dcsimg

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 27.3 years (captivity) Observations: One specimen lived 27.3 years at Madrid Zoo. A hybrid between a leopard and a lion lived for 24 years (Richard Weigl 2005).
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Associations

provided by Animal Diversity Web

Leopards compete for food with lions (Panthera leo), tigers (Panthera tigris), spotted hyenas (Crocuta crocuta), and African wild dogs (Lycaon pictus). To avoid attacks from potential predators, leopards tend to hunt at different times of the day and avoid areas where potential predators are most populous. When competition for larger prey items is high, leopards prey on smaller animals, which reduces interspecific competition. Leopards are host to many common felid parasites, including lung flukes (Paragominus westermani), flat worms (Pseudophyllidea), spirurian nematodes (Spiruroidea), hookworms (Ancylostomatidae), lung worms (Aelurostrongylus), intestinal and hepatic parasites (Capillaria), and parasitic protozoa (Sarcocystis).

Commensal/Parasitic Species:

  • lung fluke (Paragominus westermani)
  • flat worms (Pseudophyllidea)
  • spirurian nematodes (Spiruroidea)
  • hookworms (Ancylostomatidae)
  • lung worms (Aelurostrongylus)
  • intestinal and hepatic parasites (Capillaria)
  • parasitic protozoa (Sarcocystis)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Humans are the primary predator of leopards. Leopards are hunted as trophy animals for their fur, and retaliatory killings by farmers protecting their livestock are not uncommon. Lions (Panthera leo), tigers (Panthera tigris), spotted hyenas (Crocuta crocuta), and African wild dogs (Lycaon pictus) prey upon leopard cubs and are capable of killing adult leopards. Typically, when an adult is killed it is due to a territorial confrontation. Many of the characteristics that make leopards great predators also serve as excellent predator defense mechanisms. For example, a leopard's spots allows them to travel inconspicuously and avoid detection.

Known Predators:

  • tiger (Panthera tigris)
  • lion (Panthera leo)
  • spotted hyena (Crocuta crocuta)
  • African wild dog (Lycaon pictus)

Anti-predator Adaptations: cryptic

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Body size and color patterns of leopards varies geographically and probably reflects adaptations to particular habitats. Leopards have short legs relative to their long body. They have a broad head, and their massive skull allows for powerful jaw muscles. The leopard's scapula has specialized attachment sites for climbing muscles. They have small round ears, long whiskers extending from dark spots on the upper lip, and long whiskers in their eyebrows that protect their eyes while moving through dense vegetation. Their coat ranges from tawny or light yellow in warm, dry habitats to reddish-orange in dense forests. Subspecies are distinguished according to unique pelage characteristics. Their body is covered with black rosettes, which are circular in East Africa and square in South Africa. They have solid black spots on their chest, feet, and face and rings on their tail. Cubs have a smoky gray coat and their rosettes are not yet distinct. Each individual has a unique coat, which can be used for identification. Black panthers, which are most populous in humid forests, are leopards with recessive melanistic genes. Savannah and woodland leopards tend to be relatively large while mountain and desert leopards tend to be relatively small. Leopards are sexually dimorphic as males tend to be larger than females. Females range in body mass from 17 to 58 kg and in length from 1.7 to 1.9 m. Males range in mass from 31 to 65 kg and in length from 1.6 to 2.3 m.

Range mass: 17 to 65 kg.

Range length: 1.6 to 2.3 m.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry

Sexual Dimorphism: male larger

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

In captivity, leopards can live to be 21 to 23 years old, with the oldest known individual being 27 years old. Wild leopards may live to be 10 to 12 years old, with the oldest known individual being 17 years old. Survival rates for cubs range from 41% to 50%.

Range lifespan
Status: wild:
17 (high) years.

Range lifespan
Status: captivity:
27 (high) years.

Typical lifespan
Status: wild:
10 to 12 years.

Typical lifespan
Status: captivity:
21 to 23 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Leopards inhabit a variety of terrain. They are most populous in mesic woodlands, grassland savannas, and forests. They also occupy mountainous, scrub, and desert habitats. They favor trees throughout their entire geographic distribution, and have been recorded at 5638 meters on Mt. Kilimanjaro.

Range elevation: 5638 m (high) m.

Habitat Regions: tropical ; terrestrial

Terrestrial Biomes: desert or dune ; savanna or grassland ; forest ; rainforest ; scrub forest ; mountains

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

There are nine subspecies of Panthera pardus, which are distributed as follows: Panthera pardus pardus is in Africa; Panthera pardus nimr, Arabia; Panthera pardus saxicolor, Central Asia; Panthera pardus melas, Java; Panthera pardus kotiya, Sri Lanka; Panthera pardus fusca, the Indian sub-continent; Panthera pardus delacourii, southeast Asia into southern China; Panthera pardus japonensis, northern China; and Panthera pardus orientalis, far east Russia, on the Korean peninsula and in north-eastern China.

Biogeographic Regions: palearctic (Native ); oriental (Native ); ethiopian (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Leopards are ambush predators, pouncing on their prey before it chance to react. They approach potential prey by crouching low to the ground, getting as close as 3 to 10 m to prey before pouncing. Leopards are not likely to chase prey after the first pounce. Once a prey item is captured, they immediately break the prey's neck, causing paralysis. After breaking the prey's neck, leopards asphyxiate them and carry the carcass to a secluded feeding location, typically in a nearby tree. They may also cover prey carcasses in leaves and soil. Their tremendous strength allows them to tackle prey up to 10 times their own weight.

Leopards generally prey upon mid-sized ungulates, which includes small antelopes (Bovidae), gazelles (Gazella), deer (Cervidae), pigs (Sus), primates (Primates) and domestic livestock. They are opportunistic carnivores and eat birds (Aves), reptiles (Reptilia), rodents (Rodentia), arthropods (Arthropoda), and carrion when available. Leopards prefer prey that weigh between 10 and 40 kg. They are also known to scavenge from cheetahs (Acinonyx jubatus), solitary hyenas (Hyaenidae), and smaller carnivores as well. They are known to cache food and may continue hunting despite having multiple carcasses already cached.

Animal Foods: birds; mammals; reptiles; fish; carrion ; insects

Foraging Behavior: stores or caches food

Primary Diet: carnivore (Eats terrestrial vertebrates)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Leopards can be seen in National Parks throughout Asia and Africa. They help control baboon populations and disperse seeds that stick to their fur. Chiefs and warriors from tribal cultures throughout the leopard's geographic range wear their fur as a symbol of honor and courage. Tribal medicine men and women suggest leopard skins as a remedy for bad omens. Leopards are often captured for pet trade and are targeted by trophy hunters as well.

Positive Impacts: pet trade ; body parts are source of valuable material; ecotourism

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

When natural prey abundances are low, leopards have been known to kill livestock. Injured or sickly leopards have been known to hunt humans as easy prey.

Negative Impacts: injures humans (bites or stings)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Leopards are declining in parts of their geographic range due to habitat loss and fragmentation, and hunting for trade and pest control. As a result, leopards are listed as "near threatened" on the IUCN Red List of Threatened Species. Leopards appear to show some resistance to minor habitat disturbances and are relatively tolerant of humans. Currently, leopards are protected throughout most of their range in west Asia; however, populations in this part of their range are too small to maintain stable growth. Although habitat reserves and national parks exist throughout their geographic range in Africa, a majority of leopards live outside these protected areas. Although leopards are the most populous of the "great cats", 5 of 9 subspecies are listed as endangered or critically endangered.

US Federal List: endangered

CITES: appendix i

IUCN Red List of Threatened Species: near threatened

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Although leopards are silent most of the time, they may give a hoarse, rasping cough at repeated intervals to advertise their presence to conspecifics. Males use this unique call to announce territorial boundaries. If another leopard is in the vicinity, it may answer with a similar vocalization and continue vocalizing as it exits the area. Males also grunt at each other and females call to potential mates when in estrous. Some leopards may purr while feeding.

Communication Channels: tactile ; acoustic ; chemical

Other Communication Modes: pheromones ; scent marks

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Leopards are promiscuous, as both males and females have multiple mates. Females attract potential mates by excreting pheromones in their urine. Females initiate mating by walking back and forth in front of a male and brushing up against him or swatting him with her tail. The male then mounts the female while frequently biting her nape. Copulation last an average of three seconds with six minute intervals between each copulation bout. A single breeding pair may copulate up to 100 times per day for several days, during which time they share food resources.

Mating System: polygynandrous (promiscuous)

The reproductive season is year-round but peaks during the rainy season in May. In China and southern Siberia, leopards mainly breed in January and February. Females are in estrus for 7 days and have a 46 day long cycle. Gestation last 96 days and females usually give birth once every 15 to 24 months. Typically, females stop reproducing around 8.5 years old.

Breeding interval: Leopards breed every 15 to 24 months

Breeding season: Leopards breed year-round, with a peak during the rainy season

Range number of offspring: 2 to 3.

Average gestation period: 96 days.

Average weaning age: 3 months.

Range time to independence: 13 to 18 months.

Average age at sexual or reproductive maturity (female): 2.5 years.

Average age at sexual or reproductive maturity (male): 2 years.

Key Reproductive Features: iteroparous ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; viviparous

Average birth mass: 550 g.

Average gestation period: 97 days.

Average number of offspring: 2.

Average age at sexual or reproductive maturity (male)
Sex: male:
771 days.

Average age at sexual or reproductive maturity (female)
Sex: female:
937 days.

Leopard cubs weigh less than 1 kg at birth, and their eyes remain closed for the first week. Mothers leave their cubs in the protection of dense bush, rock clefts, or hollow tree trunks for up to 36 hours while hunting and feeding. They move den sites frequently, which helps prevent cubs from falling prey to lions and other predators. Cubs learn to walk at 2 weeks of age and regularly leave the den at 6 to 8 weeks old, around which time they begin to eat solid food. Mothers share less than a third of their food with their cubs. Cubs are completely weaned by 3 months old and independent at just under 20 months old. Often, siblings maintain contact during the early years of independence. Territories are flexible and young may linger in their natal area.

Parental Investment: altricial ; female parental care ; pre-weaning/fledging (Provisioning: Female, Protecting: Female); pre-independence (Provisioning: Female, Protecting: Female); extended period of juvenile learning

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Hunt, A. 2011. "Panthera pardus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Panthera_pardus.html
author
Ashley Hunt, University of Michigan-Ann Arbor
editor
Phil Myers, University of Michigan-Ann Arbor
editor
John Berini, Special Projects
original
visit source
partner site
Animal Diversity Web

Brief Summary

provided by EOL authors
The Leopard (Panthera pardus) has an extremely broad distribution across Africa and South and Southeast Asia. Leopards are found throughout Africa where there is sufficient cover and from the Arabian Peninsula through Asia to Manchuria and Korea. In the African rainforests and Sri Lanka, the Leopard is the only large predator. The black spot seen in the center of each rosette on a Jaguar's coat is typically lacking in Leopards. Melanistic Leopards ("black panthers"; melanistic Jaguars may also be referred to by this name) sometimes occur in several parts of Africa, but are more common in Thailand, Malaysia, and Java (Indonesia). Leopards are found in an extraordinary range of habitats. In sub-Saharan Africa, they may be found in any habitats with annual rainfall greater than 50 mm, as well as along rivers penetrating true deserts. Leopards in the Kalahari Desert can reportedly go 10 days without drinking. In deserts with temperatures reaching 70 C, Leopards can survive by seeking shelter during the day in caves, animal burrows, and dense vegetation. In Central and West Africa, Leopards occur in rainforests receiving more than 1500 mm annual rainfall. Leopards are common throughout the Indian subcontinent in savannahs, acacia grasslands, deciduous and evergreen forests, and scrub woodlands. They may occur to 5200 m elevation in the mountains of Pakistan and Kashmir. In Southeast Asia, they occur in dense primary rainforest, among other habitats. In the Russian Far East, they may be found in forested mountainous regions where the snow is less than 15 cm deep. Leopards are capable of persisting in close proximity to humans. The diet of the Leopard is highly varied, including both large and small prey. It often consists mainly of small and medium-sized mammals (5 to 45 kg), but may range from large beetles to ungulates (hoofed mammals) several times their size. Most hunting occurs at night. Sunquist and Sunquist (2009) review the diet of Leopards as reported from different portions of their range. Like other felids (i.e., members of the cat family), Leopards commonly kill their prey with a bite to the throat, although smaller prey may be dispatched with a bite to the nape or back of the head. Large prey items may be dragged up into a tree and cached there, especially in Africa, where carcasses may otherwise be taken over by hyenas or lions. In Sri Lanka, where the Leopard is the only large carnivore, Leopards are reportedly often seen in open areas during the day. In the wild, mating associations last just a day or two. The gestation period is around 96 days and young are born at 400 to 600 g. Litter size is typically one to three young (usually two, maximum six). Young travel with their mother starting at three to six months (when they weigh around three or four kg) and begin to eat meat. Permanent canines are emerged at around seven to eight months and the young are typically independent by 12 to 18 months (athough sometimes significantly later). Sexual maturity is reached at two to three years of age. In some parts of their range, Leopards are endangered, whereas in other places they are considered pests. (Estes 1991; Sunquist and Sunquist 2009)
license
cc-by-nc
original
visit source
partner site
EOL authors

Kalahari Xeric Savanna Habitat

provided by EOL authors

This species can be found in the Kalahari xeric savanna ecoregion. Here the Kalahari sands are generally nutrient poor, with a thin layer of iron oxide inducing a reddish-brown colour, although water leaching in areas of higher rainfall or near pans commonly causes the colour to fade. Diurnal temperature fluctuations in the Kalahari are extreme. In the southern part of the ecoregion, temperatures on winter nights can plummet to 1°C, while soaring to 30°C during the afternoon.

In less arid areas of this ecoregion, the vegetation is open savanna with grasses (Schmidtia spp., Stipagrostis spp., Aristida spp., and Eragrostis spp.) interrupted by trees such as Camelthorn (Acacia erioloba), Grey camelthorn (A. haematoxylon), Shepherd's tree (Boscia albitrunca), Kalahari sand-acacia (A. luederitzii), Blackthorn (A. mellifera), and Silver cluster-leaf (Terminalia sericea). Shrubs include Velvet raisin (Grewia flava), Ziziphus spp., Camphor bush (Tarchonanthus camphoratus), Rhigozum spp., Acacia hebeclada, and Lycium spp. In the more arid sectors, large trees typically are found in ancient riverbeds, and the rolling red dunes are sparsely populated by smaller A. erioloba, A. haematoxylon, and B. albitrunca, as well as broom scrub such asCrotalaria spartioides and Dune reed (Stipagrostis amabilis). Watermelon (Citrullus lanatus), Gemsbok cucumber (Acanthosicyos naudinianus), and African wild cucumber (Cucumis africanus) are vital sources of water and food for humans and animals alike.

In addition to the Kalahari lion, the ecoregion boasts an impressive array of other large predators, mainly in protected areas. These include the Cheetah (Acinonyx jubatus VU), Leopard (Panthera pardus), Spotted hyena (Crocuta crocuta LR) and Brown hyena (Hyaena brunnea LR), and Painted hunting dog (Lycaon pictus EN). The representation of smaller vertebrate predators is also remarkable. Among the mammals are the Aardwolf (Proteles cristata), Caracal (Felis caracal), Black-backed jackal (Canis mesomelas), Honey badger (Mellivora capensis), African wildcat (Felis lybica), Black-footed cat (Felis nigripes), Striped polecat (Ictonyx striatus), Small-spotted genet (Genetta genetta), Bat-eared fox and Cape fox (Otocyon megalotis, Vulpes chama), as well as Meerkat (Suricata suricatta) and three species of mongoose: Banded (Mungos mungo), Slender mongoose (Herpestes sanguinea), and Yellow mongoose (Cynictis penicillata).

Mammalian herbivores include Springbok (Antidorcas marsupialisLR), Hartebeest (Alcelaphus buselaphus LR), Gemsbok, and Blue Wildebeest (Connochaetes taurinus LR), as well as Duiker (Sylvicapra grimmia), Springhare (Pedetes capensis), and Porcupine (Hystrix africaeaustralis).

Avifauna include the massive nest builder Sociable weaver (up to six metres long and two metres high, weighing as much as 1000 kilograms, and housing up to 300 birds) are so well insulated that they substantially buffer the temperature extremes of the outside air. Raptors include the Secretary bird (Sagittarius serpentarius), various eagles including the Martial eagle (Polemaetus bellicosus), a gamut of owls, including Giant eagle owl (Bubo lacteus) and an array of falcons, goshawks, kestrels and kites.

Amongreptilian predators are the boomslang (Dispholidus typus typus), Cape cobra (Naja nivea), Puff adder (Bitis arietans), and Rock monitor (Varanus exanthematicus albigularis), as well as geckos, lizards, and skinks. As in many arid areas. Other snakes found in the ecoregion are the Angola garter snake (Elapsoidea semiannulata), the Angola python (Python anchietae), the Black-necked spitting cobra (Naja nigricollis) and the Black mamba (Dendroaspis polylepis). Lizards found here include: Karoo girdled lizard (Cordylus polyzonus); African striped mabuya (Trachylepis striata); Anchieta's agama (Agama anchietae); and Blunt-tailed Worm Lizard (Dalophia pistillum). Geckos foundhere include the Bibron's thick-toed gecko (Chondrodactylus bibronii). The Namaqua chameleon (Chamaeleo namaquensis) is a representative chameleon found in the Kalahari xeric savanna.

As in most arid ecoregions, theamphibian fauna is not particularly species-rich in the Kalahari, but does include the Giant bullfrog (Pyxicephalus adspersus) that has a omnivorous diet, preying on small birds, rodents, reptiles, and insects. Other anuran taxa present here are the African clawed frog (Xenopus laevis); African ornate frog (Hildebrandtia ornata); Boettger's dainty frog (Cacosternum boettgeri); Red-spotted Namibia frog (Phrynomantis annectens); Mababe river frog (Phrynobatrachus mababiensis); Cryptic sand-frog (Tomopterna cryptotis); Kimberley toad (Amietophrynus poweri); Guttural toad (Amietophrynus gutturalis); and Knocking sand-frog (Tomopterna krugerensis.

References

  • C.MIchael Hogan & World Wildlife Fund. 2015. Kalahari xeric savanna. Encyclopedia of Earth. National Council for Science and Environment. Washington DC
  • O.A. Leistner. 1967. The plant ecology of the southern Kalahari. Memoirs of the Botanical Survey of South Africa 38: 1-172.

license
cc-by-3.0
copyright
C.MIchael Hogan & World Wildlife Fund
bibliographic citation
C.MIchael Hogan & World Wildlife Fund. 2015. Kalahari xeric savanna. Encyclopedia of Earth. National Council for Science and Environment. Washington DC
author
C. Michael Hogan (cmichaelhogan)
original
visit source
partner site
EOL authors

MammalMAP: Leopard

provided by EOL authors

The leopard is the smallest of four cats belonging to the Genus Panthera.Itsappearanceis similar to a jaguar but it is slightly smaller, stockier in build and its rosettes are smaller, more densely packed and usually do not have central spots. Ambiguously, both melanistic forms of leopards and jaguars are called black panthers.

These beautiful animals are phenomenally adapted to a wide range of habitats.It can run up to 58 km/hr, climb trees while carrying a carcass and is renowned for its stealth capabilities. Anopportunistic hunter, it will feed on any animal it can catch from arthropods to large antelopes the size of an eland.

Depending on region, leopards may mate all year round. A female typically gives birth to a litter of 2 – 4 cubs in a den in cave, boulder crevice or hollow tree. After 3 months, cubs will follow their mother on hunts. Mortality rate in cubs during their first year is at approximately 50%.

Leopards may have a wide range but their population is declining due to habitat loss and fragmentation.They are also hunted for trade and pest control.TheIUCNclassifies leopards as a Near Threatened species that may soon slip into the Vulnerable category.

For more information on MammalMAP, visit the MammalMAPvirtual museumorblog.

license
cc-by-3.0
copyright
MammalMAP
author
(MammalMAP)
original
visit source
partner site
EOL authors

Threatened Vertebrate Associates in the Hindu Kush Alpine Meadow Ecoregion

provided by EOL authors

The Hindu Kush alpine meadow has an expanse of some 10,900 square miles, situated in northeastern Afghanistan and northern Pakistan. Most of the lands lie within the Hindu Kush Mountain Range inthe altitude bracket between 3000 to 4000 meters, and correspondingly most of the precipitation is in the form of snow. This ecoregion is classified within the Montane Grasslands and Shrublands biome.

This ecoregion manifests a low rate of vertebrate endemism; however there are ten special status mammals found here, ranging from the status of Endangered to Near Threatened. The Hindu Kush alpine meadow ecoregion consists of higher elevation terrain of moderate to severe slopes. Vegetation is often sparse or almost lacking, with resulting pastoral usage of low intensity grazing of goats and sheep in some areas. Soils are largely leptosols, but many areas are covered by large expanses of rock outcrop or rocky scree. In the limited areas of arable soils, wheat is sometimes farmed, although growing of opium poppies is the only cash crop. Most of the water available for plant and animal life is supplied by snowmelt. The Helmand River, Afghanistan's largest watercourse, represents the chief catchment within the ecoregion, with headwaters rising in the Hindu Kush Range, and eventual discharge to the endorheic Sistan Basin.

Special status mammals found in the Hindu Kush alpine meadow are: the Near Threatened argali (Ovis ammon), the Vulnerable Asiatic black bear (Ursus thibetanus), the Near Threatened European otter (Lutra lutra), the Near Threatened leopard (Panthera pardus), the Endangered markhor (Capra falconeri), the Near Threatened mountain weasel (Mustela altaica), the Near Threatened Schreiber's long-fingered bat (Miniopteris schreibersi), the Endangered snow leopard (Uncia uncia), the Near Threatened striped hyena (Hyaena hyaena) and the Endangered Moschus leucogaster. Special status birds in the Hindu Kush alpine meadow are represented by the Endangered Egyptian vulture (Neophron percnopteris).

license
cc-by-3.0
copyright
C. Michael Hogan and World Wildlife Fund
original
visit source
partner site
EOL authors

Leopard

provided by wikipedia EN

The leopard (Panthera pardus) is one of the five extant species in the genus Panthera. It has a pale yellowish to dark golden fur with dark spots grouped in rosettes. Its body is slender and muscular reaching a length of 92–183 cm (36–72 in) with a 66–102 cm (26–40 in) long tail and a shoulder height of 60–70 cm (24–28 in). Males typically weigh 30.9–72 kg (68–159 lb), and females 20.5–43 kg (45–95 lb).

The leopard was first described in 1758, and several subspecies were proposed in the 19th and 20th centuries. Today, eight subspecies are recognised in its wide range in Africa and Asia. It probably evolved in Africa about 0.5 to 0.8 million years ago and radiated across Asia about 0.2 and 0.3 million years ago. Fossil leopard bones were excavated at 40 sites in Europe, where it had occurred at least since the Pleistocene, but survived until about 24,000 years ago.

It is adapted to a variety of habitats ranging from rainforest to steppe, including arid and montane areas. It is an opportunistic predator, hunting mostly ungulates and primates. It relies on its spotted pattern for camouflage as it stalks and ambushes its prey, which it sometimes drags up a tree. It is a solitary animal outside the mating season and when raising cubs. Females usually give birth to a litter of 2–4 cubs once in 15–24 months. Both male and female leopards typically reach sexual maturity at the age 2–2.5 years.

It is listed as Vulnerable on the IUCN Red List because leopard populations are threatened by habitat loss and fragmentation, and are declining in large parts of the global range. Leopards have had cultural roles in Ancient Greece, West Africa and modern Western culture. Leopard skins have been popular in fashion.

Etymology

The English name "leopard" comes from Old French leupart or Middle French liepart, that derives from Latin leopardus and ancient Greek λέοπάρδος (leopardos). Leopardos could be a compound of λέων (leōn), meaning 'lion', and πάρδος (pardos), meaning 'spotted'.[4][5][6] The word λέοπάρδος originally referred to a cheetah (Acinonyx jubatus).[7]

"Panther" is another common name, derived from Latin panther and ancient Greek πάνθηρ (pánthēr);[4] The generic name Panthera originates in Latin panthera, a hunting net for catching wild beasts to be used by the Romans in combats.[8] Pardus is the masculine singular form.[9]

Characteristics

The leopard's fur is generally soft and thick, notably softer on the belly than on the back.[10] Its skin colour varies between individuals from pale yellowish to dark golden with dark spots grouped in rosettes. Its underbelly is white and its ringed tail is shorter than its body. Its pupils are round.[11] Leopards living in arid regions are pale cream, yellowish to ochraceous and rufous in colour; those living in forests and mountains are much darker and deep golden. Spots fade toward the white underbelly and the insides and lower parts of the legs.[12] Rosettes are circular in East African leopard populations, and tend to be squarish in Southern African and larger in Asian leopard populations. The fur tends to be grayish in colder climates, and dark golden in rainforest habitats.[13] Rosette patterns are unique in each individual.[14][15] This pattern is thought to be an adaptation to dense vegetation with patchy shadows, where it serves as camouflage.[16]

Its white-tipped tail is about 60–100 cm (23.6–39.4 in) long, white underneath and with spots that form incomplete bands toward the end of the tail.[17] The guard hairs protecting the basal hairs are short, 3–4 mm (0.1–0.2 in) in face and head, and increase in length toward the flanks and the belly to about 25–30 mm (1.0–1.2 in). Juveniles have woolly fur that appear to be dark-coloured due to the densely arranged spots.[14][18] Its fur tends to grow longer in colder climates.[19] The leopard's rosettes differ from those of the jaguar (Panthera onca), which are darker and with smaller spots inside.[11] The leopard has a diploid chromosome number of 38.[20]

Melanistic leopards are also known as black panthers. Melanism in leopards is caused by a recessive allele and is inherited as a recessive trait.[21][22][23][24] In India, nine pale and white leopards were reported between 1905 and 1967.[25] Leopards exhibiting erythrism were recorded between 1990 and 2015 in South Africa's Madikwe Game Reserve and in Mpumalanga. The cause of this morph known as a "strawberry leopard" or "pink panther" is not well understood.[26]

Size

The leopard is a slender and muscular cat, with relatively short limbs and a broad head. It is sexually dimorphic with males larger and heavier than females.[17] Males stand 60–70 cm (24–28 in) at the shoulder, while females are 57–64 cm (22–25 in) tall. The head-and-body length ranges between 92 and 183 cm (36 and 72 in) with a 66 to 102 cm (26 to 40 in) long tail. Sizes vary geographically. Males typically weigh 30.9–72 kg (68–159 lb), and females 20.5–43 kg (45–95 lb).[27] Occasionally, large males can grow up to 91 kg (201 lb). Leopards from the Cape Province in South Africa are generally smaller, reaching only 20–45 kg (44–99 lb) in males.[18][19][28] The maximum recorded weight of a wild leopard in Southern Africa was around 96 kg (212 lb), and it measured 262 cm (103 in).[29] In 2016, an Indian leopard killed in Himachal Pradesh measured 261 cm (103 in) with an estimated weight of 78.5 kg (173 lb); it was perhaps the largest known wild leopard in India.[30][31]

The largest recorded skull of a leopard was found in India in 1920 and measured 28 cm (11 in) in basal length, 20 cm (7.9 in) in breadth, and weighed 1 kg (2.2 lb). The skull of an African leopard measured 286 mm (11.3 in) in basal length, and 181 mm (7.1 in) in breadth, and weighed 790 g (28 oz).[32]

Mounted skeleton
Rosettes of a leopard
A melanistic leopard or black panther

Taxonomy

Map showing approximate distribution of leopard subspecies

Felis pardus was the scientific name proposed by Carl Linnaeus in 1758.[33] The generic name Panthera was first used by Lorenz Oken in 1816, who included all the known spotted cats into this group.[34] Oken's classification was not widely accepted, and Felis or Leopardus was used as the generic name until the early 20th century.[35]

The leopard was designated as the type species of Panthera by Joel Asaph Allen in 1902.[36] In 1917, Reginald Innes Pocock also subordinated the tiger (P. tigris), lion (P. leo), and jaguar (P. onca) to Panthera.[37][38]

Living subspecies

Following Linnaeus' first description, 27 leopard subspecies were proposed by naturalists between 1794 and 1956. Since 1996, only eight subspecies have been considered valid on the basis of mitochondrial analysis.[39] Later analysis revealed a ninth valid subspecies, the Arabian leopard.[40]

In 2017, the Cat Classification Task Force of the Cat Specialist Group recognized the following eight subspecies as valid taxa:[41]

Results of an analysis of molecular variance and pairwise fixation index of 182 African leopard museum specimens showed that some African leopards exhibit higher genetic differences than Asian leopard subspecies.[53]

Evolution

Two cladograms proposed for Panthera. The upper cladogram is based on the 2006[54] and 2009[55] studies, while the lower is based on the 2010[56] and 2011[57] studies.

Results of phylogenetic studies based on nuclear DNA and mitochondrial DNA analysis showed that the last common ancestor of the Panthera and Neofelis genera is thought to have lived about 6.37 million years ago. Neofelis diverged about 8.66 million years ago from the Panthera lineage. The tiger diverged about 6.55 million years ago, followed by the snow leopard about 4.63 million years ago and the leopard about 4.35 million years ago. The leopard is a sister taxon to a clade within Panthera, consisting of the lion and the jaguar.[54][55]

Results of a phylogenetic analysis of chemical secretions amongst cats indicated that the leopard is closely related to the lion.[58] The geographic origin of the Panthera is most likely northern Central Asia. The leopard-lion clade was distributed in the Asian and African Palearctic since at least the early Pliocene.[59] The leopard-lion clade diverged 3.1–1.95 million years ago.[56][57] Additionally, a 2016 study revealed that the mitochondrial genomes of the leopard, lion and snow leopard are more similar to each other than their nuclear genomes, indicating that their ancestors hybridized with the snow leopard at some point in their evolution.[60]

Fossils of leopard ancestors were excavated in East Africa and South Asia, dating back to the Pleistocene between 2 and 3.5 million years ago. The modern leopard is suggested to have evolved in Africa about 0.5 to 0.8 million years ago and to have radiated across Asia about 0.2 and 0.3 million years ago.[40] Fossil cat teeth collected in Sumatra's Padang Highlands were assigned to the leopard. It has since been hypothesized that it became extirpated on the island due to the Toba eruption about 75,000 years ago,[61] and due to competition with the Sunda clouded leopard (Neofelis diardi) and the dhole (Cuon alpinus).[62]

In Europe, the leopard occurred at least since the Pleistocene. Leopard-like fossil bones and teeth possibly dating to the Pliocene were excavated in Perrier in France, northeast of London, and in Valdarno, Italy. Until 1940, similar fossils dating back to the Pleistocene were excavated mostly in loess and caves at 40 sites in Europe, including Furninha Cave near Lisbon, Genista Caves in Gibraltar, and Santander Province in northern Spain to several sites across France, Switzerland, Italy, Austria, Germany, in the north up to Derby in England, in the east to Přerov in the Czech Republic and the Baranya in southern Hungary,[63] Leopard fossils dating to the Late Pleistocene were found in Biśnik Cave in south-central Poland.[64] The oldest known leopard fossils excavated in Europe are about 600,000 years old and were found in the Grotte du Vallonnet in France and near Mauer in Germany.[2] Four European Pleistocene leopard subspecies were proposed. P. p. begoueni from the beginning of the Early Pleistocene was replaced about 0.6 million years ago by P. p. sickenbergi, which in turn was replaced by P. p. antiqua around 0.3 million years ago. The most recent, P. p. spelaea, appeared at the beginning of the Late Pleistocene and survived until about 24,000 years ago in several parts of Europe.[65] Leopard fossils dating to the Pleistocene were also excavated in the Japanese archipelago.[66] Leopard fossils have also been found in Taiwan.[67]

Hybrids

In 1953, a male leopard and a female lion were crossbred in Hanshin Park in Nishinomiya, Japan. Their offspring known as a leopon was born in 1959 and 1961, all cubs were spotted and bigger than a juvenile leopard. Attempts to mate a leopon with a tigress were unsuccessful.[68]

Distribution and habitat

Leopard in a tree in India

The leopard has the largest distribution of all wild cats, occurring widely in Africa, the Caucasus and Asia, although populations are fragmented and declining. It is considered to be extirpated in North Africa.[3] It inhabits foremost savanna and rainforest, and areas where grasslands, woodlands, and riverine forests remain largely undisturbed.[13] In sub-Saharan Africa, it is still numerous and surviving in marginal habitats where other large cats have disappeared. There is considerable potential for human-leopard conflict due to leopards preying on livestock.[69]

Leopard populations in the Arabian Peninsula are small and fragmented.[70][71][72] In southeastern Egypt, a leopard killed in 2017 was the first sighting of the species in this area in 65 years.[73] In western and central Asia, it avoids deserts, areas with long snow cover and close proximity to urban centres.[74]

In the Indian subcontinent, the leopard is still relatively abundant, with greater numbers than those of other Panthera species.[3] As of 2020, the leopard population within forested habitats in India's tiger range landscapes was estimated at 12,172 to 13,535 individuals. Surveyed landscapes included elevations below 2,600 m (8,500 ft) in the Shivalik Hills and Gangetic plains, Central India and Eastern Ghats, Western Ghats, the Brahmaputra River basin and hills in Northeast India.[75] Some leopard populations in the country live quite close to human settlements and even in semi-developed areas. Although adaptable to human disturbances, leopards require healthy prey populations and appropriate vegetative cover for hunting for prolonged survival and thus rarely linger in heavily developed areas. Due to the leopard's stealth, people often remain unaware that it lives in nearby areas.[76]

In Nepal's Kanchenjunga Conservation Area, a melanistic leopard was photographed at an elevation of 4,300 m (14,100 ft) by a camera trap in May 2012.[77] In Sri Lanka, leopards were recorded in Yala National Park and in unprotected forest patches, tea estates, grasslands, home gardens, pine and eucalyptus plantations.[78][79] In Myanmar, leopards were recorded for the first time by camera traps in the hill forests of Myanmar's Karen State.[80] The Northern Tenasserim Forest Complex in southern Myanmar is considered a leopard stronghold. In Thailand, leopards are present in the Western Forest Complex, Kaeng Krachan-Kui Buri, Khlong Saeng-Khao Sok protected area complexes and in Hala Bala Wildlife Sanctuary bordering Malaysia. In Peninsular Malaysia, leopards are present in Belum-Temengor, Taman Negara and Endau-Rompin National Parks.[81] In Laos, leopards were recorded in Nam Et-Phou Louey National Biodiversity Conservation Area and Nam Kan National Protected Area.[82][83] In Cambodia, leopards inhabit deciduous dipterocarp forest in Phnom Prich Wildlife Sanctuary and Mondulkiri Protected Forest.[84][85] In southern China, leopards were recorded only in the Qinling Mountains during surveys in 11 nature reserves between 2002 and 2009.[86]

In Java, leopards inhabit dense tropical rainforests and dry deciduous forests at elevations from sea level to 2,540 m (8,330 ft). Outside protected areas, leopards were recorded in mixed agricultural land, secondary forest and production forest between 2008 and 2014.[87]

In the Russian Far East, it inhabits temperate coniferous forests where winter temperatures reach a low of −25 °C (−13 °F).[40]

Behaviour and ecology

Leopard visual communication
A female leopard with white markings on the backs of her ears.
A female leopard showing white spots on the tail

The leopard is a solitary and territorial animal. It is typically shy and alert when crossing roadways and encountering oncoming vehicles, but may be emboldened to attack people or other animals when threatened. Adults associate only in the mating season. Females continue to interact with their offspring even after weaning and have been observed sharing kills with their offspring when they can not obtain any prey. They produce a number of vocalizations, including growls, snarls, meows, and purrs.[18] The roaring sequence in leopards consists mainly of grunts,[88] also called "sawing", as it resembles the sound of sawing wood. Cubs call their mother with an urr-urr sound.[18]

The whitish spots on the back of its ears are thought to play a role in communication.[89] It has been hypothesized that the white tips of their tails may function as a 'follow-me' signal in intraspecific communication. However, no significant association were found between a conspicuous colour of tail patches and behavioural variables in carnivores.[90][91]

A leopard climbing down a tree

Leopards are mainly active from dusk till dawn and will rest for most of the day and some hours at night in thickets, among rocks or over tree branches. Leopards have been observed walking 1–25 km (0.62–15.53 mi) across their range at night; wandering up to 75 km (47 mi) if disturbed.[18][28] In some regions, they are nocturnal.[92][93] In western African forests, they have been observed to be largely diurnal and hunting during twilight, when their prey animals are active; activity patterns vary between seasons.[94]

Video of a leopard in the wild

Leopards can climb trees quite skillfully, often resting on tree branches and descending headfirst.[13] They can run at over 58 km/h (36 mph; 16 m/s), leap over 6 m (20 ft) horizontally, and jump up to 3 m (9.8 ft) vertically.[88]

Social spacing

In Kruger National Park, most leopards tend to keep 1 km (0.62 mi) apart.[95] Males occasionally interact with their partners and cubs, and exceptionally this can extend beyond to two generations.[96][97] Aggressive encounters are rare, typically limited to defending territories from intruders.[19] In a South African reserve, a male was wounded in a male–male territorial battle over a carcass.[92]

Males occupy home ranges that often overlap with a few smaller female home ranges, probably as a strategy to enhance access to females. In the Ivory Coast, the home range of a female was completely enclosed within a male's.[98] Females live with their cubs in home ranges that overlap extensively, probably due to the association between mothers and their offspring. There may be a few other fluctuating home ranges belonging to young individuals. It is not clear if male home ranges overlap as much as those of females do. Individuals try to drive away intruders of the same sex.[18][28]

A study of leopards in the Namibian farmlands showed that the size of home ranges was not significantly affected by sex, rainfall patterns or season; the higher the prey availability in an area, the greater the leopard population density and the smaller the size of home ranges, but they tend to expand if there is human interference.[99] Sizes of home ranges vary geographically and depending on habitat and availability of prey. In the Serengeti, males have home ranges of 33–38 km2 (13–15 sq mi) and females of 14–16 km2 (5.4–6.2 sq mi);[100][101] but males in northeastern Namibia of 451 km2 (174 sq mi) and females of 188 km2 (73 sq mi).[102] They are even larger in arid and montane areas.[19] In Nepal's Bardia National Park, male home ranges of 48 km2 (19 sq mi) and female ones of 5–7 km2 (1.9–2.7 sq mi) are smaller than those generally observed in Africa.[103]

Hunting and diet

Stages of the hunt
Stalking
Killing a young bushbuck
Dragging an impala kill
Caching the kill up a tree

The leopard is a carnivore that prefers medium-sized prey with a body mass ranging from 10–40 kg (22–88 lb). Prey species in this weight range tend to occur in dense habitat and to form small herds. Species that prefer open areas and have well-developed anti-predator strategies are less preferred. More than 100 prey species have been recorded. The most preferred species are ungulates, such as impala (Aepyceros melampus), bushbuck (Tragelaphus scriptus), common duiker (Sylvicapra grimmia) and chital (Axis axis). Primates preyed upon include white-eyelid mangabeys (Cercocebus sp.), guenons (Cercopithecus sp.) and gray langurs (Semnopithecus sp.). Leopards also kill smaller carnivores like black-backed jackal (Lupulella mesomelas), bat-eared fox (Otocyon megalotis), genet (Genetta sp.) and cheetah.[104]

The largest prey killed by a leopard was reportedly a male eland weighing 900 kg (2,000 lb).[88] A study in Wolong National Nature Reserve in southern China demonstrated variation in the leopard's diet over time; over the course of seven years, the vegetative cover receded, and leopards opportunistically shifted from primarily consuming tufted deer (Elaphodus cephalophus) to pursuing bamboo rats (Rhizomys sinense) and other smaller prey.[105]

The leopard depends mainly on its acute senses of hearing and vision for hunting.[106] It primarily hunts at night in most areas.[18] In western African forests and Tsavo National Park, they have also been observed hunting by day.[107] They usually hunt on the ground. In the Serengeti, they have been seen to ambush prey by descending on it from trees.[108]

It stalks its prey and tries to approach as closely as possible, typically within 5 m (16 ft) of the target, and, finally, pounces on it and kills it by suffocation. It kills small prey with a bite to the back of the neck, but holds larger animals by the throat and strangles them.[18] It caches kills up to 2 km (1.2 mi) apart.[96] It is able to take large prey due to its powerful jaw muscles, and is therefore strong enough to drag carcasses heavier than itself up into trees; an individual was seen to haul a young giraffe weighing nearly 125 kg (276 lb) up 5.7 m (18 ft 8 in) into a tree.[107] It eats small prey immediately, but drags larger carcasses over several hundred meters and caches it safely in trees, bushes or even caves; this behaviour allows the leopard to store its prey away from rivals, and offers it an advantage over them. The way it stores the kill depends on local topography and individual preferences, varying from trees in Kruger National Park to bushes in the plain terrain of the Kalahari.[19][109]

Average daily consumption rates of 3.5 kg (7 lb 11 oz) were estimated for males and of 2.8 kg (6 lb 3 oz) for females.[95] In the southern Kalahari Desert, leopards meet their water requirements by the bodily fluids of prey and succulent plants; they drink water every two to three days and feed infrequently on moisture-rich plants such as gemsbok cucumbers (Acanthosicyos naudinianus), watermelon (Citrullus lanatus) and Kalahari sour grass (Schmidtia kalahariensis).[110]

Enemies and competitors

A lioness steals a leopard kill in Kruger National Park

In parts of its range, the leopard is sympatric with other large predators such as the tiger (Panthera tigris), lion (P. leo), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta), striped hyena (Hyaena hyaena), brown hyena (Parahyaena brunnea), African wild dog (Lycaon pictus), dhole (Cuon alpinus), wolf (Canis lupus) and up to five bear species. Some of these species steal its kills, kill its cubs and even kill adult leopards. Leopards retreat up a tree in the face of direct aggression, and were observed when killing or preying on smaller competitors such as black-backed jackal, African civet (Civettictis civetta), caracal (Caracal caracal) and African wildcat (Felis lybica).[13][111] Leopards generally seem to avoid encounters with adult bears, killing vulnerable bear cubs instead. In Sri Lanka, a few recorded fights between leopards and sloth bears (Melursus ursinus) apparently result in both animals winding up either dead or grievously injured.[112][113] Leopards generally avoid large packs of African wild dogs and dholes and will flee up a tree at the sight of them.[114][115]

While interspecies killing of full-grown leopards is generally rare, given the opportunity, both the tiger and lion readily kill and consume both young and adult leopards.[108][111][116][117] In the Kalahari Desert, leopards frequently lose kills to brown hyenas, if they are unable to move the kill up a tree. Single brown hyenas have been observed charging at and displacing male leopards from kills.[118][119] Lions occasionally fetch leopard kills from trees.[109]

Resource partitioning occurs where leopards share their range with tigers. Leopards tend to kill smaller prey, usually less than 75 kg (165 lb), where tigers are present.[13] In areas where leopards and tigers are sympatric, coexistence is reportedly not the general rule, with leopards being few where tigers are numerous.[116] Tigers appear to inhabit the deep parts of the forest while leopards are pushed closer to the fringes.[120] In tropical forests, leopards do not always avoid the larger cats by hunting at different times. With relatively abundant prey and differences in the size of the selected prey, tigers and leopards seem to successfully coexist without competitive exclusion or interspecies dominance hierarchies that may be more prevalent in the leopard's co-existence with the lion in savanna habitats.[121]

Nile crocodiles (Crocodylus niloticus) occasionally prey on leopards. In one occasion, a large adult leopard was grabbed and consumed by a large crocodile while attempting to hunt along a river bank in Kruger National Park.[95][96] Mugger crocodiles (C. palustris) reportedly killed an adult leopard in Rajasthan.[122] An adult leopard was recovered from the stomach of a 5.5 m (18 ft 1 in) Burmese python (Python bivittatus).[123] In the Serengeti National Park, troops of around 30–40 olive baboons (Papio anubis) were observed mobbing and attacking a female leopard and her cubs.[124]

Reproduction and life cycle

A female in estrus fights with a male attempting to mate with her
Leopard cubs in tree

In some areas, leopards mate all year round. In Manchuria and Siberia, they mate during January and February. On average, females begin to breed between the ages of 2½ and three, and males between the ages of two and three.[125] The female's estrous cycle lasts about 46 days, and she is usually in heat for 6–7 days.[126] The generation length of the leopard is 9.3 years.[127] Gestation lasts for 90 to 105 days.[128] Cubs are usually born in a litter of 2–4 cubs.[129] The mortality rate of cubs is estimated at 41–50% during the first year.[95] Lions and spotted hyenas are the biggest cause for leopard cub mortality during their first year. Male leopards are known to cause infanticide, in order to bring the female back into heat.[130] Intervals between births average 15 to 24 months, but can be shorter, depending on the survival of the cubs.[125]

Females give birth in a cave, crevice among boulders, hollow tree or thicket. Newborn cubs weigh 280–1,000 g (9.9–35.3 oz), and are born with closed eyes, which open four to nine days after birth.[88][19] The fur of the young tends to be longer and thicker than that of adults. Their pelage is also more gray in colour with less defined spots. They begin to eat meat at around nine weeks.[130] Around three months of age, the young begin to follow the mother on hunts. At one year of age, cubs can probably fend for themselves, but will remain with the mother for 18–24 months.[131] After separating from their mother, sibling cubs may travel together for months.[125] Both male and female leopards typically reach sexual maturity at 2–2⅓ years.[130]

The average life span of a leopard is 12–17 years.[88] The oldest leopard was a captive female that died at the age of 24 years, 2 months and 13 days.[132]

Conservation

The leopard is listed on CITES Appendix I, and trade is restricted to skins and body parts of 2,560 individuals in 11 sub-Saharan countries.[3] The leopard is primarily threatened by habitat fragmentation and conversion of forest to agriculturally used land, which lead to a declining natural prey base, human–wildlife conflict with livestock herders and high leopard mortality rates. It is also threatened by trophy hunting and poaching.[3] Contemporary records suggest that the leopard occurs in only 25% of its historical range.[133][134]

Between 2002 and 2012, at least four leopards were estimated to have been poached per week in India for the illegal wildlife trade of its skins and bones.[135] In spring 2013, 37 leopard skins were found during a 7-week long market survey in major Moroccan cities.[136] In 2014, 43 leopard skins were detected during two surveys in Morocco. Vendors admitted to have imported skins from sub-Saharan Africa.[137]

Surveys in the Central African Republic's Chinko area revealed that the leopard population decreased from 97 individuals in 2012 to 50 individuals in 2017. In this period, transhumant pastoralists from the border area with Sudan moved in the area with their livestock. Rangers confiscated large amounts of poison in the camps of livestock herders who were accompanied by armed merchants. They engaged in poaching large herbivores, sale of bushmeat and trading leopard skins in Am Dafok.[138]

In Java, the leopard is threatened by illegal hunting and trade. Between 2011 and 2019, body parts of 51 Javan leopards were seized including six live individuals, 12 skins, 13 skulls, 20 canines and 22 claws.[139]

The leopard is considered locally extinct in Hong Kong, Singapore, South Korea, Jordan, Morocco, Togo, the United Arab Emirates, Uzbekistan, Lebanon, Mauritania, Kuwait, Syria, Libya, Tunisia and most likely in North Korea, Gambia, Laos, Lesotho, Tajikistan, Vietnam and Israel.[3]

Human interaction

Cultural significance

Leopards on the Magerius Mosaic from modern Tunisia. Numerous Roman mosaics from North African sites depict fauna now found only in tropical Africa.[140]
Leopard head to hip ornament from the Court of Benin

Leopards have been featured in art, mythology and folklore of many countries. In Greek mythology, it was a symbol of the god Dionysus, who was depicted wearing leopard skin and using leopards as means of transportation. In one myth, the god was captured by pirates but two leopards rescued him.[141] During the Benin Empire, the leopard was commonly represented on engravings and sculptures and was used to symbolise the power of the king or oba, since the leopard was considered the king of the forest.[142] The Ashanti also used the leopard as a symbol of leadership, and only the king was permitted to have a ceremonial leopard stool. Some African cultures considered the leopard to be a smarter, better hunter than the lion and harder to kill.[141]

In Rudyard Kipling's "How the Leopard Got His Spots", one of his Just So Stories, a leopard with no spots in the Highveld lives with his hunting partner, the Ethiopian. When they set off to the forest, the Ethiopian changed his brown skin, and the leopard painted spots on his skin.[143] A leopard played an important role in the 1938 Hollywood film Bringing Up Baby. African chiefs, European queens, Hollywood actors and burlesque dancers wore coats made of leopard skins.[141]

The leopard is a frequently used in heraldry, most commonly as passant.[144] The heraldic leopard lacks spots and sports a mane, making it visually almost identical to the heraldic lion, and the two are often used interchangeably. Naturalistic leopard-like depictions appear on the coat of arms of Benin, Malawi, Somalia, the Democratic Republic of the Congo and Gabon, the last of which uses a black panther.[145]

Attacks on people

The Leopard of Rudraprayag killed more than 125 people; the Panar Leopard was thought to have killed over 400 people. Both were shot by British hunter Jim Corbett.[146] The spotted devil of Gummalapur killed about 42 people in Karnataka, India.[147]

In captivity

Animal trainer with leopard

The ancient Romans kept leopards in captivity to be slaughtered in hunts as well as execute criminals.[141] In Benin, leopards were kept and paraded as mascots, totems and sacrifices to deities.[142] Several leopards were kept in a menagerie originally established by King John of England at the Tower of London in the 13th century; around 1235, three of these animals were given to Henry III by Holy Roman Emperor Frederick II.[148] In modern times, leopards have been trained and tamed in circuses.[141]

See also

References

  1. ^ a b Wozencraft, W. C. (2005). "Species Panthera pardus". In Wilson, D. E.; Reeder, D. M. (eds.). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. p. 547. ISBN 978-0-8018-8221-0. OCLC 62265494.
  2. ^ a b Ghezzo, E. & Rook, L. (2015). "The remarkable Panthera pardus (Felidae, Mammalia) record from Equi (Massa, Italy): taphonomy, morphology, and paleoecology". Quaternary Science Reviews. 110 (110): 131–151. doi:10.1016/j.quascirev.2014.12.020.
  3. ^ a b c d e f g h i j k l m n o Stein, A.B.; Athreya, V.; Gerngross, P.; Balme, G.; Henschel, P.; Karanth, U.; Miquelle, D.; Rostro-Garcia, S.; Kamler, J. F.; Laguardia, A.; Khorozyan, I. & Ghoddousi, A. (2020) [amended version of 2019 assessment]. "Panthera pardus". IUCN Red List of Threatened Species. 2020: e.T15954A163991139. doi:10.2305/IUCN.UK.2020-1.RLTS.T15954A163991139.en. Retrieved 15 January 2022.
  4. ^ a b Lewis, C. T. & Short, C. (1879). "lěǒpardus". A Latin Dictionary. Oxford: Clarendon Press. p. 1069.
  5. ^ Liddell, H. G. & Scott, R. (1889). "λέο-πάρδος". A Greek–English Lexicon. Oxford: Clarendon Press. p. 884.
  6. ^ Partridge, E. (1983). Origins: A Short Etymological Dictionary of Modern English. New York: Greenwich House. p. 349. ISBN 978-0-517-41425-5.
  7. ^ Nicholas, N. (1999). "A conundrum of cats: pards and their relatives in Byzantium". Greek, Roman, and Byzantine Studies. 40: 253–298. S2CID 56160515.
  8. ^ Lewis, C. T. & Short, C. (1879). "panthera". A Latin Dictionary. Oxford: Clarendon Press. p. 1298.
  9. ^ Lewis, C. T. & Short, C. (1879). "pardus". A Latin Dictionary. Oxford: Clarendon Press. p. 1302.
  10. ^ Mills, M. G. L. (2005). "Subfamily Pantherinae". In Skinner, J. D.; Chimimba, C. T. (eds.). The mammals of the southern African sub region (Third ed.). Cambridge: Cambridge University Press. pp. 385–396. ISBN 9780521844185.
  11. ^ a b Mivart, St. G. J. (1900). "Different kind of Cats". The Cat: An Introduction to the Study of Backboned Animals, Especially Mammals. London: John Murray. pp. 391–439.
  12. ^ Pocook, R. I. (1932). "The Leopards of Africa". Proceedings of the Zoological Society of London. 102 (2): 543–591. doi:10.1111/j.1096-3642.1932.tb01085.x.
  13. ^ a b c d e Nowell, K. & Jackson, P. (1996). "Leopard Panthera pardus (Linnaeus, 1758)". Wild Cats: status survey and conservation action plan. Gland, Switzerland: IUCN/SSC Cat Specialist Group. Archived from the original on 2014-02-22.
  14. ^ a b Schütze, H. (2002). Field Guide to the Mammals of the Kruger National Park. Cape Town, South Africa: Struik Publishers. pp. 92–93. ISBN 978-1-86872-594-6.
  15. ^ Menon, V. (2014). Indian Mammals: A Field Guide. Gurgaon, India: Hachette. ISBN 978-93-5009-761-8.
  16. ^ Allen, W. L.; Cuthill, I. C.; Scott-Samuel, N. E. & Baddeley, R. (2010). "Why the leopard got its spots: relating pattern development to ecology in felids". Proceedings of the Royal Society B. 278 (1710): 1373–1380. doi:10.1098/rspb.2010.1734. PMC 3061134. PMID 20961899.
  17. ^ a b Hoath, R. (2009). "Leopard Panthera pardus (Linnaeus, 1758)". Field Guide to the Mammals of Egypt. Cairo, Egypt: American University in Cairo Press. pp. 106–107. ISBN 978-977-416-254-1.
  18. ^ a b c d e f g h Estes, R. (1991). "Leopard Panthera pardus". The Behavior Guide to African Mammals, Including Hoofed Mammals, Carnivores, Primates. Los Angeles: The University of California Press. pp. 366–369. ISBN 978-0-520-08085-0.
  19. ^ a b c d e f Stein, A. B. & Hayssen, V. (2010). "Panthera pardus (Carnivora: Felidae)". Mammalian Species. 45 (900): 30–48. doi:10.1644/900.1. S2CID 44839740.
  20. ^ Heptner, V. G. & Sludskii, A. A. (1992) [1972]. "Bars (leopard)". Mlekopitajuščie Sovetskogo Soiuza. Moskva: Vysšaia Škola [Mammals of the Soviet Union, Volume II, Part 2]. Washington DC: Smithsonian Institution and the National Science Foundation. pp. 203–273. ISBN 978-90-04-08876-4.
  21. ^ Robinson, R. (1970). "Inheritance of the black form of the leopard Panthera pardus". Genetica. 41 (1): 190–197. doi:10.1007/BF00958904. PMID 5480762. S2CID 5446868.
  22. ^ Eizirik, E.; Yuhki, N.; Johnson, W. E.; Menotti-Raymond, M.; Hannah, S. S.; O'Brien, S. J. (2003). "Molecular genetics and evolution of melanism in the cat family". Current Biology. 13 (5): 448–453. doi:10.1016/S0960-9822(03)00128-3. PMID 12620197. S2CID 19021807.
  23. ^ Kawanishi, K.; Sunquist, M. E.; Eizirik, E.; Lynam, A. J.; Ngoprasert, D.; Wan Shahruddin, W. N.; Rayan, D. M.; Sharma, D. S. K. & Steinmetz, R. (2010). "Near fixation of melanism in leopards of the Malay Peninsula". Journal of Zoology. 282 (3): 201–206. doi:10.1111/j.1469-7998.2010.00731.x.
  24. ^ da Silva L. G., K.; Kawanishi, K.; Henschel P.; Kittle, A.; Sanei, A.; Reebin, A.; Miquelle, D.; Stein, A. B.; Watson, A.; Kekule, L. B.; Machado, R. B. & Eizirik, E. (2017). "Mapping black panthers: Macroecological modeling of melanism in leopards (Panthera pardus)". PLOS ONE. 12 (4): e0170378. Bibcode:2017PLoSO..1270378D. doi:10.1371/journal.pone.0170378. PMC 5381760. PMID 28379961.
  25. ^ Divyabhanusinh (1993). "On mutant leopards Panthera pardus from India". Journal of the Bombay Natural History Society. 90 (1): 88−89.
  26. ^ Pirie, T. J.; Thomas, R. L. & Fellowes, M. D. E. (2016). "Erythristic leopards Panthera pardus in South Africa". Bothalia. 46 (1): 1–5. doi:10.4102/abc.v46i1.2034.
  27. ^ Hunter, L.; Henschel, P. & Ray, J. C. (2013). "Panthera pardus Leopard". In Kingdon, J. & Hoffmann, M. (eds.). Mammals of Africa. Vol. Volume 5: Carnivores, Pangolins, Equids and Rhinoceroses. London: Bloomsbury Publishing. pp. 159–168. ISBN 978-1-4081-8996-2.
  28. ^ a b c Nowak, R. M. (1999). "Panthera pardus (Leopard)". Walker's Mammals of the World (Sixth ed.). Baltimore, US: Johns Hopkins University Press. pp. 828–831. ISBN 978-0-8018-5789-8.
  29. ^ Burnie, D. & Wilson, D. E., eds. (2001). Animal: The Definitive Visual Guide to the World's Wildlife. DK Adult. ISBN 978-0-7894-7764-4.
  30. ^ "Is this the longest leopard in India?". The Times of India. 2016.
  31. ^ "Leopard shot in Bilaspur turns out to be a record breaker". The Tribune Trust. 2016.
  32. ^ Prater, S. H. (1921). "Record Panther Skull (P. p. pardus)". The Journal of the Bombay Natural History Society. XXVII (Part IV): 933–935.
  33. ^ Linnaeus, C. (1758). "Felis pardus". Caroli Linnæi Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. Tomus I (decima, reformata ed.). Holmiae: Laurentius Salvius. p. 41−42. (in Latin)
  34. ^ Oken, L. (1816). "1. Art, Panthera". Lehrbuch der Zoologie. 2. Abtheilung. Jena: August Schmid & Comp. p. 1052.
  35. ^ Ellerman, J. R.; Morrison-Scott, T. C. S. (1966). Checklist of Palaearctic and Indian mammals 1758 to 1946 (Second ed.). London: British Museum of Natural History. pp. 315–317.
  36. ^ Allen, J. A. (1902). "Mammal names proposed by Oken in his 'Lehrbuch der Zoologie'" (PDF). Bulletin of the American Museum of Natural History. 16 (27): 373−379.
  37. ^ Pocock, R. I. (1917). "The Classification of existing Felidae". The Annals and Magazine of Natural History. Series 8. XX: 329–350. doi:10.1080/00222931709487018.
  38. ^ Pocock, R. I. (1939). "Panthera pardus". The Fauna of British India, including Ceylon and Burma. Mammalia: Volume 1. London: Taylor and Francis. pp. 222–239.
  39. ^ Miththapala, S.; Seidensticker, J. & O'Brien, S. J. (1996). "Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation" (PDF). Conservation Biology. 10 (4): 1115–1132. doi:10.1046/j.1523-1739.1996.10041115.x.
  40. ^ a b c Uphyrkina, O.; Johnson, E. W.; Quigley, H.; Miquelle, D.; Marker, L.; Bush, M. & O'Brien, S. J. (2001). "Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus" (PDF). Molecular Ecology. 10 (11): 2617–2633. doi:10.1046/j.0962-1083.2001.01350.x. PMID 11883877. S2CID 304770. Archived (PDF) from the original on 2011-09-10.
  41. ^ a b Kitchener, A. C.; Breitenmoser-Würsten, C.; Eizirik, E.; Gentry, A.; Werdelin, L.; Wilting, A.; Yamaguchi, N.; Abramov, A. V.; Christiansen, P.; Driscoll, C.; Duckworth, J. W.; Johnson, W.; Luo, S.-J.; Meijaard, E.; O’Donoghue, P.; Sanderson, J.; Seymour, K.; Bruford, M.; Groves, C.; Hoffmann, M.; Nowell, K.; Timmons, Z. & Tobe, S. (2017). "A revised taxonomy of the Felidae: The final report of the Cat Classification Task Force of the IUCN Cat Specialist Group" (PDF). Cat News (Special Issue 11): 73–75.
  42. ^ Meyer, F. A. A. (1794). "Über de la Metheries schwarzen Panther". Zoologische Annalen. Erster Band. Weimar: Im Verlage des Industrie-Comptoirs. pp. 394–396.
  43. ^ Laguardia, A.; Kamler, J. F.; Li, S.; Zhang, C.; Zhou, Z. & Shi, K. (2017). "The current distribution and status of leopards Panthera pardus in China". Oryx. 51 (1): 153−159. doi:10.1017/S0030605315000988.
  44. ^ Cuvier, G. (1809). "Recherches sur les espėces vivantes de grands chats, pour servir de preuves et d'éclaircissement au chapitre sur les carnassiers fossils". Annales du Muséum National d'Histoire Naturelle. Tome XIV: 136–164.
  45. ^ Hemprich, W.; Ehrenberg, C. G. (1830). "Felis, pardus?, nimr". In Dr. C. G. Ehrenberg (ed.). Symbolae Physicae, seu Icones et Descriptiones Mammalium quae ex Itinere per Africam Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg. Decas Secunda. Zoologica I. Mammalia II. Berolini: Officina Academica. pp. Plate 17.
  46. ^ Spalton, J. A. & Al Hikmani, H. M. (2006). "The Leopard in the Arabian Peninsula – Distribution and Subspecies Status" (PDF). Cat News (Special Issue 1): 4–8. Archived (PDF) from the original on 2015-06-19.
  47. ^ Valenciennes, A. (1856). "Sur une nouvelles espèce de Panthère tué par M. Tchihatcheff à Ninfi, village situé à huit lieues est de Smyrne". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. 42: 1035–1039.
  48. ^ Khorozyan, I. G.; Gennady, F.; Baryshnikov, G. F. & Abramov, A. V. (2006). "Taxonomic status of the leopard, Panthera pardus (Carnivora, Felidae) in the Caucasus and adjacent areas". Russian Journal of Theriology. 5 (1): 41–52. doi:10.15298/rusjtheriol.05.1.06.
  49. ^ Schlegel, H. (1857). "Felis orientalis". Handleiding Tot de Beoefening der Dierkunde, Ie Deel. Breda: Boekdrukkerij van Nys. p. 23.
  50. ^ Gray, J. E. (1862). "Description of some new species of Mammalia". Proceedings of the Royal Zoological Society of London. 30: 261−263, plate XXXIII. doi:10.1111/j.1469-7998.1862.tb06524.x.
  51. ^ Pocock, R. I. (1930). "The Panthers and Ounces of Asia". Journal of the Bombay Natural History Society. 34 (2): 307–336.
  52. ^ Deraniyagala, P. E. P. (1956). "The Ceylon leopard, a distinct subspecies". Spolia Zeylanica. 28: 115–116.
  53. ^ Anco, C.; Kolokotronis, S. O.; Henschel, P.; Cunningham, S. W.; Amato, G. & Hekkala, E. (2017). "Historical mitochondrial diversity in African leopards (Panthera pardus) revealed by archival museum specimens". Mitochondrial DNA Part A. 29 (3): 455–473. doi:10.1080/24701394.2017.1307973. PMID 28423965. S2CID 4348541.
  54. ^ a b Johnson, W. E.; Eizirik, E.; Pecon-Slattery, J.; Murphy, W. J.; Antunes, A.; Teeling, E. & O'Brien, S. J. (2006). "The late Miocene radiation of modern Felidae: a genetic assessment". Science. 311 (5757): 73–77. Bibcode:2006Sci...311...73J. doi:10.1126/science.1122277. PMID 16400146. S2CID 41672825.
  55. ^ a b Werdelin, L.; Yamaguchi, N.; Johnson, W. E. & O'Brien, S. J. (2010). "Phylogeny and evolution of cats (Felidae)". In Macdonald, D. W. & Loveridge, A. J. (eds.). Biology and Conservation of Wild Felids. Oxford, UK: Oxford University Press. pp. 59–82. ISBN 978-0-19-923445-5.
  56. ^ a b Davis, B. W.; Li, G. & Murphy, W. J. (2010). "Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae)" (PDF). Molecular Phylogenetics and Evolution. 56 (1): 64–76. doi:10.1016/j.ympev.2010.01.036. PMID 20138224. Archived from the original (PDF) on 2016-03-05.
  57. ^ a b Mazák, J. H.; Christiansen, P.; Kitchener, A. C. & Goswami, A. (2011). "Oldest known pantherine skull and evolution of the tiger". PLOS ONE. 6 (10): e25483. Bibcode:2011PLoSO...625483M. doi:10.1371/journal.pone.0025483. PMC 3189913. PMID 22016768.
  58. ^ Bininda-Emonds, O. R. P.; Decker-Flum, D. M. & Gittleman, J. L. (2001). "The utility of chemical signals as phylogenetic characters: an example from the Felidae". Biological Journal of the Linnean Society. 72 (1): 1–15. doi:10.1111/j.1095-8312.2001.tb01297.x.
  59. ^ Tseng, Z. J.; Wang, X.; Slater, G. J.; Takeuchi, G. T.; Li, Q.; Liu, J. & Xie, G. (2014). "Himalayan fossils of the oldest known pantherine establish ancient origin of big cats". Proceedings of the Royal Society B: Biological Sciences. 281 (1774): 20132686. doi:10.1098/rspb.2013.2686. PMC 3843846. PMID 24225466.
  60. ^ Li, G.; Davis, B. W.; Eizirik, E. & Murphy, W. J. (2016). "Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae)". Genome Research. 26 (1): 1–11. doi:10.1101/gr.186668.114. PMC 4691742. PMID 26518481.
  61. ^ Wilting, A.; Patel, R.; Pfestorf, H.; Kern, C.; Sultan, K.; Ario, A.; Peñaloza, F.; Kramer‐Schadt, S.; Radchuk, V.; Foerster, D.W. & Fickel, J. (2016). "Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas". Journal of Zoology. 299 (4): 239–250. doi:10.1111/jzo.12348.
  62. ^ Volmer, R.; Hölzchen, E.; Wurster, A.; Ferreras, M.R. & Hertler, C. (2017). "Did Panthera pardus (Linnaeus, 1758) become extinct in Sumatra because of competition for prey? Modeling interspecific competition within the Late Pleistocene carnivore guild of the Padang Highlands, Sumatra". Palaeogeography, Palaeoclimatology, Palaeoecology. 487: 175–186. Bibcode:2017PPP...487..175V. doi:10.1016/j.palaeo.2017.08.032.
  63. ^ Schmid, E. (1940). "Variationstatistische Untersuchungen am Gebiss pleistozäner und rezenter Leoparden und anderer Feliden". Zeitschrift für Säugetierkunde. 15: 1–179.
  64. ^ Marciszak, A. & Stefaniak, K. (2010). "Two forms of cave lion: Middle Pleistocene Panthera spelaea fossilis Reichenau, 1906 and Upper Pleistocene Panthera spelaea spelaea Goldfuss, 1810 from the Bísnik Cave, Poland". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 258 (3): 339–351. doi:10.1127/0077-7749/2010/0117.
  65. ^ Diedrich, C. G. (2013). "Late Pleistocene leopards across Europe – northernmost European German population, highest elevated records in the Swiss Alps, complete skeletons in the Bosnia Herzegowina Dinarids and comparison to the Ice Age cave art". Quaternary Science Reviews. 76: 167–193. Bibcode:2013QSRv...76..167D. doi:10.1016/j.quascirev.2013.05.009.
  66. ^ Izawa, M. & Nakanishi, N. (2015). "Felidae". In Ohdachi, S. D.; Ishibashi, Y.; Iwasa, M. A. & Saitoh, T. (eds.). The Wild Mammals of Japan (Second ed.). Kyoto: Shoukadoh Book Sellers and the Mammalogical Society of Japan. pp. 226−231. ISBN 978-4-87974-691-7.
  67. ^ Chi T.-C.; Gan Y.; Yang T.-R. & Chang, C.-H. (2021). "First report of leopard fossils from a limestone cave in Kenting area, southern Taiwan". PeerJ. 9: e12020. doi:10.7717/peerj.12020. PMC 8388558. PMID 34513335.
  68. ^ Kawata, K. (2001). "Zoological gardens of Japan". In Kisling, V.N. (ed.). Zoo and Aquarium History : Ancient Animal Collections to Zoological Gardens. Boca Raton, Florida: CRC Press. pp. 295–329. ISBN 978-0-8493-2100-9.
  69. ^ Pirie, T. J.; Thomas, R. L. & Fellowes, M. D. E. (2017). "Increasing game prices may alter farmers' behaviours towards leopards (Panthera pardus) and other carnivores in South Africa". PeerJ. 5: e3369. doi:10.7717/peerj.3369. PMC 5452990. PMID 28584709.
  70. ^ Spalton, J. A. & Al Hikmani, H. M. (2006). "The Leopard in the Arabian Peninsula – Distribution and Subspecies Status" (PDF). Cat News (Special Issue 1): 4–8. Archived (PDF) from the original on 2011-05-23.
  71. ^ Judas, J.; Paillat, P.; Khoja, A. & Boug, A. (2006). "Status of the Arabian leopard in Saudi Arabia" (PDF). Cat News (Special Issue 1): 11–19. Archived (PDF) from the original on 2015-09-19.
  72. ^ Al Jumaily, M.; Mallon, D. P.; Nasher, A. K. & Thowabeh, N. (2006). "Status Report on Arabian Leopard in Yemen". Cat News (Special Issue 1): 20–25.
  73. ^ Soultan, A.; Attum, O.; Hamada, A.; Hatab, E. B.; Ahmed, S. E.; Eisa, A.; Al Sharif, I.; Nagy, A. & Shohdi, W. (2017). "Recent observation for leopard Panthera pardus in Egypt". Mammalia. 81 (1): 115–117. doi:10.1515/mammalia-2015-0089. S2CID 90676105.
  74. ^ Gavashelishvili, A. & Lukarevskiy, V. (2008). "Modelling the habitat requirements of leopard Panthera pardus in west and central Asia". Journal of Applied Ecology. 45 (2): 579–588. doi:10.1111/j.1365-2664.2007.01432.x.
  75. ^ Jhala, Y.V.; Qureshi, Q. & Yadav, S.P. (2020). Status of leopards in India, 2018. Technical Report TR/2020/16 (Report). New Delhi and Dehradun: National Tiger Conservation Authority, Government of India and Wildlife Institute of India.
  76. ^ Arthreya, V. (2012). "Living with Leopards Outside Protected Areas in India". Conservation India.
  77. ^ Thapa, K.; Pradhan, N. M. B.; Berker, J.; Dhakal, M.; Bhandari, A. R.; Gurung, G. S.; Rai, D. P.; Thapa, G. J.; Shrestha, S. & Singh, G. R. (2013). "High elevation record of a leopard cat in the Kangchenjunga Conservation Area, Nepal". Cat News (58): 26–27.
  78. ^ Kittle, A. M.; Watson, A. C.; Chanaka Kumara, P. H. & Nimalka Sanjeewani, H. K. (2014). "Status and distribution of the leopard in the central hills of Sri Lanka". Cat News (56): 28−31.
  79. ^ Kittle, A. M.; Watson, A. C.; Kumara, P. H. S. C.; Sandanayake, S. D. K. C.; Sanjeewani, H. K. N. & Fernando, T. S. P. (2014). "Notes on the diet and habitat selection of the Sri Lankan Leopard Panthera pardus kotiya (Mammalia: Felidae) in the central highlands of Sri Lanka". Journal of Threatened Taxa. 6 (9): 6214–6221. doi:10.11609/JoTT.o3731.6214-21.
  80. ^ Saw Sha Bwe Moo; Froese, G.Z.L. & Gray, T.N.E. (2017). "First structured camera-trap surveys in Karen State, Myanmar, reveal high diversity of globally threatened mammals". Oryx. 52 (3): 537−543. doi:10.1017/S0030605316001113.
  81. ^ Rostro-García, S.; Kamler, J. F.; Ash, E.; Clements, G. R.; Gibson, L.; Lynam, A. J.; McEwin, R.; Naing, H. & Paglia, S. (2016). "Endangered leopards: Range collapse of the Indochinese leopard (Panthera pardus delacouri) in Southeast Asia". Biological Conservation. 201: 293–300. doi:10.1016/j.biocon.2016.07.001. hdl:10722/232870.
  82. ^ Johnson, A.; Vongkhamheng, C.; Hedemark, M. & Saithongdam, T. (2006). "Effects of human–carnivore conflict on tiger (Panthera tigris) and prey populations in Lao PDR" (PDF). Animal Conservation. 9 (4): 421–430. doi:10.1111/j.1469-1795.2006.00049.x. S2CID 73637721. Archived (PDF) from the original on 2017-08-10.
  83. ^ Robichaud, W.; Insua-Cao; Sisomphane, P. C. & Chounnavanh, S. (2010). "Appendix 4". A scoping mission to Nam Kan National Protected Area, Lao PDR. Fauna & Flora International. pp. 33−42.
  84. ^ Gray, T. N. & Phan, C. (2011). "Habitat preferences and activity patterns of the larger mammal community in Phnom Prich Wildlife Sanctuary, Cambodia". The Raffles Bulletin of Zoology. 59 (2): 311−318.
  85. ^ Gray, T. N. E. (2013). "Activity patterns and home ranges of Indochinese leopard Panthera pardus delacouri in the Eastern Plains Landscape, Cambodia" (PDF). Natural History Bulletin of the Siam Society. 59: 39−47. Archived (PDF) from the original on 2016-02-22.
  86. ^ Li, S.; Wang, D.; Lu, Z. & Mc Shea, W. J. (2010). "Cats living with pandas: The status of wild felids within giant panda range, China". Cat News. 52: 20–23.
  87. ^ Wibisono, H. T.; Wahyudi, H. A.; Wilianto, E.; Pinondang, I. M. R.; Primajati, M.; Liswanto, D. & Linkie, M. (2018). "Identifying priority conservation landscapes and actions for the Critically Endangered Javan leopard in Indonesia: Conserving the last large carnivore in Java Island". PLOS ONE. 13 (6): e0198369. Bibcode:2018PLoSO..1398369W. doi:10.1371/journal.pone.0198369. PMC 6021038. PMID 29949588.
  88. ^ a b c d e Sunquist, M. E. & Sunquist, F. (2002). "Leopard Panthera pardus". Wild Cats of the World. Chicago: University of Chicago Press. pp. 318–342. ISBN 978-0-226-77999-7.
  89. ^ Leyhausen, P. (1979). Cat behavior: the predatory and social behavior of domestic and wild cats. Berlin: Garland Publishing, Incorporated. p. 281. ISBN 9780824070175.
  90. ^ Ortolani, A. (1999). "Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method". Biological Journal of the Linnean Society. 67 (4): 433–476. doi:10.1111/j.1095-8312.1999.tb01942.x.
  91. ^ Caro, T. (2005). "The adaptive significance of coloration in mammals". BioScience. 55 (2): 125–136. doi:10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2.
  92. ^ a b Hunter, L.; Balme, G.; Walker, C.; Pretorius, K. & Rosenberg, K. (2003). "The landscape ecology of leopards (Panthera pardus) in northern KwaZulu-Natal, South Africa: a preliminary project report" (PDF). Ecological Journal. 5: 24–30. Archived from the original (PDF) on March 4, 2009. open access
  93. ^ Spalton, J.A.; Al Hikmani, H. M.; Willis, D. & Said, A. S. B. (2006). "Critically endangered Arabian leopards Panthera pardus nimr persist in the Jabal Samhan Nature Reserve, Oman". Oryx. 40 (3): 287–294. doi:10.1017/S0030605306000743.
  94. ^ Jenny, D. & Zuberbuhler, K. (2005). "Hunting behaviour in west African forest leopards". African Journal of Ecology. 43 (3): 197–200. doi:10.1111/j.1365-2028.2005.00565.x.
  95. ^ a b c d Bailey, T. N. (1993). The African leopard: a study of the ecology and behaviour of a solitary felid. New York: Columbia University Press. ISBN 978-1-932846-11-9.
  96. ^ a b c Hunter, L.; Henschel, P. & Ray, J. C. (2013). "Panthera pardus Leopard". In Kingdon, J.; Happold, D.; Butynski, T.; Hoffmann, M.; Happold, M. & Kalina, J. (eds.). Mammals of Africa. London: Bloomsbury Publishing. pp. 159–168. ISBN 978-1-4081-8996-2.
  97. ^ Pirie, T. J.; Thomas, R. L.; Reilly, B. K. & Fellowes, M. D. E. (2014). "Social interactions between a male leopard (Panthera pardus) and two generations of his offspring". African Journal of Ecology. 52 (4): 574–576. doi:10.1111/aje.12154.
  98. ^ Jenny, D. (1996). "Spatial organization of leopards Panthera pardus in Tai National Park, Ivory Coast: Is rainforest habitat a "tropical haven"?". Journal of Zoology. 240 (3): 427–440. doi:10.1111/j.1469-7998.1996.tb05296.x.
  99. ^ Marker, L. L. & Dickman, A. J. (2005). "Factors affecting leopard (Panthera pardus) spatial ecology, with particular reference to Namibian farmlands" (PDF). South African Journal of Wildlife Research. 35 (2): 105–115. open access
  100. ^ Bertram, B. C. R. (1982). "Leopard ecology as studied by radio tracking". Symposia of the Zoological Society of London. 49: 341–352.
  101. ^ Mizutani, F. & Jewell, P. A. (1998). "Home-range and movements of leopards (Panthera pardus) on a livestock ranch in Kenya". Journal of Zoology. 244 (2): 269–286. doi:10.1017/S0952836998002118.
  102. ^ Stander, P. E.; Haden, P. J.; Kaqece, II. & Ghau, II. (1997). "The ecology of asociality in Namibian leopards". Journal of Zoology. 242 (2): 343–364. doi:10.1111/j.1469-7998.1997.tb05806.x.
  103. ^ Odden, M. & Wegge, P. (2005). "Spacing and activity patterns of leopards Panthera pardus in the Royal Bardia National Park, Nepal". Wildlife Biology. 11 (2): 145–152. doi:10.2981/0909-6396(2005)11[145:SAAPOL]2.0.CO;2. S2CID 86140708.
  104. ^ Hayward, M.W.; Henschel, P.; O'Brien, J.; Hofmeyr, M.; Balme, G. & Kerley, G. I. H. (2006). "Prey preferences of the leopard (Panthera pardus)" (PDF). Journal of Zoology. 270 (4): 298–313. doi:10.1111/j.1469-7998.2006.00139.x. Archived (PDF) from the original on 2012-11-05.
  105. ^ Johnson, K. G.; Wei, W.; Reid, D. G.; Jinchu, H. (1993). "Food habits of Asiatic leopards (Panthera pardus fusca) in Wolong Reserve, Sichuan, China". Journal of Mammalogy. 74 (3): 646–650. doi:10.2307/1382285. JSTOR 1382285.
  106. ^ Mills, M. G. L. & Hes, L. (1997). The Complete Book of Southern African Mammals. Cape Town, South Africa: Struik Publishers. pp. 178–180. ISBN 978-0-947430-55-9.
  107. ^ a b Hamilton, P. H. (1976). The movements of leopards in Tsavo National Park, Kenya, as determined by radio-tracking (M.Sc. thesis). Nairobi: University of Nairobi.
  108. ^ a b Kruuk, H. & Turner, M. (1967). "Comparative notes on predation by lion, leopard, cheetah and wild dog in the Serengeti area, East Africa". Mammalia. 31 (1): 1–27. doi:10.1515/mamm.1967.31.1.1. S2CID 84619500.
  109. ^ a b Schaller, G. (1972). Serengeti: a kingdom of predators. New York: Knopf. ISBN 978-0-394-47242-3.
  110. ^ Bothma, J. du P. (2005). "Water-use by southern Kalahari leopards" (PDF). South African Journal of Wildlife Research. 35: 131–137. open access
  111. ^ a b Palomares, F. & Caro, T. M. (1999). "Interspecific killing among mammalian carnivores" (PDF). The American Naturalist. 153 (5): 492–508. doi:10.1086/303189. hdl:10261/51387. PMID 29578790. S2CID 4343007. Archived from the original (PDF) on 2019-09-29.
  112. ^ Kurt, F. & Jayasuriya, A. (1968). "Notes on a dead bear". Loris (11): 182–183.
  113. ^ Baskaran, N.; Sivaganesan, N. & Krishnamoorthy, J. (1997). "Food habits of sloth bear in Mudumalai Wildlife Sanctuary, Tamil Nadu, southern India". Journal of the Bombay Natural History Society. 94: 1–9.
  114. ^ Sunquist, Mel; Sunquist, Fiona (2017-05-15). Wild Cats of the World. University of Chicago Press. p. 234. ISBN 978-0-226-51823-7.
  115. ^ Stanford, Craig Britton; Bunn, Henry T. (2001). Meat-eating & Human Evolution. Oxford University Press. p. 106. ISBN 978-0-19-513139-0.
  116. ^ a b Seidensticker, J. (1976). "On the ecological separation between tigers and leopards" (PDF). Biotropica. 8 (4): 225–234. doi:10.2307/2989714. JSTOR 2989714.
  117. ^ Johnsingh, A. J. T. (1992). "Prey selection in three large sympatric carnivores in Bandipur". Mammalia. 56 (4): 517–526. doi:10.1515/mamm.1992.56.4.517. S2CID 84997827.
  118. ^ Owens, D. & Owens, M. (1980). "Hyenas of the Kalahari". Natural History. 89 (2): 50.
  119. ^ Owens, M. & Owens, D. (1984). Cry of the Kalahari. Boston: Houghton Mifflin. ISBN 978-0-395-32214-7.
  120. ^ Thinley, P.; Rajaratnam, R.; Lassoie, J. P.; Morreale, S. J.; Curtis, P. D.; Vernes, K.; Leki Leki; Phuntsho, S.; Dorji, T. & Dorji, P. (2018). "The ecological benefit of tigers (Panthera tigris) to farmers in reducing crop and livestock losses in the eastern Himalayas: Implications for conservation of large apex predators". Biological Conservation. 219: 119–125. doi:10.1016/j.biocon.2018.08.007.
  121. ^ Karanth, U. K. & Sunquist, M. E. (2000). "Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India". Journal of Zoology. 250 (2): 255–265. doi:10.1111/j.1469-7998.2000.tb01076.x.
  122. ^ Bhatnagar, C.; Mahur, M. (2010). "Observations on feeding behavior of a wild population of marsh crocodile in Baghdarrah Lake, Udaipur, Rajasthan". Reptile Rap. 10: 16–18.
  123. ^ Gower, D.; Garrett, K. & Stafford, P. (2012). Snakes. Firefly Books. p. 60. ISBN 978-1-55407-802-8.
  124. ^ Kiffner, C.; Ndibalema, V. & Kioko, J. (2012). "Leopard (Panthera pardus) aggregation and interactions with Olive baboons (Papio anubis) in Serengeti National Park, Tanzania". African Journal of Ecology. 51 (1): 168–171. doi:10.1111/aje.12002.
  125. ^ a b c Nowell, Kristin; Jackson, Peter; Group, IUCN/SSC Cat Specialist (1996). Wild Cats: Status Survey and Conservation Action Plan. IUCN. p. 26. ISBN 978-2-8317-0045-8.
  126. ^ Sadleir, R. (1966). "Notes on the Reproduction of the larger Felidae". International Zoo Yearbook. 6: 184–187. doi:10.1111/j.1748-1090.1966.tb01746.x.
  127. ^ Pacifici, M.; Santini, L.; Di Marco, M.; Baisero, D.; Francucci, L.; Grottolo Marasini, G.; Visconti, P. & Rondinini, C. (2013). "Generation length for mammals". Nature Conservation (5): 87–94.
  128. ^ Hemmer, H. (1976). "Gestation period and postnatal development in felids". In Eaton, R.L. (ed.). The world's cats. Vol. 3. Carnivore Research Institute, Univ. Washington, Seattle. pp. 143–165.
  129. ^ Eaton, R.L. (1977). "Reproductive biology of the leopard". Zoologischer Garten. 47 (5): 329–351.
  130. ^ a b c Kingdon, Jonathan; Happold, David; Butynski, Thomas; Hoffmann, Michael; Happold, Meredith; Kalina, Jan (2013-05-23). Mammals of Africa. A&C Black. p. 166. ISBN 978-1-4081-8996-2.
  131. ^ "Leopard (Panthera pardus); Physical characteristics and distribution". Comparative Mammalian Brain Collections.
  132. ^ Salisbury, S. (2014). "Roxanne, oldest spotted leopard in captivity, dies at Acreage preserve". The Palm Beach Post. Archived from the original on 2014-08-11.
  133. ^ Jacobson, A. P.; Gerngross, P.; Lemeris, J. R. Jr.; Schoonover, R. F.; Anco, C.; Breitenmoser-Würsten, C.; Durant, S. M.; Farhadinia, M. S.; Henschel, P.; Kamler, J. F.; Laguardia, A.; Rostro-García, S.; Stein, A. B. & Dollar, L. (2016). "Leopard (Panthera pardus) status, distribution, and the research efforts across its range". PeerJ. 4: e1974. doi:10.7717/peerj.1974. PMC 4861552. PMID 27168983.
  134. ^ Williams, S. T.; Williams, K. S.; Lewis, B. P. & Hill, R. A. (2017). "Population dynamics and threats to an apex predator outside protected areas: implications for carnivore management". Royal Society Open Science. 4 (4): 161090. Bibcode:2017RSOS....461090W. doi:10.1098/rsos.161090. PMC 5414262. PMID 28484625.
  135. ^ Raza, R.H.; Chauhan, D.S.; Pasha, M.K.S. & Sinha, S. (2012). Illuminating the blind spot: A study on illegal trade in Leopard parts in India (2001–2010) (PDF) (Report). New Delhi: TRAFFIC India, WWF India. Archived (PDF) from the original on 2020-09-24.
  136. ^ Bergin, D. & Nijman, V. (2014). "Open, Unregulated Trade in Wildlife in Morocco's Markets". TRAFFIC Bulletin. 26 (1): 65–70.
  137. ^ Bergin, D. & Nijman, V. (2015). "Potential benefits of impending Moroccan wildlife trade laws, a case study in carnivore skins". Biodiversity and Conservation. 25 (1): 199–201. doi:10.1007/s10531-015-1042-1. S2CID 34533018.
  138. ^ Äbischer, T.; Ibrahim, T.; Hickisch, R.; Furrer, R. D.; Leuenberger, C. & Wegmann, D. (2020). "Apex predators decline after an influx of pastoralists in former Central African Republic hunting zones" (PDF). Biological Conservation. 241: 108326. doi:10.1016/j.biocon.2019.108326. S2CID 213766740. Archived (PDF) from the original on 2020-10-03.
  139. ^ Gomez, L. & Shepherd, C.R. (2021). "The illegal exploitation of the Javan Leopard (Panthera pardus melas) and Sunda Clouded Leopard (Neofelis diardi) in Indonesia". Nature Conservation. 43 (43): 25–39. doi:10.3897/natureconservation.43.59399. S2CID 233286106.
  140. ^ Murphey, R. (1951). "The Decline of North Africa Since the Roman Occupation: Climatic or Human?" (PDF). Annals of the Association of American Geographers. XLI (2): 116–132. doi:10.1080/00045605109352048. Archived (PDF) from the original on 2006-09-14.
  141. ^ a b c d e Morris, D. (2014). Leopard. Reaktion Books. pp. 23–24, 31–33, 62, 99, 102, 111. ISBN 9781780233185.
  142. ^ a b "Benin: an African kingdom" (PDF). London: British Museum. Archived (PDF) from the original on 2008-08-05. Retrieved 2016-03-29.
  143. ^ Kipling, R. (1902). "How the Leopard Got His Spots" (PDF). Just So Stories. Macmillan.
  144. ^ Haist, M. (1999). "The Lion, bloodline, and kingship". In Hassig, D. (ed.). The Mark of the Beast: The Medieval Bestiary in Art, Life, and Literature. London: Taylor & Francis. pp. 3–16. ISBN 978-0-8153-2952-7.
  145. ^ Pedersen, C. F. (1971). The International Flag Book in Color. Morrow.
  146. ^ Corbett, J. (1955). The Temple Tiger, and More Man-eaters of Kumaon. Oxford: Oxford University Press.
  147. ^ Anderson, K. (1954). "The Spotted Devil of Gummalapur". Nine Man-Eaters and one Rogue. London: George Allen & Unwin. pp. 36–51.
  148. ^ Owen, J. (2005). "Medieval Lion Skulls Reveal Secrets of Tower of London 'Zoo'". National Geographic Magazine. Retrieved 2007-09-05.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Leopard: Brief Summary

provided by wikipedia EN

The leopard (Panthera pardus) is one of the five extant species in the genus Panthera. It has a pale yellowish to dark golden fur with dark spots grouped in rosettes. Its body is slender and muscular reaching a length of 92–183 cm (36–72 in) with a 66–102 cm (26–40 in) long tail and a shoulder height of 60–70 cm (24–28 in). Males typically weigh 30.9–72 kg (68–159 lb), and females 20.5–43 kg (45–95 lb).

The leopard was first described in 1758, and several subspecies were proposed in the 19th and 20th centuries. Today, eight subspecies are recognised in its wide range in Africa and Asia. It probably evolved in Africa about 0.5 to 0.8 million years ago and radiated across Asia about 0.2 and 0.3 million years ago. Fossil leopard bones were excavated at 40 sites in Europe, where it had occurred at least since the Pleistocene, but survived until about 24,000 years ago.

It is adapted to a variety of habitats ranging from rainforest to steppe, including arid and montane areas. It is an opportunistic predator, hunting mostly ungulates and primates. It relies on its spotted pattern for camouflage as it stalks and ambushes its prey, which it sometimes drags up a tree. It is a solitary animal outside the mating season and when raising cubs. Females usually give birth to a litter of 2–4 cubs once in 15–24 months. Both male and female leopards typically reach sexual maturity at the age 2–2.5 years.

It is listed as Vulnerable on the IUCN Red List because leopard populations are threatened by habitat loss and fragmentation, and are declining in large parts of the global range. Leopards have had cultural roles in Ancient Greece, West Africa and modern Western culture. Leopard skins have been popular in fashion.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN