dcsimg

Description

provided by AmphibiaWeb articles
For metamorphic adults, the snout-to-vent length is 36-66 mm and total length ranges from 68-116 mm (Hayslett 2003; Semlitsch 1987). Female metamorphic adults are generally larger than male metamorphic adults, with females ranging from 39-72 mm in snout-vent length and males from 41-62 mm in snout-vent length (Raymond and Hardy 1990). Paedomorphic sexually mature adults range in size from about 30-50 mm in snout-to-vent length (Semlitch 1985). The body size of individuals varies across time; it appears that individuals tend to reach a maximum size and then decline with age (Verrell and Krenz 1998). This growth pattern is likely an indication of reproductive senility and asymptotic growth, in contrast to other salamander species that have continuous growth over the lifespan (Raymond and Hardy 1990). This species is facultatively paedomorphic and both morphs can be found within one population. Adults have disproportionately large and broad heads, small chunky bodies and relatively short tails (Rothermal and Luhring 2005). The body has 10-11 costal grooves (Powell et al. 1998). Four toes are present on each forefoot and five toes on each hindfoot, with hindfeet being disproportionately large (Conant and Collins 1998). Teeth are hooked in shape and are arranged in a single row along both the maxillary and the dentary (Tihen 1958). Paedomorphic adults retain external gills and have a vertically compressed tail. The tail is slightly vertically flattened in metamorphic adults (Conant and Collins 1998). Metamorphic adults have variable ground body color ranging from black to gray. Some individuals have small blue, white or gray flecks concentrated along the dorsum, sides and tail. The top of the tail often has a white edge, which can be a distinguishing feature if present. Paedomorphic individuals have a gray or brown ground color, often with light flecks that concentrate along the dorsum, tail and sides and distinct yellow ventral stripes. Newly metamorphic individuals will display remnant yellow ventral stripes for a time after metamorphosis. In preservative, the flecked pattern often fades and the coloration is gray to black (Conant and Collins 1998). Newly hatched larval body sizes can vary from 4.5-8.0 mm in snout-to-vent length. Larvae that did not metamorphose after the breeding season range in snout-to-vent length from about 25-48 mm. External gills are present. Larval coloration is similar to that of paedomorphic adults with a gray or brown ground color, light-colored flecks and yellow ventral stripes. Tail is dorsoventrally flattened with tail fins (Semlitch 1985).

References

  • Brodie, E. D., Jr. (1977). "Salamander antipredator postures." Copeia, 1977, 523-535.
  • Doyle, J.M. and Whiteman, H.H. (2008). ''Paedomorphosis in Ambystoma talpoideum: effects of initial body size variation and density.'' Oecologia, 156, 87-94.
  • DuRant, S. E. and Hopkins, W. A. (2008). ''Amphibian predation on larval mosquitoes.'' Canadian Journal of Zoology, 86, 1159-1164.
  • Gibbons, J.W. and Semlitsch, R.D. (1991). Guide to Reptiles and Amphibians of the Savannah River Site. University of Georgia Press, Athens GA, US.
  • Hammerson, G. (2004). Ambystoma talpoideum. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. www.iucnredlist.org. Downloaded on 23 May 2011.
  • Hayslett, M.S. (2003). Natural History of the Mole Salamander Ambystoma talpoideum in Virginia. Thesis, Longwood University, Virginia, US.
  • Holbrooke, J.E. (1836). North American Herpetology; or a Description of the Reptiles Inhabiting the United States. Volume II. J. Dobson, Philadelphia, US.
  • Jackson, M. E., and Semlitsch, R. D. (1993). ''Paedomorphosis in the salamander Ambystoma talpoideum: Effects of a fish predator.'' Ecology, 74(2), 342-350.
  • Moseley K.R., Castleberry, S.B. and Ford, W.M. (2004). ''Coarse woody debris and pine litter manipulation effects on movement and microhabitat use of Ambystoma talpoideum in a Pinus taeda stand.'' Forest Ecology and Management, 191, 387-396.

license
cc-by-3.0
author
Laura Brannelly
original
visit source
partner site
AmphibiaWeb articles

Distribution and Habitat

provided by AmphibiaWeb articles
This species is endemic to the southeastern and central United States, from South Carolina to northern Florida and east to eastern Texas and southeastern Oklahoma. The range extends north in the Mississippi valley to southern Illinois. There are a number of disjunct populations in Virginia, North and South Carolina, Georgia, Alabama, Tennessee and Kentucky (Conant and Collins 1998). Terrestrial morphs of this species are usually found near breeding ponds (ephemeral or persistent in wooded areas (Hammerson 2004; Mosely et al. 2004). The woodlands and forested habitats include upland conifer-hardwood forests, pine flatwoods and bottomland hardwood forests (Shoop 1960; Semlitsch 1981). They are often found in expansive floodplains in areas near gum and cypress ponds (Shoop 1960; Semlitsch 1981). They usually avoid clear cuts and open field (Mosely et al. 2004). The elimination of ground cover reduces availability of suitable temperature and moisture conditions which are required by salamanders (Moseley et al. 2004). Terrestrial adult habitats are often in close proximity with a wetland or an ephemeral pond. Paedomorphic adults inhabit permanent wetlands free of predatory fish (Semlitch 1985).
license
cc-by-3.0
author
Laura Brannelly
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
Conservation: In North Carolina this species is listed as a species of special concern and in Tennessee it is listed as a species in Need of Management. Special permits are required to conduct any activity involving this species in those areas. This species is affected by clear-cutting of forests surrounding breeding ponds and introduction of predatory fish into breeding ponds. Although mole salamanders are considered to have stable populations throughout most of their range (Rothermel and Luhring 2005), local populations have been extirpated as forest are converted to agricultural or urban use (Hammerson 2004).Habitat fragmentation is an issue and should be minimized wherever possible. Seasonal ponds should be protected from draining, filling, or fish introduction. Adjacent wooded areas should be protected to at least 200-250 m away from the ponds (Hammerson 2004).
license
cc-by-3.0
author
Laura Brannelly
original
visit source
partner site
AmphibiaWeb articles

Life History, Abundance, Activity, and Special Behaviors

provided by AmphibiaWeb articles
Activity:The terrestrial morphs are largely fossorial and occupy small mammal burrows or other underground refugia (Rothermel and Luhring 2005). These salamanders move above ground only during the night or when it is raining, so although it is fossorial, Ambystoma talpoideum is also considered to be nocturnal (Rothermel and Luhring 2005). Individuals inhabit burrows or tunnels under the leaf litter. They can burrow in loose soil but often rely on crevices or burrows made by roots or burrowing animals. These refuges provide protection from predators, desiccation and freezing (Rothermel and Luhring 2005). The salamanders are found at an average of 4.7 cm below the surface of the leaf litter and they do not inhabit burrows more than 9 cm below the surface. These salamanders have only been found in the A soil horizon; burrow systems tend to run parallel to the surface (Semlitsch 1980). In cases where burrows are limited, these salamanders are capable of exploiting other microhabitats. Mole salamanders can adapt to change and utilize different resources. In habitats where the organic soil layer has been disturbed, leaf litter can become important. In addition to providing an alternative microhabitat that salamanders can utilize, plant litter can facilitate the recovery of soil structure. Terrestrial morphs are usually never more than 200 m from either a permanent or semi-permanent body of water. This body of water is often the breeding site (Semlitsch 1980). Aquatic paedomorphic salamanders are more common in permanent wetlands and thrive in fishless water bodies while terrestrial adults are more common in ephemeral wetlands (Williams and MacGowan 2004). Home range: These salamanders inhabit a non-breeding home range and a breeding home range. The non-breeding home range for males averages to about 3.6 m2 and 5.3 m2 for females. These animals spend most of their time in an activity center, which ranges in area from 0.02-0.21 m2. Each salamander’s home range has 1-6 activity centers. The breeding home range is an associated wetland, either persistent or temporary (Semlitsch 1981). Breeding season:Breeding is aquatic and occurs primarily between December and March (Semlitsch 1980). The breeding season lasts anywhere from a few days to a few weeks (Verrell and Krenz 1998). Although the breeding season is generally longer than that of other species of Ambystoma, breeding biology of A. talpoideum is similar to that of other Ambystoma (Verrell and Krenz 1998). Large numbers of individuals gather in small ponds which results in high densities and frenzied sexual activity (Verrell and Krenz 1998). These salamanders are terrestrial during the non-breeding seasons and migrate to water bodies to breed (Verrell and Krenz 1998). Breeding migration:Breeding migration is heavily dependent on temperature and rainfall (Ryan and Semlitsch 1998) and most adults are philopatric. Terrestrial morphs tend to migrate to and emigrate from breeding grounds on rainy nights, moving through corridors of continuous hardwood vegetation rather than moving through open grasslands (Patterson 1978; Semlitsch 1980). Terrestrial adults will remain at the breeding site anywhere from 8 to 108 days (Hardy and Raymond 1980). Males tend to arrive at the breeding site before terrestrial females, so the operational sex ratio is likely male-biased (Verrell and Krenz 1998). Both males and females emigrate from the breeding site at the same time. Typical rates of movement through the home range for terrestrial salamander morphs average about 3.9 m/hr in an undisturbed habitat (Rothermel and Luhring 2005), while emigration rates from the breeding site average 13.7 m/hr (Semlitsch 1980). In contrast, paedomorphic morphs do not migrate (Ryan and Semlitsch 1998).Courtship behavior:Intermorph courtship does occur and is potentially common, according to some field data (Whiteman et al. 2006). Metamorphic male with paedomorphic female is the most common intermorph relationship. There is no reproductive isolation between morphs, although intramorph mating is more likely than intermorph mating (Whiteman and Semlitsch 2005). Most male-female encounters appear to be accidental. The initial steps of courtship include the male nudging the female with his snout and the male and female rubbing heads. Next, the male moves ahead of the female and produces lateral undulations of his tail, beginning in the pelvic region. As the male moves forward the female follows, nudging his undulating tail and cloacal region with her snout. These behaviors continue for a variable period of time and then the male arches his back and presses his cloaca to the substrate to deposit a spermatophore. He moves forward, she follows and picks up the spermatophore with her cloaca. A single encounter may result in multiple episodes of spermatophore deposition (Verrell and Krenz 1998). Mating system:Population densities can be high in some breeding sites. Breeding aggregations have been reported to be very large with as many as 8,000 individuals migrating to one Carolina bay in a single day. Because terrestrial males tend to migrate earlier to the breeding pond than terrestrial females, in the early breeding season there is a male biased sex ratio and competition for mates is likely intense. The mating system has been classified as scramble competition with potential for polygyny (Verrell and Krenz 1980). Timing of breeding:Paedomorphic individuals remain in the breeding site year round and tend to breed earlier in the season than metamorphs in the same population because they do not depend on ecological cues as heavily as metamorphic individuals. Paedomorphic individuals can begin breeding as early as September (Ryan and Semlitsch 1998). Metamorphic females tend to migrate to the breeding ground more than one week after paedomorphic females have laid eggs. Earlier oviposition tends to result in earlier larval hatching; Larvae of paedomorphic females hatch up to 6 weeks earlier than metamorphic females (Scott 1993). Reproductive cycle:These salamanders show high individual variation in their reproductive cycle. In multiyear studies individuals can breed annually, biennially or have a multiyear reproductive cycle. In one population 68% bred annually, 18% bred biennially and 14% bred in a multi-year cycle (Raymond and Hardy 1990). Age at sexual maturity:It takes one to two years for juveniles to sexually mature. At the end of a breeding season, newly metamorphic individuals are not sexually mature but can reach sexual maturity before the next breeding season. Larval individuals can overwinter and metamorphose the following spring or remain a paedomorphic individual. Individuals who become sexually mature paedomorphs have the opportunity to metamorphose in later seasons, sometimes even several years after sexual maturity (Doyle and Whiteman 2008; Semlitsch 1985; Ryan and Semlitsch 1998). Egg deposition and description:Eggs are either laid singly or in clusters on the bottom of the pond on small twigs or leaves. Egg masses are surrounded by a matrix of jelly which distinguishes them from anuran egg masses (Raymond and Hardy 1990). Females often require several days to complete oviposition (Shoop 1960). Females will deposit 10-1,000 eggs at each oviposition event and typical clutch size tends to vary greatly among populations and among individuals. On average females will lay 200-700 eggs per year, and eggs range from 1-3 mm in diameter. Egg clusters are often stained brown. Clutch size is positively correlated with female age. Paedomorphic females are typically smaller than metamorphic females and typically lay smaller clusters with smaller egg sizes (Raymond and Hardy 1990; Semlitsch 1985). Larval development:Eggs typically hatch within 20-60 days of deposition. The larval period ranges from 3-4 months but larvae can overwinter and metamorphose the following spring. Most larvae will metamorphose between 12 and 15 months after hatching, if the pond is permanent. Larval growth is related to egg size in that smaller eggs lead to smaller larvae at hatching (Ryan and Semlitsch 1998). Adult mortality:Most individuals have a life span in the wild of seven years, with some rare individuals living at least eight years. Nine years is the oldest verified A. talpoideum in nature. In captivity the oldest recorded individual was reported to live up to 25 years. Breeding season mortality has been reported to range from 10-30%. Terrestrial adult mortality varies from 16-37% yearly and 45% of adults die before leaving the breeding wetland area. The aquatic life stage has a higher mortality than the terrestrial life stage (Raymond and Hardy 1990).Predation and defense:These salamanders tend to breed in fishless ponds, and paedomorphic forms are found only in ponds without fish, which indicates that fish are potential predators or competitors. Larvae metamorphose more quickly when exposed to predatory fish such as bluegills (Lepomis macrochirus). Bluegills have been reported to feed on mole salamander eggs (Jackson and Semlitsch 1993; Semlitsch 1988). Metamorphic salamanders have parotoid glands (which secrete noxious chemicals) and when attacked will exhibit a head down posture to expose the glands (Brodie 1977). Interspecific associations:Mole salamanders can be found breeding in ponds with marbled salamanders (A. opacum), spotted salamanders (A. maculatum), tiger salamanders (A. tigrinum), dwarf salamanders (Eurycea quadridigitata), eastern newts (Notophthalmus viridescens), southern toads (Bufo terrestris), spring peepers (Pseudacris crucifer), southern chorus frogs (P. nigrita), little grass frogs (P. ocularis), bronze frogs (Rana clamitans), southern leopard frogs (R. sphenocephala), and eastern spadefoot toads (Scaphiopus holbrookii) (Semlitsch et al. 1996). Diet and foraging behavior:Adult A. talpoideum are carnivorous night feeders and eat primarily invertebrates, although their diet also includes amphibian eggs and larvae (Gibbons and Semlitsch 1991). Adults can consume a considerable number of mosquito larvae; one study found that adult A. talpoideum could consume an average of 439 mosquito larvae per day, with the largest individual in the study consuming 902 mosquito larvae in a single day (DuRant and Hopkins 2008). Paedomorphic adults have been reported to consume aquatic insects, zooplankton and tadpoles (Gibbons and Semlitsch 1991). Larvae feed primarily on zooplankton when young and feed on larger prey as they grow. Larvae remain in the leaf litter at the bottom of the pond during the day and feed at night (Taylor et al 1988). Phenotypic variation:Mole salamander species have two different adult morphs: paedomorphic (aquatic) and metamorphic (terrestrial). Paedomorphic forms only occur in permanent water bodies. Rates of paedomorphic and metamorphic adults vary depending on the population and breeding habitat. Although the environmental and genetic reasons for varying proportions of paedomorphic and metamorphic individuals are largely unknown, it is typically true that paedomorphic adults have a smaller snout to vent length than metamorphic adults of the same age and paedomorphic adults tend to have a larger body mass than metamorphic adults of the same snout to vent length (Doyle and Whiteman 2008; Ryan and Plague 2004; Ryan and Semlitsch 2003; Semlitsch 1987; Winne and Ryan 2001).
license
cc-by-3.0
author
Laura Brannelly
original
visit source
partner site
AmphibiaWeb articles

Life Expectancy

provided by Animal Diversity Web

The life cycle of a mole salamander has a great impact on the individual's longevity. Once a salamander becomes mature in an aquatic environment, 45% of adults will die before ever leaving the breeding pond. This high rate of mortality is due to pond drying and aquatic predators. When a salamander becomes terrestrial, however, chances of survival improve greatly. Mole salamanders in the wild can live up to 20 years.

Typical lifespan
Status: wild:
10 to 20 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

Mole salamanders are subject to predation from other salamanders as well as other aquatic predators. Larval salamander communities are highly structured by predation. Mole salamanders tend to breed later than other species of Ambystoma and are subject to more competition and predation as a result. Marbled salamanders (Ambystoma opacuum) breed earlier and their larvae feed on mole salamander eggs and larvae. Bluegill sunfish, if present, also feed heavily on mole salamander eggs. When a terrestrial adult mole salamander is attacked, is will stand in a posture with its head lowered in order to expose the well developed paratoid glands to the predator. These glands secrete a noxious chemical. They also lash their tails, head-butt, bite, writhe, flee, or feign death to deter predators.

Known Predators:

  • marbled salamanders (Ambystoma opacum)
  • bluegill sunfish (Lepomis macrochirus)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Mole salamanders are facultatively paedomorphic; they can either become terrestrial adults (metamorphic adults) or retain their aquatic larval form even as they become sexually mature (paedomorphic, branchiate, or neotenic adults). Paedomorphic adults can eventually undergo metamorphosis or they may remain in the aquatic form throughout life. Terrestrial adults live in areas surrounding breeding ponds while paedomorphic adults remain in permanent ponds. Environmental conditions present during larval development can determine which life form an individual salamander will become. Both mole salamander morphs have short, stout bodies with broad, disproportionally large heads. Body size of terrestrial and aquatic males varies across populations and time. In some years and ponds, aquatic males will be larger, on average, than terrestrial males. In other years, the opposite can be true. Body size also varies within the same year, because smaller terrestrial adults have been known to arrive at a pond before larger adults. Neotenic adults have distinctive yellow ventral stripes that makes identification of this species more accurate. They also have light and dark stripes on their their bellies, that is present even in the larval form. Terrestrial adults can have variable body color, ranging from gray to black sometimes with clusters of small bluish-white flecks that are concentrated on the tail and back. Another distinguishing feature of the mole salamander is that there is often a white edge running along the top of the tail. For a period of time after the metamorphosis to a terrestrial creature, these salamanders will still display the remnants of the yellow ventral stripes that are so prominent in the neotonic life cycle.

Range length: 8 to 12 cm.

Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry ; polymorphic

Sexual Dimorphism: male larger

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Mole salamanders use their sense of sight and smell the most to communicate with conspecifics and to perceive their environment. Tactile cues may also be important.

Communication Channels: visual ; tactile ; acoustic ; chemical

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

There are two mole salamander morphs, each occupying different habitats. Terrestrial mole salamanders are most abundant in expansive floodplain forests near ponds or similiar bodies of water. They can be found in areas surrounding gum and cypress ponds. Those salamanders living outside the Atlantic and Gulf coasts can be found in forested uplands. Terrestrial salamanders often live in burrows in moist soil and leaf litter. Seasonal and/or semipermanent ponds are associated with producing terrestrial adults. Neotenic, or aquatic, mole salamanders thrive in fishless, permanent ponds. Eggs are laid by both terrestrial and neotenic adults on twigs or other debris under the water.

Range elevation: 0 to 700 m.

Habitat Regions: temperate ; terrestrial ; freshwater

Terrestrial Biomes: forest

Aquatic Biomes: lakes and ponds; temporary pools

Wetlands: swamp

Other Habitat Features: riparian

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Ambystoma talpoideum is endemic to the southeastern and central United States. It is found along the southern Atlantic and Gulf Coastal plains, north along the Mississippi River to southern Illinois, and from central South Carolina to eastern Texas. There are isolated populations in Virginia, Tennessee, Kentucky, North Carolina, and northern South Carolina, Georgia, and Alabama. Mole salamanders are not present in southern Florida or southern Louisiana.

Biogeographic Regions: nearctic (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Mole salamanders are carnivorous. Recently hatched larvae feed on zooplankton and other small, aquatic organisms. As larvae develop, they add larger prey items as they are able to ingest them. Mole salamanders pick their prey based on size relative to their own body size, and tend to choose larger prey as they grow. Larvae have been known to eat mole salamander eggs as well as eggs of other Ambystoma salamanders. They also eat copepods, ostracods, water fleas, and midge larvae. Adult mole salamanders have been described as opportunistic feeders and eat a variety of items, including aquatic insects, tadpoles, earthworms, athropods, and an assortment of other invertebrates.

Animal Foods: amphibians; eggs; insects; terrestrial non-insect arthropods; terrestrial worms; zooplankton

Other Foods: microbes

Primary Diet: carnivore (Insectivore , Eats non-insect arthropods)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

The health of salamander populations is used as an indicator of ecosystem health because of their sensitivity to toxins and increased ultraviolet radiation. Declining mole salamander populations are used as an indicator of water quality. Juvenile mole salamanders serve as prey to larger terrestrial and aquatic predators. Mole salamanders also act as predators, consuming both aquatic and terrestrial invertebrates.

Commensal/Parasitic Species:

  • nematodes (Brachycoelium salatnandrae)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Healthy mole salamander populations are indicators of aquatic system health.

Larval mole salamanders successfully reduce mosquito larvae abundance. Mosquito consumption is directly related to salamander body size. In one study, researchers found that the largest salamanders (4.4 g) consumed 902 mosquitoes in one day.

Positive Impacts: research and education; controls pest population

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

There are no known negative effects of Ambystoma talpoideum on humans.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Mole salamander life cycles are characterized by facultative paedomorphosis. There are two different life cycles that these salamanders can follow. One life cycle occurs when aquatic larvae undergo metamorphosis and become terrestrial juveniles that will mature in terrain surrounding the breeding area. These individuals are referred to as terrestrial or metamorphic adults. The alternate life cycle is when aquatic larvae retain their aquatic morphology as they mature and remain in their natal ponds. These are referred to as branchiate, neotenic, or paedomorphic adults.

Factors that influence the metamorphosis of mole salamanders at different stages in their lives include sex, altitude, temperature, nutrition, and pond drying. Size and metabolic rates differ between the sexes, which can lead to differences in metamorphosis. As a general standard, metamorphosis can occur once a salamander has reached a minimum of 25mm snout-vent length. Males typically reach this size sooner after hatching and can undergo metamorphosis earlier. Regardless of sex, most salamanders will undergo metamorphosis between 12 and 15 months after hatching. Metamorphosis after 15 months is typically associated with high altitudes and cooler temperatures. After metamorphosis, terrestrial juveniles remain immature and require several months to mature. Nutritional resources also play into timing of metamorphosis. Salamanders are more likely to metamorphosize when food levels and growth rates are higher later in development. The availability of food during the larval period is also directly related to metamorphosis. Environmental influences play a huge role in life cycles. When salamanders are hatched in a permanent pond, they typically remain there for at least a year or could even remain permanently aquatic. Sexually immature salamanders can metamorphosize early if they are exposed to certain conditions, such as pond drying. If a salamander remains aquatic, they remain immature and go through a period known as overwintering, then they can either metamophosize or become a branchiate adult. Aquatic forms of mole salamanders tend to mature at age a younger age and can also breed earlier. It is still possible for branchiate adults to undergo metamorphosis even after reaching sexual maturity.

Larval growth is related to egg and hatchling size. The smaller the egg, the smaller the larva will be at hatching. Time to hatching also influences length of the larval period, survival to metamorphosis, and size at metamorphosis. Eggs can hatch anywhere between 20 to 60 days after being laid and larval transformation occurs 60 to 90 days after hatching.

Development - Life Cycle: neotenic/paedomorphic; metamorphosis

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

In North Carolina, mole salamanders are listed as a species of special concern and a permit is required to conduct any activity involving this species. A similar permit is also required in Tennessee, where the species is considered in need of management. Mole salamander populations have been affected by clear cutting of forests surrounding breeding ponds, draining or filling of breeding ponds, and the introduction of predatory fishes due to the deepening of breeding ponds. However, mole salamander populations are currently considered stable throughout most of their range.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

IUCN Red List of Threatened Species: least concern

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Mole salamanders exhibit complex courtship behavior and use visual, chemosensory, and tactile cues during courtship. Aquatic adults attract females through tail-waving. Aquatic individuals peak breeding occurs earlier than terrestrial individuals, in early November as compared to mid-January. This difference in breeding times can lead to partial reproductive isolation. Courtship in heteromorphic pairing tends to occur less frequently, proceeds more slowly, and is more likely to end before sperm transfer. Also, female mate choice may influence mating success among morphs. Females, regardless of morph, have a strong aversion to aquatic males.

Mating System: polygynandrous (promiscuous)

Breeding in mole salamanders occurs mainly from December to March. There is some variation in the time of breeding due to climatic conditions that can restrict the movement of some individuals. Mole salamanders may skip breeding in a year if conditions are not appropriate. On average, only about 35% of mole salamanders will breed in any given year. Ponds used for breeding tend to be ponds with no fish in forested areas. Ponds can be permanent, semi-permanent, or seasonal. Mole salamanders can also breed in areas such as gravel pits or roadside ditches that have been filled with water during heavy rains. Terrestrial and aquatic morphs successfully interbreed, with intermorph breeding influenced by temporal, spatial, and behavioral separation. Breeding cycles vary between aquatic and terrestrial adults, resulting in temporal separation of breeding. Terrestrial adults tend to breed after pond filling and are more susceptible to competitive and predatory pressures. Terrestrial adults migrate to breeding ponds mainly at night and during periods of heavy, sustained rains and cold temperatures. If these conditions aren't met, then fewer terrestrial adults will come to breeding ponds. Aquatic adults remain in their original breeding ponds to reproduce and tend to breed earlier than terrestrial adults. In some cases, the offspring of aquatic adults may hatch before terrestrial adults even begin to breed. Spatial separation of the morphs within breeding ponds depends on the depth at which concentrations of aquatic individuals is greatest.

Mole salamanders reproduce sexually. Male salamanders produce balls of sperm and other substances, called spermatophores. Males can produce multiple spermatophores and can compete with other males by covering competing spermatophores with their own. Females will collect a spermatophore in their cloacae to fertilize the eggs. When the female's eggs become fertilized, she will lay them in a group, called a clutch, loosely attached to submerged vegetation, such as a twig or other object, in the pond. Clutch size is positively correlated with body size in the female salamander. Larger terrestrial females produce larger clutches than same-age aquatic females. On average, a female will lay between 200 to 700 eggs per year. Eggs are 1 to 3 mm in diameter. Females lay their eggs at night and can take several days to lay all of her eggs. Populations that reside in the Atlantic coastal plain tend to have larger clutch sizes. Both male and female mole salamanders reach sexual maturity around 2 years of age or when they are larger than 44 mm.

Breeding interval: Mole salamanders breed once a year.

Breeding season: Breeding season typically occurs between December and March and lasts between 7 and 15 days.

Range number of offspring: 200 to 700.

Range time to hatching: 20 to 60 days.

Range time to independence: 12 to 14 months.

Average time to independence: 15 months.

Average age at sexual or reproductive maturity (female): 2 years.

Average age at sexual or reproductive maturity (male): 2 years.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (Internal ); oviparous

Male salamanders have no parental investment in their young. Female mole salamanders provision their eggs with yolk for development and place them in a protected area in a breeding pond. After egg deposition, there is no further parental involvement.

Parental Investment: no parental involvement; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Behr, A. 2009. "Ambystoma talpoideum" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Ambystoma_talpoideum.html
author
Ashlee Behr, Radford University
editor
Karen Francl, Radford University
editor
Tanya Dewey, Animal Diversity Web
original
visit source
partner site
Animal Diversity Web

Ambystoma talpoideum

provided by wikipedia EN

Ambystoma talpoideum, the mole salamander, is a species of salamander found in much of the eastern and central United States, from Florida to Texas, north to Illinois, east to Kentucky, with isolated populations in Virginia and Indiana. Older sources often refer to this species as the tadpole salamander because some individuals remain in a neotenic state. This salamander lives among the leaf litter on the forest floor, migrating to ponds to breed.

Description

Mole salamanders are stocky, with short bodies and large heads. They can grow to 10 cm (4 in) in length. They are normally gray or dark brown in color, with darker mottling and lighter gray undersides. Males can be distinguished by the presence of a swollen cloaca. Larvae and paedomorphic adults are aquatic and have large feathery gills. A. talpoideum can be distinguished from other salamander larvae by the presence of two light stripes on their underside[2]

Distribution and habitat

Mole salamanders are found in south eastern lowland areas of the Gulf Coastal Plains of the United States. Their main range extends from eastern Texas to southern South Carolina and inland as far as southern Illinois. It is absent from southern Florida and Louisiana, and there are separate populations in Kentucky, Virginia, Tennessee, North Carolina, northern South Carolina, northern Georgia and northern Alabama. There is also a small isolated population within the southernmost tip of Indiana.[3] They inhabit floodplain pine or broadleaf forests, especially near gum and cypress ponds. Adults live under the surface of leaf litter while larvae are aquatic and found in ponds and ephemeral, fish-free waters.[4]

Behavior

Paedomorphic male
One egg mass

Primarily nocturnal, the mole salamander is found in habitats of moist forest debris, usually near a permanent source of water. The adult range is up to about 5 square metres (54 sq ft) and the animals migrate to near bodies of water on rainy nights in winter when the breeding season approaches. The eggs are laid in the spring, during heavy rains. Some larvae undergo metamorphosis while others are neotenic and retain their gills. In larger bodies of water where predatory fish like the bluegill (Lepomis macrochirus) are present, metamorphosis is more common. When ponds were dried it also showed higher rates of metamorphosis.[5] When attacked, adults and juveniles lower their heads to expose their parotoid glands which exude a noxious secretion.[4] This salamander is an opportunistic feeder, eating almost anything smaller than itself which it can overpower, including various arthropods and tadpoles.[4] It has been revealed that A. talpoideum's diet consists almost completely of various arthropods and only a small number of other Ambystomatidae larvae.[6]

Conservation

In its Red List of Threatened Species, the IUCN lists Ambystoma talpoideum as being "Least Concern" because the population trend is stable. Threats to this species include destruction of forest ponds and swamp habitat, the filling in or deepening of breeding ponds, and the introduction of predatory fish.[1] In Indiana, the mole salamander is listed as an endangered species.[7]

References

  1. ^ a b Geoffrey Hammerson (2004). "Ambystoma talpoideum". IUCN Red List of Threatened Species. 2004: e.T59069A11878224. doi:10.2305/IUCN.UK.2004.RLTS.T59069A11878224.en. Retrieved 20 November 2021.
  2. ^ "Species Profile: Mole Salamander (Ambystoma talpoideum) | SREL Herpetology". srelherp.uga.edu. Retrieved 2022-04-28.
  3. ^ Williams, Rod N; MacGowan, Brian J (2004). "Natural History Data on the Mole Salamander (Ambystoma talpoideum) in Indiana". Proceedings of the Indiana Academy of Science. 113 (2): 147–150. Retrieved March 7, 2016.
  4. ^ a b c Michael Lannoo. "Ambystoma talpoideum". AmphibiaWeb. Retrieved 2013-12-06.
  5. ^ Semlitsch, Raymond D.; Wilbur, Henry M. (1988-12-28). "Effects of Pond Drying Time on Metamorphosis and Survival in the Salamander Ambystoma talpoideum". Copeia. 1988 (4): 978. doi:10.2307/1445721. ISSN 0045-8511.
  6. ^ McAllister, Chris; Stanley, Trauth (1996). "Food habits of paedomorphic mole salamanders, Ambystoma talpoideum (Caudata: Ambystomatidae), from northeastern Arkansas". The Southwestern Naturalist. 41 (1): 62-64.
  7. ^ Indiana Legislative Services Agency (2011), "312 IAC 9-5-4: Endangered species of reptiles and amphibians", Indiana Administrative Code, retrieved 28 Apr 2012

Data related to Ambystoma talpoideum at Wikispecies

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Ambystoma talpoideum: Brief Summary

provided by wikipedia EN

Ambystoma talpoideum, the mole salamander, is a species of salamander found in much of the eastern and central United States, from Florida to Texas, north to Illinois, east to Kentucky, with isolated populations in Virginia and Indiana. Older sources often refer to this species as the tadpole salamander because some individuals remain in a neotenic state. This salamander lives among the leaf litter on the forest floor, migrating to ponds to breed.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN