus was first encountered by European naturalists, they were divided over whether the female lays eggs. This was finally confirmed by William Hay Caldwell's team in 1884.[14][36]

The species exhibits a single breeding season; mating occurs between June and October, with some local variation taking place between different populations across its range.[61] Historical observation, mark-and-recapture studies, and preliminary investigations of population genetics indicate the possibility of both resident and transient members of populations, and suggest a polygynous mating system.[70] Females are thought likely to become sexually mature in their second year, with breeding confirmed still to take place in animals over nine years old.[70]

Outside the mating season, the platypus lives in a simple ground burrow, the entrance of which is about 30 cm (12 in) above the water level. After mating, the female constructs a deeper, more elaborate burrow up to 20 m (65 ft) long and blocked at intervals with plugs (which may act as a safeguard against rising waters or predators, or as a method of regulating humidity and temperature).[71] The male takes no part in caring for his young, and retreats to his year-long burrow. The female softens the ground in the burrow with dead, folded, wet leaves, and she fills the nest at the end of the tunnel with fallen leaves and reeds for bedding material. This material is dragged to the nest by tucking it underneath her curled tail.[8]

The female platypus has a pair of ovaries, but only the left one is functional.[62] The platypus's genes are a possible evolutionary link between the mammalian XY and bird/reptile ZW sex-determination systems because one of the platypus's five X chromosomes contains the DMRT1 gene, which birds possess on their Z chromosome.[72] It lays one to three (usually two) small, leathery eggs (similar to those of reptiles), about 11 mm (716 in) in diameter and slightly rounder than bird eggs.[73] The eggs develop in utero for about 28 days, with only about 10 days of external incubation (in contrast to a chicken egg, which spends about one day in tract and 21 days externally).[62] After laying her eggs, the female curls around them. The incubation period is divided into three phases.[74] In the first phase, the embryo has no functional organs and relies on the yolk sac for sustenance. The yolk is absorbed by the developing young.[75] During the second phase, the digits develop, and in the last phase, the egg tooth appears.[74]

Most mammal zygotes go through holoblastic cleavage, meaning that, following fertilization, the ovum is split due to cell divisions into multiple, divisible daughter cells. This is in comparison to the more ancestral process of meroblastic cleavage, present in monotremes like the platypus and in non-mammals like reptiles and birds. In meroblastic cleavage, the ovum does not split completely. This causes the cells at the edge of the yolk to be cytoplasmically continuous with the egg's cytoplasm. This allows the yolk, which contains the embryo, to exchange waste and nutrients with the cytoplasm.[76]

There is no official term for platypus young, but the term "platypup" sees unofficial use, as does "puggle".[77][78] Newly hatched platypuses are vulnerable, blind, and hairless, and are fed by the mother's milk. Although possessing mammary glands, the platypus lacks teats. Instead, milk is released through pores in the skin. The milk pools in grooves on her abdomen, allowing the young to lap it up.[8][61] After they hatch, the offspring are milk-fed for three to four months. During incubation and weaning, the mother initially leaves the burrow only for short periods, to forage. When doing so, she creates a number of thin soil plugs along the length of the burrow, possibly to protect the young from predators; pushing past these on her return forces water from her fur and allows the burrow to remain dry.[79] After about five weeks, the mother begins to spend more time away from her young, and at around four months, the young emerge from the burrow.[61] A platypus is born with teeth, but these drop out at a very early age, leaving the horny plates it uses to grind food.[28]

Evolution

Platypus

Echidnas

live birth

Marsupials

true placenta

Eutherians

Evolutionary relationships between the platypus and other mammals[80]

The platypus and other monotremes were very poorly understood, and some of the 19th century myths that grew up around them – for example, that the monotremes were "inferior" or quasireptilian – still endure.[81] In 1947, William King Gregory theorised that placental mammals and marsupials may have diverged earlier, and a subsequent branching divided the monotremes and marsupials, but later research and fossil discoveries have suggested this is incorrect.[81][82] In fact, modern monotremes are the survivors of an early branching of the mammal tree, and a later branching is thought to have led to the marsupial and placental groups.[81][83] Molecular clock and fossil dating suggest platypuses split from echidnas around 19–48 million years ago.[84]

Reconstruction of ancient platypus relative Steropodon

The oldest discovered fossil of the modern platypus dates back to about 100,000 years ago, during the Quaternary period. The extinct monotremes Teinolophos and Steropodon were once thought to be closely related to the modern platypus,[82] but are now considered more basal taxa.[85] The fossilised Steropodon was discovered in New South Wales and is composed of an opalised lower jawbone with three molar teeth (whereas the adult contemporary platypus is toothless). The molar teeth were initially thought to be tribosphenic, which would have supported a variation of Gregory's theory, but later research has suggested, while they have three cusps, they evolved under a separate process.[86] The fossil is thought to be about 110 million years old, making it the oldest mammal fossil found in Australia. Unlike the modern platypus (and echidnas), Teinolophos lacked a beak.[85]

Monotrematum sudamericanum, another fossil relative of the platypus, has been found in Argentina, indicating monotremes were present in the supercontinent of Gondwana when the continents of South America and Australia were joined via Antarctica (until about 167 million years ago).[86][87] A fossilised tooth of a giant platypus species, Obdurodon tharalkooschild, was dated 5–15 million years ago. Judging by the tooth, the animal measured 1.3 metres long, making it the largest platypus on record.[88]

Platypus skeleton

Because of the early divergence from the therian mammals and the low numbers of extant monotreme species, the platypus is a frequent subject of research in evolutionary biology. In 2004, researchers at the Australian National University discovered the platypus has ten sex chromosomes, compared with two (XY) in most other mammals. These ten chromosomes form five unique pairs of XY in males and XX in females, i.e. males are X1Y1X2Y2X3Y3X4Y4X5Y5.[89] One of the X chromosomes of the platypus has great homology to the bird Z chromosome.[90] The platypus genome also has both reptilian and mammalian genes associated with egg fertilisation.[46][91] Though the platypus lacks the mammalian sex-determining gene SRY, a study found that the mechanism of sex determination is the AMH gene on the oldest Y chromosome.[92][93] A draft version of the platypus genome sequence was published in Nature on 8 May 2008, revealing both reptilian and mammalian elements, as well as two genes found previously only in birds, amphibians, and fish. More than 80% of the platypus's genes are common to the other mammals whose genomes have been sequenced.[46] An updated genome, the most complete on record, was published in 2021, together with the genome of the short-beaked echidna.[94]

Conservation

A depiction of a platypus from a book for children published in Germany in 1798

Status and threats

Except for its loss from the state of South Australia, the platypus occupies the same general distribution as it did prior to European settlement of Australia. However, local changes and fragmentation of distribution due to human modification of its habitat are documented. Its historical abundance is unknown and its current abundance difficult to gauge, but it is assumed to have declined in numbers, although as of 1998 was still being considered as common over most of its current range.[63] The species was extensively hunted for its fur until the early years of the 20th century and, although protected throughout Australia since 1905,[79] until about 1950 it was still at risk of drowning in the nets of inland fisheries.[59]

The International Union for Conservation of Nature recategorised its status as "near threatened" in 2016.[95] The species is protected by law, but the only state in which it is listed as endangered is South Australia, under the National Parks and Wildlife Act 1972. In 2020 it has been recommended to be listed as a vulnerable species in Victoria under the state's Flora and Fauna Guarantee Act 1988.[96]

Habitat destruction

The platypus is not considered to be in immediate danger of extinction, because conservation measures have been successful, but it could be adversely affected by habitat disruption caused by dams, irrigation, pollution, netting, and trapping. Reduction of watercourse flows and water levels through excessive droughts and extraction of water for industrial, agricultural, and domestic supplies are also considered a threat. The IUCN lists the platypus on its Red List as "Near Threatened"[1] as assessed in 2016, when it was estimated that numbers had reduced by about 30 percent on average since European settlement. The animal is listed as endangered in South Australia, but it is not covered at all under the federal EPBC Act.[97][98]

Researchers have worried for years that declines have been greater than assumed.[97] In January 2020, researchers from the University of New South Wales presented evidence that the platypus is at risk of extinction, due to a combination of extraction of water resources, land clearing, climate change and severe drought.[99][100] The study predicted that, considering current threats, the animals' abundance would decline by 47%–66% and metapopulation occupancy by 22%–32% over 50 years, causing "extinction of local populations across about 40% of the range". Under projections of climate change projections to 2070, reduced habitat due to drought would lead to 51–73% reduced abundance and 36–56% reduced metapopulation occupancy within 50 years respectively. These predictions suggested that the species would fall under the "Vulnerable" classification. The authors stressed the need for national conservation efforts, which might include conducting more surveys, tracking trends, reduction of threats and improvement of river management to ensure healthy platypus habitat.[101] Co-author Gilad Bino is concerned that the estimates of the 2016 baseline numbers could be wrong, and numbers may have been reduced by as much as half already.[97]

A November 2020 report by scientists from the University of New South Wales, funded by a research grant from the Australian Conservation Foundation in collaboration with the World Wildlife Fund Australia and the Humane Society International Australia revealed that that platypus habitat in Australia had shrunk by 22 per cent in the previous 30 years, and recommended that the platypus should be listed as a threatened species under the EPBC Act.[102] Declines in population had been greatest in NSW, in particular in the Murray-Darling Basin.[103][104][96]

Disease

Platypuses generally suffer from few diseases in the wild; however, as of 2008 there was concern in Tasmania about the potential impacts of a disease caused by the fungus Mucor amphibiorum. The disease (termed mucormycosis) affects only Tasmanian platypuses, and had not been observed in platypuses in mainland Australia. Affected platypuses can develop skin lesions or ulcers on various parts of their bodies, including their backs, tails, and legs. Mucormycosis can kill platypuses, death arising from secondary infection and by affecting the animals' ability to maintain body temperature and forage efficiently. The Biodiversity Conservation Branch at the Department of Primary Industries and Water collaborated with NRM north and University of Tasmania researchers to determine the impacts of the disease on Tasmanian platypuses, as well as the mechanism of transmission and spread of the disease.[105]

Wildlife sanctuaries

Platypus House at Lone Pine Koala Sanctuary in Brisbane, Queensland

Much of the world was introduced to the platypus in 1939 when National Geographic Magazine published an article on the platypus and the efforts to study and raise it in captivity. The latter is a difficult task, and only a few young have been successfully raised since, notably at Healesville Sanctuary in Victoria. The leading figure in these efforts was David Fleay, who established a platypusary (a simulated stream in a tank) at the Healesville Sanctuary, where breeding was successful in 1943.[106] In 1972, he found a dead baby of about 50 days old, which had presumably been born in captivity, at his wildlife park at Burleigh Heads on the Gold Coast, Queensland.[107] Healesville repeated its success in 1998 and again in 2000 with a similar stream tank.[108] Since 2008, platypus has bred regularly at Healesville,[109] including second-generation (captive born themselves breeding in captivity).[110] Taronga Zoo in Sydney bred twins in 2003, and breeding was again successful there in 2006.[108]

Captivity

As of 2019, the only platypuses in captivity outside of Australia are in the San Diego Zoo Safari Park in the U.S. state of California.[111][112] Three attempts were made to bring the animals to the Bronx Zoo, in 1922, 1947, and 1958; of these, only two of the three animals introduced in 1947, Penelope and Cecil,[113] lived longer than eighteen months.[114]

Human interactions

Usage

A platypus fur cape made in 1890. It was donated to the National Gallery of Victoria by Mrs F Smith in 1985

Aboriginal Australians used to hunt platypuses for food (their fatty tails being particularly nutritious), while, after colonisation, Europeans hunted them for fur from the late 19th century and until 1912, when it was prohibited by law. In addition, European researchers captured and killed platypus or removed their eggs, partly in order to increase scientific knowledge, but also to gain prestige and outcompete rivals from different countries.[96]

Cultural references

9d postage stamp from 1937

The platypus has been a subject in the Dreamtime stories of Aboriginal Australians, some of whom believed the animal was a hybrid of a duck and a water rat.[115]: 57–60 

According to one story of the upper Darling River,[96] the major animal groups, the land animals, water animals and birds, all competed for the platypus to join their respective groups, but the platypus ultimately decided to not join any of them, feeling that he did not need to be part of a group to be special,[115]: 83–85  and wished to remain friends with all of those groups.[96] Another Dreaming story emanate of the upper Darling tells of a young duck which ventured too far, ignoring the warnings of her tribe, and was kidnapped by a large water-rat called Biggoon. After managing to escape after some time, she returned and laid two eggs which hatched into strange furry creatures, so they were all banished and went to live in the mountains.[96]

Early 20th century platypus matchbox label art

The platypus is also used by some Aboriginal peoples as a totem, which is to them "a natural object, plant or animal that is inherited by members of a clan or family as their spiritual emblem", and the animal holds special meaning as a totem animal for the Wadi Wadi people, who live along the Murray River. Because of their cultural significance and importance in connection to country, the platypus is protected and conserved by these Indigenous peoples.[96]

The platypus has often been used as a symbol of Australia's cultural identity. In the 1940s, live platypuses were given to allies in the Second World War, in order to strengthen ties and boost morale.[96]

Platypuses have been used several times as mascots: Syd the platypus was one of the three mascots chosen for the Sydney 2000 Olympics along with an echidna and a kookaburra,[116] Expo Oz the platypus was the mascot for World Expo 88, which was held in Brisbane in 1988,[117] and Hexley the platypus is the mascot for the Darwin operating system, the BSD-based core of macOS and other operating systems from Apple Inc.[118]

Since the introduction of decimal currency to Australia in 1966, the embossed image of a platypus, designed and sculpted by Stuart Devlin, has appeared on the reverse (tails) side of the 20-cent coin.[119] The platypus has frequently appeared in Australian postage stamps, most recently the 2015 "Native Animals" series and the 2016 "Australian Animals Monotremes" series.[120][121]

In the American animated series Phineas and Ferb (2007–2015), the title characters own a pet bluish-green platypus named Perry who, unknown to them, is a secret agent. Such choices were inspired by media underuse, as well as to exploit the animal's striking appearance;[122] additionally, show creator Dan Povenmire, who also wrote the character's theme song, said that its opening lyrics are based on the introductory sentence of the Platypus article on Wikipedia, copying the "semiaquatic egg-laying mammal" phrase word for word, and appending the phrase "of action".[123] As a character, Perry has been well received by both fans and critics.[124][125] Coincidentally, real platypuses show a similar cyan color when seen under ultraviolet lighting.[126]

See also

Citations

  1. ^ a b Woinarski, J.; Burbidge, A.A. (2016). "Ornithorhynchus anatinus". IUCN Red List of Threatened Species. 2016: e.T40488A21964009. doi:10.2305/IUCN.UK.2016-1.RLTS.T40488A21964009.en. Retrieved 19 November 2021.
  2. ^ "Ornithorhynchus anatinus". Global Biodiversity Information Facility. Retrieved 13 July 2021.
  3. ^ Groves, C.P. (2005). "Order Monotremata". In Wilson, D.E.; Reeder, D.M (eds.). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. p. 2. ISBN 978-0-8018-8221-0. OCLC 62265494.
  4. ^ Shaw, George; Nodder, Frederick Polydore (1799). "The Duck-Billed Platypus, Platypus anatinus". The Naturalist's Miscellany. 10 (CXVIII): 385–386. doi:10.5962/p.304567.
  5. ^ Hall, Brian K. (March 1999). "The Paradoxical Platypus". BioScience. 49 (3): 211–8. doi:10.2307/1313511. JSTOR 1313511.
  6. ^ a b "Duck-billed Platypus". Museum of hoaxes. Archived from the original on 29 July 2014. Retrieved 21 July 2010.
  7. ^ a b Shaw, George; Nodder, Frederick Polydore (1799). "The Duck-Billed Platypus, Platypus anatinus". The Naturalist's Miscellany. 10 (CXVIII): 385–386. doi:10.5962/p.304567. Archived from the original on 1 October 2020. Retrieved 6 October 2020 – via Biodiversity Heritage Library.
  8. ^ a b c d e f g "Platypus facts file". Australian Platypus Conservancy. Archived from the original on 10 November 2015. Retrieved 13 September 2006.
  9. ^ πλατύπους Archived 25 February 2021 at the Wayback Machine, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  10. ^ πλατύς Archived 25 February 2021 at the Wayback Machine, A Greek-English Lexicon, on Perseus
  11. ^ πούς Archived 27 February 2021 at the Wayback Machine, A Greek-English Lexicon, on Perseus
  12. ^ Liddell, Henry George & Scott, Robert (1980). Greek-English Lexicon, Abridged Edition. Oxford University Press, Oxford, UK. ISBN 978-0-19-910207-5.
  13. ^ a b c Shaw, George; Nodder, Frederick Polydore (1799). "The Duck-Billed Platypus, Platypus anatinus". The Naturalist's Miscellany. 10 (CXVIII): 385–386. doi:10.5962/p.304567. Archived from the original on 1 October 2020. Retrieved 6 October 2020.
  14. ^ a b c d e f g h i j k l m n o Grant, J.R. "16" (PDF). Fauna of Australia. Vol. 1b. Australian Biological Resources Study (ABRS). Archived from the original (PDF) on 19 May 2005. Retrieved 13 September 2006.
  15. ^ "Platypus Paradoxes". National Library of Australia. August 2001. Archived from the original on 5 March 2012. Retrieved 14 September 2006.
  16. ^ Liddell, Henry George; Scott, Robert (1940). "ὄρνις". A Greek-English Lexicon. Perseus Digital Library.
  17. ^ Liddell, Henry George; Scott, Robert (1940). "ῥύγχος". A Greek-English Lexicon. Perseus Digital Library.
  18. ^ Lewis, Charlton T.; Short, Charles (1879). "ănăs". A Latin Dictionary. Perseus Digital Library.
  19. ^ Bess, Anna. "ADW: Ornithorhynchidae: INFORMATION". Animaldiversity.org. Archived from the original on 17 January 2022. Retrieved 11 February 2022.
  20. ^ Collins, David. An Account of the English Colony in New South Wales, Volume 2. Retrieved 5 July 2017 – via Internet Archive.
  21. ^ Anich, Paula Spaeth (15 October 2020). "Biofluorescence in the platypus (Ornithorhynchus anatinus)". Mammalia. 85 (2): 179–181. doi:10.1515/mammalia-2020-0027.
  22. ^ "Platypus: Facts, Pictures: Animal Planet". Animal.discovery.com. 16 November 2011. Archived from the original on 27 July 2011. Retrieved 8 September 2012.
  23. ^ Guiler, E.R. (1983). "Tasmanian Devil". In R. Strahan (ed.). The Australian Museum Complete Book of Australian Mammals. Angus & Robertson. pp. 27–28. ISBN 978-0-207-14454-7.
  24. ^ a b Munks, Sarah & Nicol, Stewart (May 1999). "Current research on the platypus, Ornithorhynchus anatinus in Tasmania: Abstracts from the 1999 'Tasmanian Platypus Workshop'". University of Tasmania. Archived from the original on 30 August 2006. Retrieved 23 October 2006.
  25. ^ "Thermal Biology of the Platypus". Davidson College. 1999. Archived from the original on 6 March 2012. Retrieved 14 September 2006.
  26. ^ Watson, J.M.; Graves, J.A.M. (1988). "Monotreme Cell-Cycles and the Evolution of Homeothermy". Australian Journal of Zoology. 36 (5): 573–584. doi:10.1071/ZO9880573.
  27. ^ Dawson, T.J.; Grant, T.R.; Fanning, D. (1979). "Standard Metabolism of Monotremes and the Evolution of Homeothermy". Australian Journal of Zoology. 27 (4): 511–5. doi:10.1071/ZO9790511.
  28. ^ a b Piper, Ross (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals. Greenwood Press. ISBN 978-0-313-33922-6.
  29. ^ Haeckel (1895). Systematische Phylogenie der Wirbelthiere (Vertebrata). Entwurf einer systematischen Stammesgeschichte (in German). Vol. 3 (1 ed.). Berlin: Georg Reimer. pp. 142–143. Archived from the original on 16 July 2021. Retrieved 16 July 2021.
  30. ^ Ungar, Peter S. (2010). "Monotremata and Marsupialia". Mammal Teeth: Origin, Evolution, and Diversity. The Johns Hopkins University Press. p. 130. ISBN 978-0-801-89668-2.
  31. ^ Hayashi, S.; Houssaye, A.; Nakajima, Y.; Chiba, K.; Ando, T.; Sawamura, H.; Inuzuka, N.; Kaneko, N.; Osaki, T. (2013). "Bone Inner Structure Suggests Increasing Aquatic Adaptations in Desmostylia (Mammalia, Afrotheria)". PLOS ONE. 8 (4): e59146. Bibcode:2013PLoSO...859146H. doi:10.1371/journal.pone.0059146. PMC 3615000. PMID 23565143.
  32. ^ Fish FE; Frappell PB; Baudinette RV; MacFarlane PM (February 2001). "Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus" (PDF). The Journal of Experimental Biology. 204 (Pt 4): 797–803. doi:10.1242/jeb.204.4.797. hdl:2440/12192. PMID 11171362.
  33. ^ "Australian Fauna". Australian Fauna. Archived from the original on 29 May 2012. Retrieved 14 May 2010.
  34. ^ "Platypus venom linked to pain relief". University of Sydney. 8 May 2008. Archived from the original on 21 August 2011. Retrieved 14 May 2010.
  35. ^ "Platypus poison". Rainforest Australia. Archived from the original on 29 May 2010. Retrieved 14 May 2010.
  36. ^ a b c d Gerritsen, Vivienne Baillie (December 2002). "Platypus poison". Protein Spotlight (29). Archived from the original on 20 October 2008. Retrieved 14 September 2006.
  37. ^ Weimann, Anya (4 July 2007) Evolution of platypus venom revealed. Cosmos.
  38. ^ de Plater, G.M.; Milburn, P.J.; Martin, R.L. (2001). "Venom From the Platypus, Ornithorhynchus anatinus, Induces a Calcium-Dependent Current in Cultured Dorsal Root Ganglion Cells". Journal of Neurophysiology. 85 (3): 1340–5. doi:10.1152/jn.2001.85.3.1340. PMID 11248005. S2CID 2452708. Archived from the original on 21 July 2021. Retrieved 1 December 2019.
  39. ^ "The venom of the platypus (Ornithorhynchus anatinus)". Archived from the original on 1 February 2012. Retrieved 13 September 2006.
  40. ^ Jørn H. Hurum, Zhe-Xi Luo, and Zofia Kielan-Jaworowska, Were mammals originally venomous?, Acta Palaeontologica Polonica 51 (1), 2006: 1–11
  41. ^ a b c d Pettigrew, John D. (1999). "Electroreception in Monotremes" (PDF). The Journal of Experimental Biology. 202 (Part 10): 1447–54. doi:10.1242/jeb.202.10.1447. PMID 10210685. Archived (PDF) from the original on 28 September 2006. Retrieved 19 September 2006.
  42. ^ Czech-Damal, Nicole U.; Liebschner, Alexander; Miersch, Lars; Klauer, Gertrud; Hanke, Frederike D.; Marshall, Christopher; Dehnhardt, Guido; Hanke, Wolf (22 February 2012). "Electroreception in the Guiana dolphin (Sotalia guianensis)". Proceedings of the Royal Society B: Biological Sciences. 279 (1729): 663–668. doi:10.1098/rspb.2011.1127. PMC 3248726. PMID 21795271.
  43. ^ Proske, Uwe; Gregory, J. E.; Iggo, A. (1998). "Sensory receptors in monotremes". Philosophical Transactions of the Royal Society of London. 353 (1372): 1187–1198. doi:10.1098/rstb.1998.0275. PMC 1692308. PMID 9720114.
  44. ^ a b Pettigrew, John D.; Manger, P. R.; Fine, S. L. (1998). "The sensory world of the platypus". Philosophical Transactions of the Royal Society of London. 353 (1372): 1199–1210. doi:10.1098/rstb.1998.0276. PMC 1692312. PMID 9720115.
  45. ^ Dawkins, Richard (2004). "The Duckbill's Tale". The Ancestor's Tale, A Pilgrimage to the Dawn of Life. Boston, Massachusetts: Houghton Mifflin. ISBN 978-0-618-00583-3.
  46. ^ a b c Warren, Wesley C.; et al. (8 May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–183. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040. PMID 18464734.
  47. ^ Gregory, J.E.; Iggo, A.; McIntyre, A.K.; Proske, U. (June 1988). "Receptors in the Bill of the Platypus". Journal of Physiology. 400 (1): 349–366. doi:10.1113/jphysiol.1988.sp017124. PMC 1191811. PMID 3418529.
  48. ^ Manning, A.; Dawkins, M.S. (1998). An Introduction to Animal Behaviour (5th ed.). Cambridge University Press.
  49. ^ a b Masakazu Asahara; Masahiro Koizumi; Thomas E. Macrini; Suzanne J. Hand; Michael Archer (2016). "Comparative cranial morphology in living and extinct platypuses: Feeding behavior, electroreception, and loss of teeth". Science Advances. 2 (10): e1601329. doi:10.1126/sciadv.1601329.
  50. ^ Zeiss, Caroline; Schwab, Ivan R.; Murphy, Christopher J.; Dubielzig, Richard W. (2011). "Comparative retinal morphology of the platypus". Journal of Morphology. 272 (8): 949–57. doi:10.1002/jmor.10959. PMID 21567446. S2CID 28546474.
  51. ^ November 2020, Mindy Weisberger-Senior Writer 02 (2 November 2020). "Platypuses glow an eerie blue-green under UV light". livescience.com. Archived from the original on 5 November 2020. Retrieved 7 November 2020.
  52. ^ "Platypus". Department of Primary Industries and Water, Tasmania. 31 August 2006. Archived from the original on 9 October 2006. Retrieved 12 October 2006.
  53. ^ a b Sutton, Malcolm (3 May 2017). "Platypus 'sighting' in the Adelaide Hills sparks camera set-up to capture extinct species - ABC News". ABC (Australian Broadcasting Corporation). Archived from the original on 26 November 2020. Retrieved 12 October 2020.
  54. ^ Keogh, Melissa (3 October 2018). "Life reinstated to much-loved Warrawong Wildlife Sanctuary". The Lead SA. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  55. ^ Adams, Prue (27 March 2005). "Wamsley walks away from Earth Sanctuaries". Landline. Australian Broadcasting Corporation. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  56. ^ Sutton, Malcolm (1 October 2020). "V6 Commodore water pump gets the tick from nesting platypus at Warrawong". ABC News. Australian Broadcasting Corporation. Archived from the original on 7 October 2020. Retrieved 7 October 2020.
  57. ^ "Research on Kangaroo Island". University of Adelaide. 4 July 2006. Archived from the original on 6 July 2004. Retrieved 23 October 2006.
  58. ^ "Find out how platypuses are faring on Kangaroo Island following the bushfires". Department for Environment and Water. 7 April 2020. Archived from the original on 21 July 2021. Retrieved 12 October 2020.
  59. ^ a b Scott, Anthony; Grant, Tom (November 1997). "Impacts of water management in the Murray-Darling Basin on the platypus (Ornithorhynchus anatinus) and the water rat (Hydromus chrysogaster)" (PDF). CSIRO Australia. Archived (PDF) from the original on 15 March 2016. Retrieved 23 October 2006.
  60. ^ "Platypus in Country Areas". Australian Platypus Conservancy. Archived from the original on 17 September 2016. Retrieved 23 October 2006.
  61. ^ a b c d "Platypus". Environmental Protection Agency/Queensland Parks and Wildlife Service. 2006. Archived from the original on 21 October 2009. Retrieved 24 July 2009.
  62. ^ a b c Cromer, Erica (14 April 2004). "Monotreme Reproductive Biology and Behavior". Iowa State University. Archived from the original on 13 March 2009. Retrieved 18 June 2009.
  63. ^ a b c Grant, T.G.; Temple-Smith, P.D. (1998). "Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives". Philosophical Transactions: Biological Sciences. 353 (1372): 1081–91. doi:10.1098/rstb.1998.0267. PMC 1692311. PMID 9720106.
  64. ^ Gardner, J. L.; Serena, M. (1995). "Spatial-Organization and Movement Patterns of Adult Male Platypus, Ornithorhynchus-Anatinus (Monotremata, Ornithorhynchidae)". Australian Journal of Zoology. 43 (1): 91–103. doi:10.1071/ZO9950091.
  65. ^ a b c "Platypus in Tasmania | Department of Primary Industries, Parks, Water and Environment, Tasmania". dpipwe.tas.gov.au. Archived from the original on 8 March 2020. Retrieved 10 April 2020.
  66. ^ Fish, F.E.; Baudinette, R.V.; Frappell, P.B.; Sarre, M.P. (1997). "Energetics of Swimming by the Platypus Ornithorhynchus anatinus: Metabolic Effort Associated with Rowing" (PDF). The Journal of Experimental Biology. 200 (20): 2647–52. doi:10.1242/jeb.200.20.2647. PMID 9359371. Archived (PDF) from the original on 26 September 2009. Retrieved 23 October 2006.
  67. ^ a b Philip Bethge (April 2002). "Energetics and foraging behaviour of the platypus". University of Tasmania. Archived from the original on 25 October 2018. Retrieved 21 June 2009.
  68. ^ Kruuk, H. (1993). "The Diving Behaviour of the Platypus (Ornithorhynchus anatinus) in Waters with Different Trophic Status". The Journal of Applied Ecology. 30 (4): 592–8. doi:10.2307/2404239. JSTOR 2404239.
  69. ^ Holland, Jennifer S. (July 2011). "40 Winks?". National Geographic. 220 (1).
  70. ^ a b Grant, T. R.; Griffiths, M.; Leckie, R.M.C. (1983). "Aspects of Lactation in the Platypus, Ornithorhynchus anatinus (Monotremata), in Waters of Eastern New South Wales". Australian Journal of Zoology. 31 (6): 881–9. doi:10.1071/ZO9830881.
  71. ^ Anna Bess Sorin & Phil Myers (2001). "Family Ornithorhynchidae (platypus)". University of Michigan Museum of Zoology. Archived from the original on 10 April 2011. Retrieved 24 October 2006.
  72. ^ Graves, Jennifer (10 March 2006). "Sex Chromosome Specialization and Degeneration in Mammals". Cell. 124 (5): 901–914. doi:10.1016/j.cell.2006.02.024. PMID 16530039. S2CID 8379688.
  73. ^ Hughes, R. L.; Hall, L. S. (28 July 1998). "Early development and embryology of the platypus". Philosophical Transactions of the Royal Society B: Biological Sciences. 353 (1372): 1101–14. doi:10.1098/rstb.1998.0269. PMC 1692305. PMID 9720108.
  74. ^ a b Manger, Paul R.; Hall, Leslie S.; Pettigrew, John D. (29 July 1998). "The development of the external features of the platypus (Ornithorhynchus anatinus)". Philosophical Transactions: Biological Sciences. 353 (1372): 1115–25. doi:10.1098/rstb.1998.0270. PMC 1692310. PMID 9720109.
  75. ^ "Ockhams Razor". The Puzzling Platypus. 20 July 2001. Archived from the original on 9 August 2017. Retrieved 2 December 2006.
  76. ^ Myers, P. Z. (2008). "Interpreting Shared Characteristics: The Platypus Genome". Nature Education. 1 (1): 462008. Archived from the original on 4 March 2018. Retrieved 26 March 2015.
  77. ^ Carmody, Judy (2011). Wet Tropics of Queensland World Heritage Area: Tour Guide Handbook (PDF). James Cook University, Marine and Tropical Science Research Facility. Archived (PDF) from the original on 7 June 2020. Retrieved 8 February 2021.
  78. ^ Australian National Dictionary Centre (November 2017). "Oxford Word of the Month - November: platypup" (PDF). Oxford University Press. Retrieved 20 April 2022.
  79. ^ a b "Egg-laying mammals" (PDF). Queensland Museum. November 2000. Archived from the original (PDF) on 22 July 2008. Retrieved 19 June 2009.
  80. ^ Lecointre, Guillaume; Le Guyader, Hervé (2006). The Tree of Life: A Phylogenetic Classification. Harvard University Press. ISBN 978-0-674-02183-9. Retrieved 28 March 2015.
  81. ^ a b c Kirsch, John A. W.; Mayer, Gregory C. (29 July 1998). "The platypus is not a rodent: DNA hybridization, amniote phylogeny and the palimpsest theory". Philosophical Transactions: Biological Sciences. 353 (1372): 1221–37. doi:10.1098/rstb.1998.0278. PMC 1692306. PMID 9720117.
  82. ^ a b Rauhut, O.W.M.; Martin, T.; Ortiz-Jaureguizar, E.; Puerta, P. (2002). "The first Jurassic mammal from South America". Nature. 416 (6877): 165–8. Bibcode:2002Natur.416..165R. doi:10.1038/416165a. hdl:11336/99461. PMID 11894091. S2CID 4346804.
  83. ^ Messer, M.; Weiss, A.S.; Shaw, D.C.; Westerman, M. (March 1998). "Evolution of the Monotremes: Phylogenetic Relationship to Marsupials and Eutherians, and Estimation of Divergence Dates Based on α-Lactalbumin Amino Acid Sequences". Journal of Mammalian Evolution. 5 (1): 95–105. doi:10.1023/A:1020523120739. S2CID 39638466.
  84. ^ Phillips MJ; Bennett TH; Lee MS (2009). "Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas". Proc. Natl. Acad. Sci. U.S.A. 106 (40): 17089–94. Bibcode:2009PNAS..10617089P. doi:10.1073/pnas.0904649106. PMC 2761324. PMID 19805098.
  85. ^ a b Rich, Thomas H.; Hopson, James A.; Gill, Pamela G.; Trusler, Peter; Rogers-Davidson, Sally; Morton, Steve; Cifelli, Richard L.; Pickering, David; Kool, Lesley (2016). "The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri". Alcheringa: An Australasian Journal of Palaeontology. 40 (4): 475–501. doi:10.1080/03115518.2016.1180034. hdl:1885/112071. ISSN 0311-5518. S2CID 89034974.
  86. ^ a b Pascual, R.; Goin, F.J.; Balarino, L.; Udrizar Sauthier, D.E. (2002). "New data on the Paleocene monotreme Monotrematum sudamericanum, and the convergent evolution of triangulate molars" (PDF). Acta Palaeontologica Polonica. 47 (3): 487–492. Archived (PDF) from the original on 9 August 2017. Retrieved 18 March 2009.
  87. ^ Folger, Tim (1993). "A platypus in Patagonia (Ancient life – 1992)". Discover. 14 (1): 66.
  88. ^ Mihai, Andrei (2013). "'Platypus-zilla' fossil unearthed in Australia". ZME Science. Archived from the original on 21 July 2021. Retrieved 5 November 2013.
  89. ^ Selim, Jocelyn (25 April 2005). "Sex, Ys, and Platypuses". Discover. Archived from the original on 16 May 2008. Retrieved 7 May 2008.
  90. ^ Frank Grützner; Willem Rens; Enkhjargal Tsend-Ayush; Nisrine El-Mogharbel; Patricia C. M. O'Brien; Russell C. Jones; Malcolm A. Ferguson-Smith; Jennifer A. Marshall Graves (16 December 2004). "In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes". Nature. 432 (7019): 913–917. Bibcode:2004Natur.432..913G. doi:10.1038/nature03021. PMID 15502814. S2CID 4379897.
  91. ^ "Beyond the Platypus Genome – 2008 Boden Research Conference". Reprod Fertil Dev. 21 (8): i–ix, 935–1027. 2009. Archived from the original on 21 November 2015. Retrieved 3 March 2012.
  92. ^ Cortez, Diego; Marin, Ray; Toledo-Flores, Deborah; Froidevaux, Laure; Liechti, Angélica; Waters, Paul D.; Grützner, Frank; Kaessmann, Henrik (2014). "Origins and functional evolution of Y chromosomes across mammals". Nature. 508 (7497): 488–493. Bibcode:2014Natur.508..488C. doi:10.1038/nature13151. PMID 24759410. S2CID 4462870.
  93. ^ Salleh, Anna (5 May 2014). "Platypus Sex 'Master Switch' Identified". Australian Broadcasting Corporation. Archived from the original on 6 July 2016. Retrieved 5 June 2014.
  94. ^ Zhou, Yang; Shearwin-Whyatt, Linda; Li, Jing; Song, Zhenzhen; Hayakawa, Takashi; Stevens, David; Fenelon, Jane C.; Peel, Emma; Cheng, Yuanyuan; Pajpach, Filip; Bradley, Natasha (6 January 2021). "Platypus and echidna genomes reveal mammalian biology and evolution". Nature. 592 (7856): 756–762. Bibcode:2021Natur.592..756Z. doi:10.1038/s41586-020-03039-0. ISSN 1476-4687. PMC 8081666. PMID 33408411.
  95. ^ John Woinarski (Natural Resources, Environment and The Arts; Group), Andrew Burbidge (IUCN SSC Australasian Marsupial and Monotreme Specialist (22 April 2014). "IUCN Red List of Threatened Species: Ornithorhynchus anatinus". IUCN Red List of Threatened Species. Archived from the original on 4 March 2020. Retrieved 3 December 2020.
  96. ^ a b c d e f g h Hawke, Tahneal; Bino, Gilad; Kingsford., Richard T. (17 November 2020). A national assessment of the conservation status of the platypus (PDF) (Report). Archived (PDF) from the original on 24 November 2020. Retrieved 28 November 2020.
  97. ^ a b c Wilcox, Christie (29 August 2019). "The silent decline of the platypus, Australia's beloved oddity". National Geographic. Archived from the original on 12 October 2020. Retrieved 12 October 2020.
  98. ^ "EPBC Act List of Threatened Fauna". Species Profile and Threats Database. Australian Government. Department of Agriculture, Water and the Environment. Archived from the original on 5 November 2020. Retrieved 12 October 2020.
  99. ^ University of New South Wales (21 January 2020). "Platypus on brink of extinction". EurekAlert!. Archived from the original on 13 May 2020. Retrieved 22 January 2020.
  100. ^ "Platypus on brink of extinction". ScienceDaily. 12 October 2020. Archived from the original on 19 October 2020. Retrieved 12 October 2020.
  101. ^ Bino, Gilad; Kingsford, Richard T.; Wintleb, Brendan A. (1 February 2020). "A stitch in time – Synergistic impacts to platypus metapopulation extinction risk". Biological Conservation. 242: 108399. doi:10.1016/j.biocon.2019.108399. ISSN 0006-3207. S2CID 213833757. Archived from the original on 31 October 2020. Retrieved 12 October 2020 – via ScienceDirect (Elsevier).
  102. ^ Cox, Lisa (23 November 2020). "Australia's platypus habitat has shrunk 22% in 30 years, report says". the Guardian. Archived from the original on 28 November 2020. Retrieved 28 November 2020.
  103. ^ "Platypus should be listed as a threatened species: new report". UNSW Newsroom. University of New South Wales. 23 November 2020. Archived from the original on 26 November 2020. Retrieved 28 November 2020.
  104. ^ "A national assessment of the conservation status of the platypus". Australian Conservation Foundation. Archived from the original on 28 November 2020. Retrieved 28 November 2020.
  105. ^ "Platypus Fungal Disease". Department of Primary Industries and Water, Tasmania. 29 August 2008. Archived from the original on 7 March 2008. Retrieved 29 February 2008.
  106. ^ "Fantastic Fleay turns 20!". Zoos Victoria. 31 October 2013. Archived from the original on 9 November 2018. Retrieved 4 February 2014.
  107. ^ "David Fleay's achievements". Queensland Government. 23 November 2003. Archived from the original on 2 October 2006. Retrieved 13 September 2006.
  108. ^ a b "Platypus". Catalyst. 13 November 2003. Archived from the original on 23 July 2011. Retrieved 13 September 2006.
  109. ^ "Pitter patter – Platypus twins!". Zoo Victoria. 4 March 2013. Archived from the original on 28 August 2018. Retrieved 17 August 2017.
  110. ^ "Zoos". Australian Platypus Conservancy. 22 November 2016. Archived from the original on 4 March 2019. Retrieved 17 August 2017.
  111. ^ Anderson, Erik (22 November 2019). "Rare Platypus On Display At San Diego Zoo Safari Park". KPBS Public Media. Archived from the original on 13 May 2020. Retrieved 29 December 2019. The animals are the only platypuses on display outside of their native country.
  112. ^ "Platypus | San Diego Zoo Animals & Plants". animals.sandiegozoo.org. Archived from the original on 25 July 2020. Retrieved 29 December 2019.
  113. ^ "Animals: End of the Affair". Time. 19 August 1957. Archived from the original on 16 June 2007.
  114. ^ Lee S. Crandall (1964). The Management of Wild Mammals in Captivity. University of Chicago Press.
  115. ^ a b McKay, Helen F.; McLeod, Pauline E.; Jones, Francis F.; Barber, June E. (2001). Gadi Mirrabooka: Australian Aboriginal Tales from the Dreaming. Libraries Unlimited. ISBN 978-1563089237.
  116. ^ "A Brief History of the Olympic and Paralympic Mascots". Beijing2008. 5 August 2004. Archived from the original on 21 June 2008. Retrieved 25 October 2006.
  117. ^ "About World Expo '88". Foundation Expo '88. 1988. Archived from the original on 19 December 2013. Retrieved 17 December 2007.
  118. ^ "The Home of Hexley the Platypus". Archived from the original on 13 February 2011. Retrieved 25 October 2006.
  119. ^ "Circulating coins: Twenty Cents". Royal Australian Mint. 8 January 2016. Archived from the original on 19 March 2021. Retrieved 12 September 2020.
  120. ^ "Native Animals - Issue Date 13 January 2015". Australia Post Collectables. Archived from the original on 25 January 2021. Retrieved 12 September 2020.
  121. ^ "Australian Animals Monotremes – Issue Date 26 September 2016". Australia Post Collectables. Archived from the original on 26 January 2021. Retrieved 12 September 2020.
  122. ^ "Disney gives 'Ferb' pickup, major push – Q&A: Dan Povenmire". The Hollywood Reporter. 7 June 2009. Archived from the original on 20 June 2018. Retrieved 5 March 2017.
  123. ^ "Perry the Platypus" Live at Musi-Cal, archived from the original on 2 January 2021, retrieved 23 March 2021
  124. ^ Littleton, Cynthia (20 November 2009). "'Phineas' star Perry makes mark on auds". Variety. Archived from the original on 2 December 2009. Retrieved 26 November 2009.
  125. ^ Jackson, John (31 March 2009). "Five Reasons Why Phineas and Ferb is the Best Kids Show on TV". Paste. Archived from the original on 3 October 2019. Retrieved 25 November 2009.
  126. ^ Anich, Paula Spaeth; Anthony, Sharon; Carlson, Michaela; Gunnelson, Adam; Kohler, Allison M.; Martin, Jonathan G.; Olson, Erik R. (1 March 2021). "Biofluorescence in the platypus (Ornithorhynchus anatinus)". Mammalia. 85 (2): 179–181. doi:10.1515/mammalia-2020-0027. ISSN 1864-1547. S2CID 226324381.

References

Books

Documentaries

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Platypus: Brief Summary

provided by wikipedia EN

The platypus (Ornithorhynchus anatinus), sometimes referred to as the duck-billed platypus, is a semiaquatic, egg-laying mammal endemic to eastern Australia, including Tasmania. The platypus is the sole living representative or monotypic taxon of its family (Ornithorhynchidae) and genus (Ornithorhynchus), though a number of related species appear in the fossil record.

Together with the four species of echidna, it is one of the five extant species of monotremes, mammals that lay eggs instead of giving birth to live young. Like other monotremes, it senses prey through electrolocation. It is one of the few species of venomous mammals, as the male platypus has a spur on the hind foot that delivers a venom, capable of causing severe pain to humans. The unusual appearance of this egg-laying, duck-billed, beaver-tailed, otter-footed mammal baffled European naturalists when they first encountered it. In 1799, the first scientists to examine a preserved platypus body judged it a fake, made of several animals sewn together.

The unique features of the platypus make it an important subject in the study of evolutionary biology, and a recognisable and iconic symbol of Australia. It is culturally significant to several Aboriginal peoples of Australia, who also used to hunt the animal for food. It has appeared as a mascot at national events and features on the reverse of the Australian twenty-cent coin, and the platypus is the animal emblem of the state of New South Wales. Until the early 20th century, humans hunted the platypus for its fur, but it is now protected throughout its range. Although captive-breeding programs have had only limited success, and the platypus is vulnerable to the effects of pollution, it is not under any immediate threat.

As of 2020, the platypus is a legally protected species in all states where it occurs. It is listed as an endangered species in South Australia and vulnerable in Victoria. The species is classified as a near-threatened species by the IUCN, but a November 2020 report has recommended that it is upgraded to threatened species under the federal EPBC Act, due to habitat destruction and declining numbers in all states.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN