dcsimg

Associations

provided by BioImages, the virtual fieldguide, UK
Foodplant / parasite
pycnium of Puccinia graminis parasitises live Berberis vulgaris

Foodplant / parasite
pycnium of Puccinia graminis parasitises live, fresh leaf of Mahonia aquifolium
Other: minor host/prey

Foodplant / parasite
aecium of Puccinia graminis parasitises live leaf of Mahonia bealei
Other: minor host/prey

license
cc-by-nc-sa-3.0
copyright
BioImages
project
BioImages

Puccinia graminis ( Catalan; Valencian )

provided by wikipedia CA

Puccinia graminis és un fong que parasita el blat i altres cereals coneguda popularment com a rovell pel color de les taques (uredospores) que presenta la tija del cereal infectat.

Hi ha una considerable diversitat genètica dins l'espècie Puccinia graminis i diverses formes especials, Forma specialis.

  • Puccinia graminis f. sp. avenae, civada
  • Puccinia graminis f. sp. dactylis
  • Puccinia graminis f. sp. lolii
  • Puccinia graminis f. sp. poae
  • Puccinia graminis f. sp. secalis, sègol, ordi
  • Puccinia graminis f. sp. tritici, blat, ordi

Morfologia

El fong pren successivament quatre aspectes: Petites fructificacions similars a picnidis produeixen les espores dites espermaties. Aquestes espores són haploides permeten la formació d'un dicarió. Aquest dicarió forma de seguida una estructura anomenada aecidi que produeix les ecidospores. Les ecidospores germinen i formen els sorus que produeixen uredospores i les teleutospores les quals es troben per sobre de la tija del cereal.

Cicle evolutiu

 src=
Cicle evolutiu de P. graminis

Anton de Bary va descriure el cicle d'aquest rovell com heteròxen macrocíclic. Heteròxen significa que necessita dos hostes en aquest cas l'hoste principal és una gramínia mentre que l'hoste secundari és el coralet (Berberis vulgaris). Macrocíclic significa que els quatre estadis són presents: espermaties, ecidospora, uredospora i teleutospora. En l'estadi de teleutospora hi ha la meiosi. L'erradicació del coralet ha contribuït molt a reduir aquesta malaltia dels cereals. El coralet queda contaminat al principi de la primavera i els ecidis són madurs a mitjan maig.

Malaltia

La malaltia és coneguda des de fa segles en les zones cerealístiques però actualment hi ha una raça d'aquest fong Ug99 (la U és d'Uganda on primer es va trobar l'any 1999) que amb gran virulència i intensitat ataca els camps de blat d'Àfrica, Àsia i Pròxim Orient. S'ha estès a Kenya, i després a Etiòpia, Sudan i Iemen, i esdevé més virulent a la vegada que es va estenent. Els esforços científics es centren a crear varietats de cereals immunes però el problema és que se'n conreen milers de varietats.

Ug99

Ug99,és una raça de (Puccinia graminis tritici).[1] És virulenta en la majoria de varietats de blat.[2] Al contrari que en altres rovells, que només afecten la collita de forma parcial, UG99 pot fer perdre el 100% de la collita. [3] El 1999 es va descobrir aquesta raça del rovell a Ugandaq i es va anar estenent per les terres altes de l'est d'Àfrica. El gener de 2007, les espores arribaren al Iemen i Sudan. El març de 2007 la FAO anuncià la seva preocupació i l'arribada a l'Iran.[4]

Notes

  1. Singh, RP et al. «Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen». CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1, No. 054, 2006. DOI: 10.1079/PAVSNNR20061054 [Consulta: 19 abril 2007]. – Review Article
  2. «Billions at risk from wheat super-blight». New Scientist Magazine, issue 2598, 2007-04-03, pàg. 6–7 [Consulta: 19 abril 2007].
  3. Effect of a new race on wheat production/use of fungicides and its cost in large vs small scale farmers, situation of current cultivars. Kenya Agricultural Research Institute, 2005. Njoro. Cited in CIMMYT 2005 study.
  4. Dangerous wheat-killing fungus detected in Iran from UN News Centre

Bibliografia

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Puccinia graminis Modifica l'enllaç a Wikidata
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Puccinia graminis: Brief Summary ( Catalan; Valencian )

provided by wikipedia CA

Puccinia graminis és un fong que parasita el blat i altres cereals coneguda popularment com a rovell pel color de les taques (uredospores) que presenta la tija del cereal infectat.

Hi ha una considerable diversitat genètica dins l'espècie Puccinia graminis i diverses formes especials, Forma specialis.

Puccinia graminis f. sp. avenae, civada Puccinia graminis f. sp. dactylis Puccinia graminis f. sp. lolii Puccinia graminis f. sp. poae Puccinia graminis f. sp. secalis, sègol, ordi Puccinia graminis f. sp. tritici, blat, ordi
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Rez travní ( Czech )

provided by wikipedia CZ

Rez travní (Puccinia graminis) je druh rzi (tedy houby z oddělení stopkovýtrusných hub), které parazituje na obilí a na dřišťálu.

Rezavá ložiska prášivých výtrusů jsou na spodní straně listů dřišťálu, výtrusy jsou rozšiřovány větrem na obilniny nebo na jiné trávy, kde vyklíčí. Na listech těchto rostlin se ve vegetační době tvoří tzv. letní výtrusy; těmi se rez v létě šíří a vyvolává infekci na zdravých rostlinách.

Koncem vegetační doby vznikají černá ložiska zimních výtrusů; přezimují a na jaře příštího roku vyklíčí v čtyřbuněčné vlákénko se stopkatými výtrusy, které jsou roznášeny větrem a mohou opět nakazit listy dřišťálu. Posloupnost tvorby různých výtrusů a střídání hostitelů jsou přísně zákonité a pro mnohé druhy rzí velmi charakteristické.

Externí odkazy

Pahýl
Tento článek je příliš stručný nebo postrádá důležité informace.
Pomozte Wikipedii tím, že jej vhodně rozšíříte. Nevkládejte však bez oprávnění cizí texty.
license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Rez travní: Brief Summary ( Czech )

provided by wikipedia CZ

Rez travní (Puccinia graminis) je druh rzi (tedy houby z oddělení stopkovýtrusných hub), které parazituje na obilí a na dřišťálu.

Rezavá ložiska prášivých výtrusů jsou na spodní straně listů dřišťálu, výtrusy jsou rozšiřovány větrem na obilniny nebo na jiné trávy, kde vyklíčí. Na listech těchto rostlin se ve vegetační době tvoří tzv. letní výtrusy; těmi se rez v létě šíří a vyvolává infekci na zdravých rostlinách.

Koncem vegetační doby vznikají černá ložiska zimních výtrusů; přezimují a na jaře příštího roku vyklíčí v čtyřbuněčné vlákénko se stopkatými výtrusy, které jsou roznášeny větrem a mohou opět nakazit listy dřišťálu. Posloupnost tvorby různých výtrusů a střídání hostitelů jsou přísně zákonité a pro mnohé druhy rzí velmi charakteristické.

license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Getreideschwarzrost ( German )

provided by wikipedia DE

Der Getreideschwarzrost (Puccinia graminis), Schwarzrost oder Getreiderost ist ein Pilz aus der Familie der Rostpilze (Pucciniales). Er ist dafür bekannt, Weizen, Gerste, Hafer und Roggen zu befallen, daneben zählen auch noch andere Süßgräser zu seinem Wirtsspektrum. Der Getreideschwarzrost ist heterözisch, das heißt, er führt einen Wirtswechsel zwischen dem Getreide und Berberitzengewächsen als Sekundärwirt durch.

Der Getreideschwarzrost tritt in zahlreichen Varietäten und Formen auf. In der ersten Hälfte des 20. Jahrhunderts wurde der Getreideschwarzrost in den Vereinigten Staaten durch umfangreiche Ausrottung der Berberitze nahezu eliminiert. In Ostafrika führte die 1998 entdeckte und auch bisher resistente Sorten befallende Rasse Ug99 zu großen Ernteausfällen beim Weizen. Seit 2015 ist diese Form auf Sizilien nachgewiesen, die FAO warnt vor einer Ausbreitung im Mittelmeerraum.

Merkmale

 src=
Aecidien des Pilzes auf der Unterseite eines Berberitzen-Blatts

Makroskopische Eigenschaften

Der Getreideschwarzrost erscheint zunächst als rostroter Belag (Uredien) an Gräsern. Er zieht sich als Streifen entlang der Längsachse vor allem von Stängeln, weniger stark an Blättern. Mit der Zeit wachsen die befallenen Stellen und verfärben sich schwarz (Telien).[1]

An Berberitzen (Berberis) und Mahonien (Mahonia) zeigt sich der Befall an runden, gelben Pünktchen (Pyknidien) auf der Oberseite der Blätter. An der Blattunterseite erscheinen fünf bis sieben Tage später größere, hellgelbe Flecken, die sogenannten Aecidien.[1]

 src=
Teleutosporen des Getreideschwarzrosts

Mikroskopische Eigenschaften

Die Uredosporen des Gerstenschwarzrostes sind oval und messen 25–30 × 17–20 µm. Sie enthalten jeweils vier Keimsporen. Die Teleutosporen sind dunkelbraun, bestehen aus zwei Zellen mit je zwei Kernen und sind am oberen Ende abgerundet. Sie messen 40–60 ×15–20 µm und verfügen über eine relativ dicke und glatte äußere Wand, sowie Keimporen am Apex und etwas unterhalb des Septums.[1]

Ökologie

 src=
Lebenszyklus des Getreideschwarzrosts, hier am Beispiel von Weizen und Berberitze

Der Getreideschwarzrost durchläuft fünf vegetative Stationen während seines Entwicklungszyklus, von denen drei auf dem Primärwirt, also etwa Weichweizen (Triticum aestivum), und die restlichen beiden auf dem Sekundärwirt, beispielsweise der Berberitze (Berberis vulgaris) stattfinden.

Zunächst keimen im Frühjahr die haploiden Basidiosporen des Pilzes auf den Blättern der Berberitze und bilden dort ein einkernig-haploides Myzel aus. Der Pilz ernährt sich fortan parasitisch von der Berberitze und bildet auf den Blattseiten jeweils unterschiedliche Strukturen aus. Unter der Epidermis der Blattoberseite entstehen Pyknidien (oder Spermogonien), die die Geschlechtskerne bilden. Auf der Unterseite des Blattes bilden sich Aecidienanlagen aus, die Basalzellen formen. Diese nehmen die von den Pyknidien gebildeten Geschlechtskerne auf.

 src=
Pyknidien (sp) und Aecidien (ae) am Beispiel des Berberitzenblattes

Einen weiteren Kern erhalten sie durch Pyknosporen, die über Sporenflug oder den Transport durch Insekten auf Empfängnishyphen gelangen. Von dort aus wandert die Spore zur Kernzelle, womit die Bildung eines Heterokaryons abgeschlossen ist. Aus dieser Basalzelle formt sich nun das Aecidium, das eine große Zahl von Acidiosporen produziert.

 src=
Aecidien an der Berberitze

Diese haploid-dikaryotischen Acidiosporen können nur auf Süßgräsern keimen. Sie bilden auf dem Weizen einen Keimschlauch aus, der in das Pflanzengewebe eindringt und dort interzellulär wächst. Das Myzel bleibt lokal beschränkt und verfügt nicht über Schnallen, ist aber paarkernig.

Diese Uridien genannten Strukturen bilden nun ungeschlechtliche Uredosporen aus. Mit diesen kann sich der Pilz zwar nicht sexuell fortpflanzen, sie ermöglichen jedoch eine Verbreitung in großem Rahmen, sodass nicht nur andere Stellen der Wirtspflanze, sondern auch zahlreiche weitere Pflanzen befallen werden können.

Im Herbst schließlich bilden sich aus den Uridien Teleutosporen aus. Diese sind mit ihrer dicken Zellwand auf die Überwinterung angelegt. Sie besitzen zwei Paar Kerne, die im Frühjahr schließlich verschmelzen und anschließend Basidien formen. Diese wiederum bilden Basidiosporen aus, womit der Zyklus einmal durchlaufen ist.

Systematik

Da die Landwirtschaft im Laufe der Zeit mit immer neuen Züchtungen auf den Getreideschwarzrost reagiert hat, der Pilz jedoch durch Mutation Resistenzen entwickelte und sich auf einzelne Süßgräserarten spezialisierte, sind zahlreiche Formen und Varietäten des Getreideschwarzrostes entstanden:[2]

  • Puccinia graminis f. agropyri P.R. Mehta & R. Prasad (1948)
  • Puccinia graminis f. avenae Erikss. & Henning
  • Puccinia graminis f. graminis Pers. (1794)
  • Puccinia graminis f. maroccana Unamuno (1940)
  • Puccinia graminis f. tritici Erikss. & Henning
  • Puccinia graminis f. tritici-compacti Stakman & Piem.
  • Puccinia graminis f.sp. oryzae Gonz. Frag.
  • Puccinia graminis f.sp. poae Erikss. & Henning
  • Puccinia graminis subsp. graminicola Z. Urb. (1967)
  • Puccinia graminis subsp. lolii W.L. Waterh. (1951)
  • Puccinia graminis subsp. media A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis subsp. minor A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. agropyri-repentis A.L. Guyot
  • Puccinia graminis var. avenae Erikss. & Henning
  • Puccinia graminis var. brevicarpa Peck (1873)
  • Puccinia graminis var. calamagrostidis A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. caulium Alb. & Schwein. (1805)
  • Puccinia graminis var. elymi A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. erikssoni A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. hordei Erikss. & Henning
  • Puccinia graminis var. junci Alb. & Schwein. (1805)
  • Puccinia graminis var. lolii A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. secalis Erikss. & Henning
  • Puccinia graminis var. simplex Körn.
  • Puccinia graminis var. stakmanii A.L. Guyot, Massenot & Saccas (1946)
  • Puccinia graminis var. vulpiae A.L. Guyot, Massenot & Saccas (1946)

Landwirtschaftliche Schäden

Wenn Pilzsporen von Puccina graminis auf Weizenpflanzen landen, bilden sie Pusteln und extrahieren Nährstoffe, die für die Kornentwicklung bestimmt sind.[3]

Der Getreideschwarzrost führte im Laufe der Geschichte immer wieder zu großen Schäden in Weizen-, Roggen- und Gerstebeständen, da er je nach Sorte zum Ausfall eines Großteils der Ernte führte. Bereits Plinius der Ältere sah im Getreideschwarzrost die größte Getreidepest. Erst im 18. Jahrhundert erkannte man den Zusammenhang zwischen der Nähe von Berberitzen und Getreidefeldern und dem Auftreten der Krankheit, woraufhin beispielsweise die französischen Getreidebauern die Ausrottung der Berberitze forderten. Da der Pilz selbst aber zu dieser Zeit noch nicht bekannt war, wurden die Bauern von den Konfitüre-Kochern, die die Früchte der Berberitze verarbeiteten, des Aberglaubens bezichtigt. 1755 erließ die Kronkolonie Massachusetts ein Gesetz, das den Bauern ein Ultimatum setzte: Auf wessen Land Berberitzen wüchsen, habe diese bis zum 13. Juni 1760 auszureißen oder zu vernichten. Erst 1794 wurde der Pilz durch Christian Hendrik Persoon beschrieben; Anton de Bary erbrachte 1866 den wissenschaftlichen Nachweis für die Rolle der Berberitze als Zwischenwirt.[4]

Johann Wolfgang von Goethe vermerkt in seinem Tagebuch unter dem Datum des 29. Juni 1816, den er als „ersten schönen Tag“ bezeichnet, neben Überschwemmungen der Saale im Raum Jena auch: „Rost des Getreides“.[5] Dessen Ausbreitung wurde in Thüringen offenbar durch die seit spätestens Mitte Mai 1816 anhaltenden Regenfälle im „Jahr ohne Sommer“ mitbegünstigt.

Nachdem Anfang des 20. Jahrhunderts in den Vereinigten Staaten zwei gravierende Epidemien auftraten, koordinierte das Landwirtschaftsministerium ein Programm zur Ausrottung der Berberitze in wichtigen Weizenanbaugebieten (insbesondere Ohio bis North Dakota). 1933 waren 18 Millionen Büsche eliminiert. Weitere Bundesstaaten schlossen sich mit der Zeit dem Programm an. Um 1930 begannen die Epidemien zurückzugehen. Eine neue Variante des Pilzes verursachte 1953 und 1954 die bislang letzten verheerenden Epidemien. Bis heute existiert ein Quarantäneprogramm, demzufolge ein Transport von Berberitzen in oder zwischen Quarantänestaaten verboten ist. Die breite Eliminierung der Berberitze hat die Möglichkeiten zur genetischen Rekombination und damit der Gefahr der Bildung neuer, virulenter Varianten entscheidend eingeschränkt, weswegen der Getreideschwarzrost in den Vereinigten Staaten seitdem ein deutlich geringeres Problem darstellt.[6]

In den 1960er Jahren züchtete Norman Borlaug mit Kollegen am CIMMYT Weizenlinien, die Resistenzgene wie Sr31 enthielten. Eine erneute Bedrohung stellte die 1998 in Uganda entdeckte Rasse Ug99 dar, gegen die Sr31 keine Resistenz verleiht. Ug99 existiert heute in sieben Varianten und hatte etwa 2007 für große Schäden bei kenianischen Bauern gesorgt (teilweise Ertragseinbruch von bis zu 80 %). Von Ostafrika hat sich der Stamm auch in den Jemen und Iran ausgebreitet. Im März 2008 warnte die FAO vor massiven Ernteausfällen, nachdem Ug99 dort nachgewiesen wurde. Probleme bereitet vor allem die hohe Anfälligkeit vieler Weizensorten, die keine Resistenz gegen Ug99 besitzen. Die Nahrungsmittelversorgung hunderter Millionen Menschen ist in Gefahr, wenn der Pilz weiter nach Osten wandern sollte.[3][7]

Als Borlaug 2005 vom erneuten Erscheinen des Schwarzrosts erfuhr, rief er Wissenschaftler in das Projekt „Durable Rust Resistance in Wheat“ zusammen, das von der Cornell University und CIMMYT geführt wird. Inzwischen sind 20 resistente Sorten verfügbar, die nun in Züchtungsprogramme in acht afrikanischen und asiatischen Nationen eingebunden werden.[3]

Die FAO berichtet von einer erneuten Ausbreitung des Pilzes. FAO-Fachmann David Hodson warnte: „Das Auftauchen der Ug99-Rasse in Ostafrika hat Weizenrost von einer Krankheit, die weitgehend unter Kontrolle war, in eine bedeutende weltweite Bedrohung verwandelt.“ Der Mikrobiologe Ralf T. Vögele, Professor für Phytopathologie und Dekan der Fakultät Agrarwissenschaft der Universität Hohenheim in Stuttgart erklärte Ug99 habe sämtliche Resistenzgene, die weltweit im Weizen verbaut seien, überwunden.[8]

Seit 2015 wird die neue Rasse auf Sizilien nachgewiesen, 2016 befiel sie bereits mehrere zehntausend Hektar Weizenfelder.[9] Anfang 2017 erließ die FAO eine Warnmeldung für das gesamte Mittelmeergebiet.[10]

Militärische Nutzung

Ende der 1940er Jahre gab es in den USA Bestrebungen, den Getreideschwarzrost militärisch zu nutzen. 1953 wurde die Bombe M-115 entwickelt, die eine 250-kg-Ladung von Sporen des Pilzes zusammen mit Truthahnfedern als Trägern enthielt und für Ernteausfälle militärischer Gegner sorgen sollte. Bis 1957 produzierte das Militär der Vereinigten Staaten zu diesem Zweck Getreideschwarzrostsporen in Fort Detrick auf Vorrat, sowie von 1962 bis 1969. Diese Vorräte wurden erst 1974 im Rahmen eines Demilitarisierungsprogrammes vollständig zerstört.[11][12][13]

Namenerklärung

Der Gattungsname Puccinia ehrt den italienischen Arzt und Botaniker Tommaso Puccini (?–1735).[14]

Quellen und Verweise

Literatur

  • Peter H. Raven, Ray F. Evert, Susan E. Eichhorn, Rosemarie Langenfeld-Heyser: Biologie der Pflanzen. Walter de Gruyter, 2000. ISBN 3-11-015462-5, S. 352–353.
  • S.M. Reddy: University Botany: Algae, Fungi, Bryophyta and Pteridophyta. New Age International, 1996. ISBN 81-224-0840-0, S. 176–184.
  • O. P. Sharma: Textbook of Fungi. Tata McGraw-Hill, 1989. ISBN 0-07-460329-9, S. 222–234.
  • Ravi P. Singh u. a.: Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. (PDF)

Einzelnachweise

  1. a b c O. P. Sharma: Textbook of Fungi. Tata McGraw-Hill, 1989. ISBN 0-07-460329-9, S. 222–234.
  2. Index Fungorum. Abgerufen am 2. März 2010.
  3. a b c Gayathri Vaidyanathan (2011): Science in Africa: The wheat stalker. Nature 474, S. 563–565. (PDF; 2,0 MB)
  4. Peter H. Raven, Ray F. Evert, Susan E. Eichhorn, Rosemarie Langenfeld-Heyser: Biologie der Pflanzen. Walter de Gruyter, 2000. ISBN 3-11-015462-5, S. 352–353.
  5. Zeno: Goethe, Johann Wolfgang, Tagebücher, 1816, Juni. Abgerufen am 2. Mai 2017.
  6. Kurt J. Leonard: Black stem rust biology and threat to wheat growers. Agricultural Research Service, USDA, 2001, aufgerufen am 5. August 2013
  7. Dangerous wheat-killing fungus detected in Iran – UN. UN News Center, 5. März 2008. Abgerufen am 2. März 2010.
  8. Markus Brauer: Getreiderost auf dem Vormarsch, auf stuttgarter-zeitung.de vom 13. April 2016
  9. Nature: Deadly new wheat disease threatens Europe’s crops, 2. Februar 2017
  10. FAO: Spread of damaging wheat rust continues: new races found in Europe, Africa, Central Asia, 3. Februar 2017
  11. Mark Wheelis, Lajos Rózsa, Malcolm Dando: Deadly Cultures: Biological Weapons since 1945. Harvard University Press, 2006. ISBN 0-674-01699-8, S. 218.
  12. Anthony Rimmington: The Soviet Union's Offensive Program: The Implications for Contemporary Arms Control. In: Susan Wright (Hrsg.): Biological Warfare and Disarmament: New Problems/New Perspectives. Rowman & Littlefield, 2002. ISBN 0-7425-2469-8, S. 138.
  13. Jefferey K. Smart: History of Chemical and Biological Warfare: An American Perspective. In: Medical Aspects of Chemical and Biological Warfare., S. 51 (PDF).
  14. Lotte Burkhardt 2022: Eine Enzyklopädie zu eponymischen Pflanzennamen: Von Menschen & ihren Pflanzen – Berlin: Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin. doi:10.3372/epolist2022.
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Getreideschwarzrost: Brief Summary ( German )

provided by wikipedia DE

Der Getreideschwarzrost (Puccinia graminis), Schwarzrost oder Getreiderost ist ein Pilz aus der Familie der Rostpilze (Pucciniales). Er ist dafür bekannt, Weizen, Gerste, Hafer und Roggen zu befallen, daneben zählen auch noch andere Süßgräser zu seinem Wirtsspektrum. Der Getreideschwarzrost ist heterözisch, das heißt, er führt einen Wirtswechsel zwischen dem Getreide und Berberitzengewächsen als Sekundärwirt durch.

Der Getreideschwarzrost tritt in zahlreichen Varietäten und Formen auf. In der ersten Hälfte des 20. Jahrhunderts wurde der Getreideschwarzrost in den Vereinigten Staaten durch umfangreiche Ausrottung der Berberitze nahezu eliminiert. In Ostafrika führte die 1998 entdeckte und auch bisher resistente Sorten befallende Rasse Ug99 zu großen Ernteausfällen beim Weizen. Seit 2015 ist diese Form auf Sizilien nachgewiesen, die FAO warnt vor einer Ausbreitung im Mittelmeerraum.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Puccinia graminis ( Kurdish )

provided by wikipedia emerging languages

Puccinia graminis yek ji kuvê zengê ye.

license
cc-by-sa-3.0
copyright
Nivîskar û edîtorên Wikipedia-ê

Stem rust

provided by wikipedia EN

Stem rust, also known as cereal rust, black rust,[1][2] red rust or red dust,[3] is caused by the fungus Puccinia graminis, which causes significant disease in cereal crops. Crop species that are affected by the disease include bread wheat, durum wheat, barley and triticale.[1] These diseases have affected cereal farming throughout history. The annual recurrence of stem rust of wheat in North Indian plains was discovered by Prof. K.C. Mehta.[4] Since the 1950s, wheat strains bred to be resistant to stem rust have become available.[5] Fungicides effective against stem rust are available as well.[6]

In 1999 a new virulent race of stem rust was identified against which most current wheat strains show no resistance. The race was named TTKSK (e.g. isolate Ug99). An epidemic of stem rust on wheat caused by race TTKSK spread across Africa, Asia and the Middle East, causing major concern due to the large numbers of people dependent on wheat for sustenance, thus threatening global food security.[7]

An outbreak of another virulent race of stem rust, TTTTF, took place in Sicily in 2016, suggesting that the disease is returning to Europe.[5] Comprehensive genomic analysis of Puccinia graminis, combined with plant pathology and climate data, has pointed out the potential of the re-emergence of stem wheat rust in UK.[8][9]

History of stem rust

The fungal ancestors of stem rust have infected grasses for millions of years and wheat crops for as long as they have been grown.[7] According to Jim Peterson, professor of wheat breeding and genetics at Oregon State University, "Stem rust destroyed more than 20% of U.S. wheat crops several times between 1917 and 1935, and losses reached 9% twice in the 1950s," with the last U.S. outbreak in 1962 destroying 5.2% of the crop.[7]

Stem rust has been an ongoing problem dating back to Aristotle's time (384–322 B.C). An early ancient practice by the Romans was one where they would sacrifice red animals such as foxes, dogs, and cows to Robigus (fem. Robigo), the rust god. They would perform this ritual in the spring during a festival known as the Robigalia in hopes of the wheat crop being spared from the destruction caused by the rust. Weather records from that time have been reexamined and it has been speculated that the fall of the Roman Empire was due to a string of rainy seasons in which the rust would have been more harsh, resulting in reduced wheat harvests. Laws banning barberry were established in 1660 in Rouen, France. This was due to the fact that European farmers noticed a correlation between barberry and stem rust epidemics in wheat. The law banned the planting of barberry near wheat fields and was the first of its kind.[2]

The parasitic nature of stem rust was discovered in the 1700s. Two Italian scientists, Fontana and Tozzetti, first explained the stem rust fungus in wheat in 1767.[2] Italian scientist Giuseppe Maria Giovene (1753–1837), in his work Lettera al dottor Cosimo Moschettini sulla ruggine, also thoroughly studied the stem rust.[10] Thirty years later it received its name, Puccinia graminis, by Persoon, and in 1854 brothers Louis René and Charles Tulasne discovered the characteristic five-spore stage that is known in some stem rust species. The brothers were also able to make a connection between the red (urediniospore) and black (teliospore) spores as different stages within the life cycle of the same organism, but the rest of the stages remained unknown.[2]

Anton de Bary later conducted experiments to observe the beliefs of European farmers regarding the relationship between the rust and barberry plants, and after connecting the basidiospores of the basidia stage to barberry, he also identified that the aeciospores in the aecia stage reinfect the wheat host. Upon de Bary's discovery of all five spore stages and their need for barberry as a host, John Craigie, a Canadian pathologist, identified the function of the spermogonium in 1927.[2]

Due to the useful nature of both barberry and wheat plants, they were eventually brought to North America by European colonists. Barberry was used for many things like making wine and jams from the berries to tool handles from the wood. Ultimately, as they did in Europe, the colonists began to notice a relationship between barberry and stem rust epidemics in wheat. Laws were enacted in many New England colonies, but as the farmers moved west, the problem with stem rust moved with them and began to spread to many areas, creating a devastating epidemic in 1916. It wasn't until two years later in 1918 that the United States created a program to remove barberry. The program was one that was supported by state and federal entities and was partly prompted by the threat it posed to food supplies during the war. The "war against barberries" was waged and called upon the help of citizens through radio and newspaper advertisements, pamphlets, and fair booths asking for help from all in the attempt to rid the barberry bushes of their existence. Later, in 1975–1980, the program was reestablished under state jurisdiction. Once this happened, a federal quarantine was established against the sale of stem rust susceptible barberry in those states that were part of the program. A barberry testing program was created to ensure that only those species and varieties of barberry that are immune to stem rust will be grown in the quarantine area.[2]

In 1969 two races not detected before in Australia were found[11] and for decades one hypothesis was an African origin,[11][12] and in 2018 DNA analysis confirmed that,[12] specifically South African.[11]

South Africa itself has an ongoing problem with various stem rust outbreaks which requires better response, including an indigenous breeding for resistance program.[12]

Taxonomy

Model of a spore of puccinia graminis, late 19th century, Botanical Museum Greifswald

There is considerable genetic diversity within the species P. graminis, and several special forms, forma specialis, which vary in host range have been identified.

P. graminis is a member of the phylum Basidiomycota within the kingdom Fungi. The characteristic rust color on stems and leaves is typical of a general stem rust as well as any variation of this type of fungus. Different from most fungi, the rust variations have five spore stages and alternate between two hosts. Wheat is the primary host, and barberry is the alternate host.

The rust is sometimes termed "red rust" or "red dust"[3][16] owing to the spores on the leaf surfaces that range from orange to dark-red in color. Later, the spores change and become dark in color, which gives rise to another common name, "black rust".[17][2]

Puccinia graminis f. sp. tritici

The North American race nomenclature system[18][19][20] was introduced in 1988 by Roelfs and Martens.[21] This nomenclature is a series of letters each of which indicate virulence/avirulence against one resistance gene, as diagnosed by performance against a group of cultivars known to bear that gene.

Ug99

Pgt contains many races of wheat diseases, including some of the most significant in the world. Ug99 began as a race (TTKSK) of Pgt and now has proliferated into a large number of races of its own.

The virulent new race, against which most current wheat strains show no resistance, was identified in 1999. The race was named TTKSK (e.g. isolate Ug99), named after the country where it was identified (Uganda) and the year of its discovery (1999). It spread to Kenya, then Ethiopia, Sudan and Yemen, and becomes more virulent as it spreads. An epidemic of stem rust on wheat caused by race TTKSK spread across Africa, Asia and the Middle East, causing major concern due to the large numbers of people dependent on wheat for sustenance,[7] thus threatening global food security. In 2011, after it had spread into southern Africa, the Bill Gates Foundation donated $40 million towards research into Ug99, to be spent on critical infrastructure in Africa.[3] Scientists are working on breeding strains of wheat that are resistant to UG99. However, wheat is grown in a broad range of environments. This means that breeding programs would have extensive work remaining to get resistance into regionally adapted germplasms even after resistance is identified.[7] Similarly, in 2014, a Ug99 race called "Digalu" emerged and devastated the Digalu variety in Ethiopia.[22]: 25 

JRCQC

JRCQC is a race affecting Durum in Ethiopia.[23]

MCC

Affects barley.[14]

QCC

Affects barley.[14][15]

Successfully overwintered in Kansas in 1989/90, and in Texas and Kansas in 1990/91, and so was expected to thereafter be a permanent part of the North American Pg population. Further pathogen adaptation, resulting in widening of the host range, is expected.[24]

QCCJ

Synonymous with QCCJB[15] or known as QCC-2 by some classifications.

Most common Pg race in 1991 in the United States, 68% of all Pg samples, and 67% in 1990. Afflicted spring-sown barley in the northern Great Plains in 1990. Was the first barley stem rust to show up in the United States in 1991, in southern Texas in Uvalde. Thought to be responsible for rusting of wild Hordea in the Midwestern United States and Great Plains, and overall was 94% of Pgs on Hordea in 1991. 67% of QCCJ was from barley and 95% of Pg on barley was QCCJ. On wheat, QCCJ was still the most common race but only at 38% of Pg. Continues to threaten barley in the Red River Valley in North Dakota and Minnesota. Higher than normal inoculum production in South Central Oklahoma and the adjacent part of North Texas before the 1991 season resulted in an epidemic in North Central and northwestern Kansas.[24] Virulent against barley bearing Rpg1. Down to 26% of Pgs afflicting wheat in the US in 1995, 1% in 96, and not at all in 97 or 98. Not found on barley in 97 but found again in 98.[25]

QCCJB

The first QCC race (since renamed QCCJ or QCCJB) was detected in the northwest Great Plains in 1988, and by 1990 was over 90% of Pgs on barley in the United States.[15] Also afflicted wheat until a mass switch away from vulnerable cultivars resulted in complete absence in 1997 or 98.[25][15] Barley virulence is temperature-sensitive: from 18–20 °C (64–68 °F) rpg4 and Rpg5 are highly effective, but above 27 °C (81 °F) they are ineffective. Not necessarily distinguishable from QCCJ, used synonymously by some practitioners.[15]

QCCS

Found in the US on wheat in 1997 and 98 - but only in the West across both years. On barley in 97 but not 98.[25]

QFCS

25% of Pgs on wheat in 1991. Traces found growing in northwest Illinois fields, also in 1991.[24] 8% of all Pgs on wheat, barley, and oat in the US in 1997, and 31% in 98. Displaced the previously-dominant TPMK suddenly in 1998.[25]

TPMK

36% of Pg samples from wheat in 1991 in the United States. Unusually severe in southern Illinois in the first week of June, and in west central Indiana, in 1991.[24] TPMK was the worst at 69% of Pgs on wheat in 1997 in the United States - being absent only from the southern Great Plains and the west, but then was down to 10% in 1998. In the upper Great Plains it was already declining - to 26% of samples in 1997, and 12% in 98. In the most fertile areas of the eastern US it was 96% of Pgs in 97 but then suddenly fell to 29% in 98. In a few other locations in the US, and overall across the US, this race declined 97–98 in favor of other races, and not because of overall Pg decline.[25]

Pathology

The stem rust fungus attacks the parts of the plant that are above ground. Spores that land on green wheat plants form a pustule that invades the outer layers of the stalk.[7] Infected plants produce fewer tillers and set fewer seed, and in cases of severe infection the plant may die. Infection can reduce what is an apparently healthy crop about three weeks before harvest into a black tangle of broken stems and shriveled grains by harvest.[1]

Stem rust of cereals causes yield losses in several ways:[2]

  • Fungus absorbs nutrients that would otherwise be used for grain development.
  • Pustules break through epidermis, which disrupt the plant's control of transpiration and can lead to desiccation and infection by other fungi.
  • Interference with plant vascular tissue leads to shriveled grains.
  • The fungus weakens the stems, which can lead to lodging (falling over). In severe cases lodging can make mechanical harvesting impossible.

Signs and symptoms

On wheat

Wheat infected leaves with stem rust pathogen with a specific resistance gene

Stem rust on wheat is characterized by the presence of uredinia on the plant, which are brick-red, elongated, blister-like pustules that are easily shaken off. They most frequently occur on the leaf sheaths, but are also found on stems, leaves, glumes and awns. On leaves they develop mostly on the underside but may penetrate to the upperside. On leaf sheaths and glumes pustules rupture the epidermis, giving a ragged appearance.[1]

Towards the end of the growing season black telia are produced. For this reason stem rust is also known as "black rust". The telia are firmly attached to the plant tissue.[1]

The site of infection is a visible symptom of the disease.

On barberry

Pycnia appear on barberry plants in the spring, usually in the upper leaf surfaces. They are often in small clusters and exude pycniospores in a sticky honeydew. Five to ten days later, cup-shaped structures filled with orange-yellow, powdery aeciospores break through the lower leaf surface. The aecial cups are yellow and sometimes elongate to extend up to 5 millimetres (1364 in) from the leaf surface.[2] So important is its role in maintenance of prevalence that since the near extermination of the alternate host from the northern Great Plains in the United States, epidemics in crops have become rare.[24]

Life cycle

Life cycle of Puccinia graminis

Like other Puccinia species, P. graminis is an obligate biotroph (it colonizes living plant cells) and has a complex life cycle featuring alternation of generations. The fungus is heteroecious, requiring two hosts to complete its life cycle – the cereal host and the alternate host.[2] There are many species in Berberis and Mahonia (and their hybrid genus x Mahoberberis) that are susceptible to stem rust, but the common barberry is considered to be the most important alternate host.[1] P. graminis is macrocyclic[2] (exhibits all five of the spore types that are known for rust fungi[26]).

Animated video of the life cycle of stem rust

Puccinia graminis can complete its life cycle either with or without barberry (the alternate host).[2]

P. g. tritici's obligately biotrophic lifestyle involves the dramatic up-regulation of particular gene transcriptions, constituting its biotrophy genomic features. These genomic regions have parallels in other eukaryotic plant pathogens. These parallels - between these independently evolved and unrelated sets of genes - show a strong and broad pattern of convergent evolution around the plant pathogenic lifestyle.[27]

Life cycle on barberry

Due to its cyclical nature, there is no true 'start point' for this process. Here, the production of urediniospores is arbitrarily chosen as a start point.

Urediniospores are formed in structures called uredinia, which are produced by fungal mycelia on the cereal host 1–2 weeks after infection. The urediniospores are dikaryotic (contain two un-fused, haploid nuclei in one cell) and are formed on individual stalks within the uredinium. They are spiny and brick-red. Urediniospores are the only type of spores in the rust fungus life cycle that are capable of infecting the host on which they are produced, and this is therefore referred to as the 'repeating stage' of the life cycle. It is the spread of urediniospores that allows infection to spread from one cereal plant to another.[2] This phase can rapidly spread the infection over a wide area.

Towards the end of the cereal host's growing season, the mycelia produce structures called telia. Telia produce a type of spore called teliospores. These black, thick-walled spores are dikaryotic. They are the only form in which Puccinia graminis is able to overwinter independently of a host.[2]

Each teliospore undergoes karyogamy (fusion of nuclei) and meiosis to form four haploid spores called basidiospores. This is an important source of genetic recombination in the life cycle. Basidiospores are thin-walled and colourless. They cannot infect the cereal host, but can infect the alternative host (usually barberry).[2] They are usually carried to the alternative host by wind.

Once basidiospores arrive on a leaf of the alternative host, they germinate to produce a haploid mycelium that directly penetrates the epidermis and colonises the leaf. Once inside the leaf the mycelium produces specialised infection structures called pycnia. The pycnia produce two types of haploid gametes, the pycniospores and the receptive hyphae. The pycniospores are produced in a sticky honeydew that attracts insects. The insects carry pycniospores from one leaf to another. Splashing raindrops can also spread pycniospores. A pycniospore can fertilise a receptive hypha of the opposite mating type, leading to the production of a dikaryotic mycelium. This is the sexual stage of the life cycle and cross-fertilisation provides an important source of genetic recombination.[2]

This dikaryotic mycelium then forms structures called aecia, which produce a type of dikaryotic spores called aeciospores. These have a worty appearance and are formed in chains – unlike the urediniospores that are spiny and are produced on individual stalks. The chains of aeciospores are surrounded by a bell-like enclosure of fungal cells. The aeciospores are able to germinate on the cereal host but not on the alternative host (they are produced on the alternative host, which is usually barberry). They are carried by wind to the cereal host where they germinate and the germ tubes penetrate into the plant. The fungus grows inside the plant as a dikaryotic mycelium. Within 1–2 weeks the mycelium produces uredinia and the cycle is complete.[2]

Life cycle without barberry

Since the urediniospores are produced on the cereal host and can infect the cereal host, it is possible for the infection to pass from one year's crop to the next without infecting the alternate host (barberry). For example, infected volunteer wheat plants can serve as a bridge from one growing season to another. In other cases the fungus passes between winter wheat and spring wheat, meaning that it has a cereal host all year round. Since the urediniospores are wind dispersed, this can occur over large distances.[2] Note that this cycle consists simply of vegetative propagation – urediniospores infect one wheat plant, leading to the production of more urediniospores that then infect other wheat plants.

Spore dispersal

Puccinia graminis produces all five of the spore types that are known for rust fungi.[2]

Spores are typically deposited close to the source, but long-distance dispersal is also well documented[1] commonly out to hundreds of kilometres/miles.[28] The following three categories of long-distance dispersal are known to occur:[1]

  • Extremely long-distance dispersal

This can occur unassisted (the robust nature of the spores allows them to be carried long distances in the air and then deposited by rain-scrubbing) or assisted (typically on human clothing or infected plant material that is transported between regions).[1] This type of dispersal is rare and is very difficult to predict.[1] This is especially known to rarely occur across thousands of km/mi from South Africa to Western Australia.[29][30]

  • Step-wise range expansion

This is probably the most common mode of long-distance dispersal and usually occurs within a country or region.[1]

  • Extinction and recolonisation

This occurs in areas that have unsuitable conditions for year-round survival of Puccinia graminis – typically temperate regions where hosts are absent during either the winter or summer.[1] Spores overwinter or oversummer in another region and then recolonise when conditions are favorable.[1]

Wheat stem rust resistance genes

A number of stem rust resistance genes (Sr genes) have been identified in wheat.[31] Some of them arose in bread wheat (e.g. Sr5 and Sr6), while others have been bred in from other wheat species (e.g. Sr21 from T. monococcum) or from other members of the tribe Triticeae (e.g. Sr31 from rye[22]: 15  and Sr44 from Thinopyrum intermedium).

None of the Sr genes provide resistance to all races of stem rust. For instance many of them are ineffective against the Ug99 lineage.[31] Notably Ug99 has virulence against Sr31, which was effective against all previous stem rust races. Recently, a new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat, which provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust. Singh et al. (2011) provide a list of known Sr genes and their effectiveness against Ug99.[31]

There has been significant uptake of resistant wheat varieties among Ethiopian farmers since 2014[32][33] - a great deal of which is thanks to CGIAR and CIMMYT (the International Maize and Wheat Improvement Center).[34][33]

Although Sr5, Sr21, Sr9e, Sr7b, Sr11, Sr6, Sr8a, Sr9g, Sr9b, Sr30, Sr17, Sr9a, Sr9d, Sr10, SrTmp, Sr38, and SrMcN are no longer effective in Lebanon, Sr11, Sr24, and Sr31 still are which is diagnostic for the presence of various races of stem rust - but the complete absence of Ug99 specifically - from Lebanon.[35]

Sr9h

Discovered and found to provide Ug99 resistance by Rouse et al., 2014.[22]: 24  However Ug99 isolates from South Africa and Zimbabwe, both in 2010, already had virulence when retested against this new gene.[22]: 24  Both Rouse and Wessels et al., 2019 find the Ug99 resistance of cv. 'Matlabas' is probably due to this gene. Wessels finds it is present in less than 5% of breeding lines.[36]

Sr14

Sr14 does not protect seedlings against TTKSK[37] but does provide moderate resistance at later stages.[37] It is effective against TTKST.[37]

Sr22

There is considerable variation among Sr22 alleles, with some conferring resistance and some susceptibility.[38]

Sr27

Sr27[39] is originally from rye[40] (Imperial Rye),[41] now (as of 2021) widely found in triticale and rarely in hexaploid wheat.[42] Located on the 3A chromosome arm,[39] originally from 3R.[43] Virulence has been observed in field Pgs and in an artificial Pgt  ×  Pgs.[41] When successful, Sr27 is among the few Srs that does not allow the underdeveloped uredinia and slight degree of sporulation commonly allowed by most Srs.[40] Instead there are necrotic or chlorotic flecks.[44] Pgt virulent on wheat with this gene was found in Kenya in 1972.[43] Deployment in triticale in New South Wales and Queensland, Australia rapidly produced virulence between 1982 and 1984 - the first virulence on this gene in the world.[45][40][43] (This was especially associated with the cultivar Coorong.)[45][46] Therefore, CIMMYT's triticale offerings were tested and many were found to depend solely on Sr27.[46][43] Four years later, in 1988 virulence was found in South Africa. Sr27 has become less common in CIMMYT triticales since the mid-'80s.[43]

Sr31

Ug99 is virulent against Sr31, which was effective against all previous stem rust races.[31]

Sr33

An introgression from a wild wheat Aegilops tauschii orthologous to Mla in barley. Confers broad resistance to multiple races including Ug99.[47][28]

Sr35

Sr35 is an introgression from Triticum monococcum conferring some resistance.[28]AvrSr35 - a Pgt gene so named because it was discovered causing avirulence on Sr35 - is the ancestral allele to all Pgt alleles that are virulent on Sr35. AvrSr35 came first, followed by the selective pressure of widespread adoption of Sr35 wheat races, followed by the evolution of virulence on Sr35 by way of nonfunctionalization mutations of AvrSr35.[48]

Sr59

Recently, a new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat, which provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.[31]

Sr62

An NLR (or NB-LRR, or R gene) from Aegilops sharonensis, one of only three resistance genes from that species.[49] Was discovered by Yu et al., 2017 and then introgressed into hexaploid by Millet et al., 2017.[49] Sr62 encodes for a unique tandem protein kinase which is composed of domains which are common among plants.[49] Yu et al., 2022 [49]

Weaponization

In the 1950s, the United States Air Force developed Operation Steelyard, a plan to drop wheat stem rust mixed with feathers over wheat farms in the Soviet Union. If the plan were enacted, Boeing B-29 Superfortress bombers would drop 500-pound M115 bombs over Soviet farms, with the intention of destroying up to 50% of the Soviet winter wheat harvest.[50]

Future

Alone amongst cereals, rice is naturally immune to rusts. If a genetic source of this resistance could be identified, transgenic wheats with rice as the gene donor could be the future.[51][52]

See also

References

  1. ^ a b c d e f g h i j k l m Singh, Ravi P.; Hodson, David; Huerta-Espino, Julio; Jin, Yue; Njau, Peter; Wanyera, Ruth; Herrera-Foessel, Sybil & Ward, Richard W. (2008). Will Stem Rust Destroy The World's Wheat Crop?. Advances in Agronomy. Vol. 98. pp. 272–309. doi:10.1016/S0065-2113(08)00205-8. ISBN 9780123743558.
  2. ^ a b c d e f g h i j k l m n o p q r s Schumann, G.L.; Leonard, K. J. (2011) [2000]. "Stem rust of wheat (black rust)". The Plant Health Instructor. doi:10.1094/PHI-I-2000-0721-01.
  3. ^ a b c Vincent, Michael (1 March 2011). "Wheat disease a threat to global food security". ABC News. Australian Broadcasting Corporation. Retrieved 27 May 2021.
  4. ^ O, Akhtar. "History". Plant diseases identification. Retrieved 2020-05-31.
  5. ^ a b Bhattacharya, Shaoni (2017-02-09). "Deadly new wheat disease threatens Europe's crops". Nature. 542 (7640): 145–146. Bibcode:2017Natur.542..145B. doi:10.1038/nature.2017.21424. PMID 28179687. S2CID 4451220.
  6. ^ Wanyera, R.; Macharia, J. K.; Kilonzo, S. M.; Kamundia, J. W. (2009-08-06). "Foliar Fungicides to Control Wheat Stem Rust, Race TTKS (Ug99), in Kenya". Plant Disease. 93 (9): 929–932. doi:10.1094/PDIS-93-9-0929. PMID 30754537.
  7. ^ a b c d e f Kaplan, Karen (July 22, 2009) "A red alert for wheat". LA Times
  8. ^ Saunders, Diane G. O.; Wulff, Brande B. H.; Thomas, Jane; Fenwick, Paul M.; Visser, Botma; Steffenson, Brian; Singh, Ravi P.; Sela, Hanan; Roohparvar, Ramin (2018-02-08). "Potential for re-emergence of wheat stem rust in the United Kingdom". Communications Biology. 1 (1): 13. doi:10.1038/s42003-018-0013-y. PMC 6053080. PMID 30271900.
  9. ^ Hovmøller, Mogens S.; Pretorius, Zacharias A.; Saunders, Diane G. O. (2019-02-04). "Tackling the re-emergence of wheat stem rust in Western Europe". Communications Biology. 2 (1): 51. doi:10.1038/s42003-019-0294-9. PMC 6361993. PMID 30729187.
  10. ^ Giovene, Giuseppe Maria (1839). Raccolta di tutte le opere del chiarissimo cavaliere Giuseppe Maria Giovene con note dell'editore Luigi Marinelli Giovene: Memorie fisico agrarie. Cannone. pp. 152–.
  11. ^ a b c Visser, Botma; Meyer, Marcel; Park, Robert F.; Gilligan, Christopher A.; Burgin, Laura E.; Hort, Matthew C.; Hodson, David P.; Pretorius, Zacharias A. (2019). "Microsatellite Analysis and Urediniospore Dispersal Simulations Support the Movement of Puccinia graminis f. sp. tritici from Southern Africa to Australia". Phytopathology. American Phytopathological Society. 109 (1): 133–144. doi:10.1094/phyto-04-18-0110-r. ISSN 0031-949X. PMID 30028232.
  12. ^ a b c Park, R. F. (2007). "Stem rust of wheat in Australia". Australian Journal of Agricultural Research. CSIRO Publishing. 58 (6): 558. doi:10.1071/ar07117. ISSN 0004-9409.
  13. ^ Sharma Poudel, Roshan; Richards, Jonathan; Shrestha, Subidhya; Solanki, Shyam; Brueggeman, Robert (2019). "Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance". BMC Genomics. Springer Science and Business Media LLC. 20 (1): 985. doi:10.1186/s12864-019-6369-7. ISSN 1471-2164. PMC 6915985. PMID 31842749.
  14. ^ a b c Jin, Y; Steffenson, BJ; Miller, JD (1994). "Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f.sp. tritici in barley line Q21861 and temperature effects on the expression of resistance". Phytopathology. American Phytopathological Society. 84 (5): 452–455. doi:10.1094/Phyto-84-452.
  15. ^ a b c d e f Steffenson, B. J.; Case, A. J.; Pretorius, Z. A.; Coetzee, V.; Kloppers, F. J.; Zhou, H.; Chai, Y.; Wanyera, R.; Macharia, G.; Bhavani, S.; Grando, S. (2017). "Vulnerability of Barley to African Pathotypes of Puccinia graminis f. sp. tritici and Sources of Resistance". Phytopathology. American Phytopathological Society. 107 (8): 950–962. doi:10.1094/phyto-11-16-0400-r. ISSN 0031-949X. PMID 28398875. SB ORCID: 0000-0002-4091-2608.
  16. ^ "Red Rust of Wheat". Rainy River Record. 15 May 2012. Retrieved 27 May 2021.
  17. ^ "Wheat Rust Diseases". Crop Science US. Retrieved 27 May 2021.
  18. ^ "North American Stem Rust Nomenclature Code Sheet" (PDF). CIMMYT (International Maize and Wheat Improvement Center). Archived from the original (PDF) on 2021-04-03.
  19. ^ "Rust - Stem: Race Nomenclature". United Nations Food and Agriculture Organization. Archived from the original on 2021-04-03. Retrieved 2021-04-03.
  20. ^ "Race identification". Agricultural Research Service. United States Department of Agriculture. Archived from the original on 2021-04-03. Retrieved 2021-04-03.
  21. ^ Roelfs, A. P.; Martens, J. W. (1988). "An International System of Nomenclature for Puccinia graminis f. sp. tritici". Phytopathology. American Phytopathological Society. 78 (5): 526. doi:10.1094/phyto-78-526. ISSN 0031-949X. S2CID 85077767.
  22. ^ a b c d Hawkins, Nichola (2021-01-20). "Ug99 Stem Rust – Breaching Wheat's Defences". Plant Pandemic Studies. British Society for Plant Pathology: 1–35.
  23. ^ Olivera, Pablo; Newcomb, Maria; Szabo, Les J.; Rouse, Matthew; Johnson, Jerry; Gale, Samuel; Luster, Douglas G.; Hodson, David; Cox, James A.; Burgin, Laura; Hort, Matt; Gilligan, Christopher A.; Patpour, Mehran; Justesen, Annemarie F.; Hovmøller, Mogens S.; Woldeab, Getaneh; Hailu, Endale; Hundie, Bekele; Tadesse, Kebede; Pumphrey, Michael; Singh, Ravi P.; Jin, Yue (2015). "Phenotypic and Genotypic Characterization of Race TKTTF of Puccinia graminis f. sp. tritici that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013–14". Phytopathology. American Phytopathological Society. 105 (7): 917–928. doi:10.1094/phyto-11-14-0302-fi. ISSN 0031-949X. PMID 25775107. S2CID 40448078.
  24. ^ a b c d e Roelfs, A. P.; Long, D. L.; Roberts, J. J. (1993). "Races of Puccinia graminis in the United States During 1991". Plant Disease. American Phytopathological Society. 77 (2): 129. doi:10.1094/pd-77-0129. ISSN 0191-2917. S2CID 88120284.
  25. ^ a b c d e McVey, D. V.; Long, D. L.; Roberts, J. J. (2002). "Races of Puccinia graminis in the United States During 1997 and 1998". Plant Disease. American Phytopathological Society. 86 (6): 568–572. doi:10.1094/pdis.2002.86.6.568. ISSN 0191-2917. PMID 30823225. S2CID 73493362.
  26. ^ Peterson, Ronald H. (1974). "The rust fungus life cycle". The Botanical Review. 40 (4): 453–513. doi:10.1007/BF02860021. S2CID 45598137.
  27. ^ Duplessis, S.; Cuomo, C. A.; Lin, Y.-C.; Aerts, A.; Tisserant, E.; Veneault-Fourrey, C.; Joly, D. L.; Hacquard, S.; Amselem, J.; Cantarel, B. L.; Chiu, R.; Coutinho, P. M.; Feau, N.; Field, M.; Frey, P.; Gelhaye, E.; Goldberg, J.; Grabherr, M. G.; Kodira, C. D.; Kohler, A.; Kues, U.; Lindquist, E. A.; Lucas, S. M.; Mago, R.; Mauceli, E.; Morin, E.; Murat, C.; Pangilinan, J. L.; Park, R.; Pearson, M.; Quesneville, H.; Rouhier, N.; Sakthikumar, S.; Salamov, A. A.; Schmutz, J.; Selles, B.; Shapiro, H.; Tanguay, P.; Tuskan, G. A.; Henrissat, B.; Van de Peer, Y.; Rouze, P.; Ellis, J. G.; Dodds, P. N.; Schein, J. E.; Zhong, S.; Hamelin, R. C.; Grigoriev, I. V.; Szabo, L. J.; Martin, F. (2011-05-02). "Obligate biotrophy features unraveled by the genomic analysis of rust fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici". Proceedings of the National Academy of Sciences. National Academy of Sciences. 108 (22): 9166–9171. doi:10.1073/pnas.1019315108. ISSN 0027-8424. PMC 3107277. PMID 21536894.
  28. ^ a b c Gross, Michael (2013). "Pests on the move". Current Biology. Cell Press. 23 (19): R855–R857. doi:10.1016/j.cub.2013.09.034. ISSN 0960-9822. PMID 24251330. S2CID 15559913.
  29. ^ Sounding the Alarm on Global Stem Rust (PDF) (Report). Borlaug Global Rust Initiative. p. 4: Like all...
  30. ^ "Watson, I A.; Cass Smith, W. P.; and Shipton, W. A. (1966) "Strains of stem and leaf rust on wheat in Western Australia since 1951," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 7 : No. 8 , Article 7". p. 365: It may be... {{cite journal}}: Cite journal requires |journal= (help)
  31. ^ a b c d e Singh, Ravi P.; Hodson, David P.; Huerta-Espino, Julio; Jin, Yue; Bhavani, Sridhar; Njau, Peter; Herrera-Foessel, Sybil; Singh, Pawan K.; Singh, Sukhwinder; Govindan, Velu (2011). "The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World Wheat Production". Annual Review of Phytopathology. 49 (1): 465–481. doi:10.1146/annurev-phyto-072910-095423. PMID 21568701. SB ORCID: 0000-0002-4091-2608.
  32. ^ Hodson, D. P.; Jaleta, M.; Tesfaye, K.; Yirga, C.; Beyene, H.; Kilian, A.; Carling, J.; Disasa, T.; Alemu, S. K.; Daba, T.; Alemayehu, Y.; Badebo, A.; Abeyo, B.; Erenstein, O. (2020-10-28). "Ethiopia's transforming wheat landscape: tracking variety use through DNA fingerprinting". Scientific Reports. Springer Nature. 10 (1): 18532. doi:10.1038/s41598-020-75181-8. ISSN 2045-2322. PMC 7595036. PMID 33116201.
  33. ^ a b "Press release: Rust-resistant bread wheat varieties widely adopted in Ethiopia, study shows » CGIAR Research Program on WHEAT". CGIAR WHEAT. 10 November 2020. Retrieved 2020-11-18.
  34. ^ Yasabu, Simret (2020-12-15). "Shining a brighter light on adoption and diffusion". CIMMYT (the International Maize and Wheat Improvement Center). Retrieved 2021-01-01.
  35. ^ Rola El Amil (Lebanese Agricultural Research Institute, Lebanon) (2020-11-09). (DAY 2) - Phytosanitary Safety for Transboundary pest prevention - Yellow and Black rust population variability. CGIAR Germplasm Health Webinar series. Vol. Phytosanitary Awareness Week. International Institute of Tropical Agriculture / CGIAR. Slide at 00:44:37. Archived from the original on 2021-12-14.
  36. ^
  37. ^ a b c Kumar, Sachin; Fetch, Tom G.; Knox, Ron E.; Singh, Asheesh K.; Clarke, John M.; Depauw, Ron M.; Cuthbert, Richard D.; Campbell, Heather L.; Singh, Davinder; Bhavani, Sridhar; Pozniak, Curtis J.; Meyer, Brad; Clarke, Fran R. (2020-11-19). "Mapping of Ug99 stem rust resistance in Canadian durum wheat". Canadian Journal of Plant Pathology. Informa UK Limited. 43 (4): 599–611. doi:10.1080/07060661.2020.1843073. ISSN 0706-0661. SB ORCID: 0000-0002-4091-2608.
  38. ^ Hatta, Muhammad Asyraf Muhammad; Ghosh, Sreya; Athiyannan, Naveenkumar; Richardson, Terese; Steuernagel, Burkhard; Yu, Guotai; Rouse, Matthew N.; Ayliffe, Michael; Lagudah, Evans S.; Radhakrishnan, Guru V.; Periyannan, Sambasivam K.; Wulff, Brande B. H. (2020). "Extensive Genetic Variation at the Sr22 Wheat Stem Rust Resistance Gene Locus in the Grasses Revealed Through Evolutionary Genomics and Functional Analyses". Molecular Plant-Microbe Interactions. American Phytopathological Society. 33 (11): 1286–1298. doi:10.1094/mpmi-01-20-0018-r. ISSN 0894-0282. PMID 32779520. MAMH ORCID: 0000-0002-8952-5684 Scopus: 57189640847.
  39. ^ a b "Sr27". Borlaug Global Rust Initiative (BGRI). Retrieved 2021-07-24.
  40. ^ a b c Singh, Ravi P.; Hodson, David P.; Huerta-Espino, Julio; Jin, Yue; Bhavani, Sridhar; Njau, Peter; Herrera-Foessel, Sybil; Singh, Pawan K.; Singh, Sukhwinder; Govindan, Velu (2011-09-08). "The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World Wheat Production". Annual Review of Phytopathology. Annual Reviews. 49 (1): 465–481. doi:10.1146/annurev-phyto-072910-095423. ISSN 0066-4286. PMID 21568701.
  41. ^ a b Park, Robert F.; Wellings, Colin R. (2012-09-08). "Somatic Hybridization in the Uredinales". Annual Review of Phytopathology. Annual Reviews. 50 (1): 219–239. doi:10.1146/annurev-phyto-072910-095405. ISSN 0066-4286. PMID 22920559.
  42. ^ Upadhyaya, Narayana M.; Mago, Rohit; Panwar, Vinay; Hewitt, Tim; Luo, Ming; Chen, Jian; Sperschneider, Jana; Nguyen-Phuc, Hoa; Wang, Aihua; Ortiz, Diana; Hac, Luch; Bhatt, Dhara; Li, Feng; Zhang, Jianping; Ayliffe, Michael; Figueroa, Melania; Kanyuka, Kostya; Ellis, Jeffrey G.; Dodds, Peter N. (2021). "Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair" (PDF). Nature Plants. Nature Research. 7 (9): 1220–1228. doi:10.1038/s41477-021-00971-5. ISSN 2055-0278. PMID 34294906. S2CID 236199741.
  43. ^ a b c d e McIntosh, RA; Wellings, CR; Park, RF (1995). Wheat Rusts - An Atlas of Resistance Genes. Springer. ISBN 9789401040419.
  44. ^ Roelfs, A P (1988). "Genetic Control of Phenotypes in Wheat Stem Rust". Annual Review of Phytopathology. Annual Reviews. 26 (1): 351–367. doi:10.1146/annurev.py.26.090188.002031. ISSN 0066-4286.
  45. ^ a b McIntosh, R. A.; Brown, G. N. (1997). "Anticipatory Breeding for Resistance to Rust Diseases in Wheat". Annual Review of Phytopathology. Annual Reviews. 35 (1): 311–326. doi:10.1146/annurev.phyto.35.1.311. ISSN 0066-4286. PMID 15012526.
  46. ^ a b Johnson, R (1984). "A Critical Analysis of Durable Resistance". Annual Review of Phytopathology. Annual Reviews. 22 (1): 309–330. doi:10.1146/annurev.py.22.090184.001521. ISSN 0066-4286.
  47. ^ Periyannan, Sambasivam; Moore, John; Ayliffe, Michael; Bansal, Urmil; Wang, Xiaojing; Huang, Li; Deal, Karin; Luo, Mingcheng; Kong, Xiuying; Bariana, Harbans; Mago, Rohit; McIntosh, Robert; Dodds, Peter; Dvorak, Jan; Lagudah, Evans (2013-06-27). "The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99". Science. American Association for the Advancement of Science. 341 (6147): 786–788. Bibcode:2013Sci...341..786P. doi:10.1126/science.1239028. ISSN 0036-8075. PMID 23811228. S2CID 206549297.
  48. ^ Salcedo, Andres; Rutter, William; Wang, Shichen; Akhunova, Alina; Bolus, Stephen; Chao, Shiaoman; Anderson, Nickolas; De Soto, Monica Fernandez; Rouse, Matthew; Szabo, Les; Bowden, Robert L.; Dubcovsky, Jorge; Akhunov, Eduard (2017-12-21). "Variation in the AvrSr35gene determines Sr35 resistance against wheat stem rust race Ug99". Science. American Association for the Advancement of Science (AAAS). 358 (6370): 1604–1606. Bibcode:2017Sci...358.1604S. doi:10.1126/science.aao7294. ISSN 0036-8075. PMC 6518949. PMID 29269474. S2CID 206664159.
  49. ^ a b c d
  50. ^ Kirby; Carus (2020). "Agroterrorism Perspectives". In Mauroni; Norton (eds.). Agroterrorism: National Defense Assessment, Strategies, and Capabilities (PDF). U.S. Air Force Center for Strategic Deterrence Studies. p. 9.
  51. ^ McCandless, Linda (2011). "No rust for rice". Rice Today. Vol. 10, no. 1. CGIAR’s Research Program on Rice (IRRI). pp. 38–39.
  52. ^ Cameron, Katherine (2011-02-28). "Does rust-free rice hold the secret?". The Plantwise Blog. CABI (Centre for Agriculture and Bioscience International). Retrieved 2021-04-10.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Stem rust: Brief Summary

provided by wikipedia EN

Stem rust, also known as cereal rust, black rust, red rust or red dust, is caused by the fungus Puccinia graminis, which causes significant disease in cereal crops. Crop species that are affected by the disease include bread wheat, durum wheat, barley and triticale. These diseases have affected cereal farming throughout history. The annual recurrence of stem rust of wheat in North Indian plains was discovered by Prof. K.C. Mehta. Since the 1950s, wheat strains bred to be resistant to stem rust have become available. Fungicides effective against stem rust are available as well.

In 1999 a new virulent race of stem rust was identified against which most current wheat strains show no resistance. The race was named TTKSK (e.g. isolate Ug99). An epidemic of stem rust on wheat caused by race TTKSK spread across Africa, Asia and the Middle East, causing major concern due to the large numbers of people dependent on wheat for sustenance, thus threatening global food security.

An outbreak of another virulent race of stem rust, TTTTF, took place in Sicily in 2016, suggesting that the disease is returning to Europe. Comprehensive genomic analysis of Puccinia graminis, combined with plant pathology and climate data, has pointed out the potential of the re-emergence of stem wheat rust in UK.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Nigra rusto ( Esperanto )

provided by wikipedia EO

Nigra rusto aŭ tiga, cereala rusto estas planta malsano, kiun kaŭzas nigrarusta fungo (Puccinia graminis) kaj damaĝas ĉefe tritikon.

La nigra rusto estas konata jam en antikvaj fontoj. La romianoj eĉ havis apartan Dion kontraŭ la malsano (Robigus) kaj festis ĉiun jaron la 23-an de aprilo (Robigalia) por la Dio kaj oferis hundon por ĝi.

La lasta dismonda epidemio okazis en 1954, antaŭ ol Norman Borlaug komencis nobligi rezistajn subspeciojn en Meksiko. Danke al liaj laboroj, en la 1960-aj jaroj disvastiĝis la rezista tritika specio. Borlaug ricevis pro tio Nobel-premion en 1970.

Ug99 estas la plej danĝera tribo de la fungo, ĉar ĝi rezistas al la nunaj fungicidoj.

Priskribo

 src=
Ciklo de P. graminis

Pucinnia graminis sinsekve parazitas du gastigantaj kreskaĵoj : Berberis vulgaris poste tritiko aŭ aliaj Pooideoj (science Pooideae). Heinrich Anton de Bary priskribis unue ĝia ciklvivo.









license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Nigra rusto: Brief Summary ( Esperanto )

provided by wikipedia EO

Nigra rusto aŭ tiga, cereala rusto estas planta malsano, kiun kaŭzas nigrarusta fungo (Puccinia graminis) kaj damaĝas ĉefe tritikon.

La nigra rusto estas konata jam en antikvaj fontoj. La romianoj eĉ havis apartan Dion kontraŭ la malsano (Robigus) kaj festis ĉiun jaron la 23-an de aprilo (Robigalia) por la Dio kaj oferis hundon por ĝi.

La lasta dismonda epidemio okazis en 1954, antaŭ ol Norman Borlaug komencis nobligi rezistajn subspeciojn en Meksiko. Danke al liaj laboroj, en la 1960-aj jaroj disvastiĝis la rezista tritika specio. Borlaug ricevis pro tio Nobel-premion en 1970.

Ug99 estas la plej danĝera tribo de la fungo, ĉar ĝi rezistas al la nunaj fungicidoj.

license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Puccinia graminis ( Spanish; Castilian )

provided by wikipedia ES

La roya o roya negra (Puccinia graminis) es una especie de hongo que produce una enfermedad que afecta a diversos granos de cereal. Una epidemia de roya en el trigo causada por la raza Ug99 se encuentra actualmente en dispersión a través de África, Asia y más recientemente el Medio Oriente y es motivo de gran preocupación a causa del gran número de personas que dependen del trigo para su subsistencia. La cepa fue designada por el país en la cual se la identificó (Uganda) y el año de su descubrimiento (1999).[1]​ Se propagó por Kenia, Etiopía, Sudán, Yemen y luego Irán, volviéndose cada vez más contagiosa.[1]​ Los científicos están trabajando en el desarrollo de cepas de trigo que sean resistentes al UG99. Sin embargo, el trigo es cultivado en un rango muy variado de medios ambientes. Lo cual significa que los programas de desarrollo aún tienen por delante un gran desafío en obtener cepas que sean resistentes a los germoplasmas con adaptaciones regionales.[1]

Biología

Existe una considerable diversidad genética entre las especies de P. graminis y se han identificado varias formas especiales, forma specialis, que dependen de la naturaleza del grano afectado.

  • Puccinia graminis f. sp. avenae, avena
  • Puccinia graminis f. sp. dactylis
  • Puccinia graminis f. sp. lolii
  • Puccinia graminis f. sp. poae
  • Puccinia graminis f. sp. secalis, centeno, cebada
  • Puccinia graminis f. sp. tritici, trigo, cebada

Patología

El hongo de la roya ataca las partes de la planta que se encuentran por encima del suelo. Las esporas se depositan en las plantas de trigo verde donde forman una pústula que invade las capas exteriores del tallo.[1]​ El sitio infectado es un síntoma visible de la enfermedad. En aquellos casos en que la enfermedad se ha manifestado sobre el tallo o la hoja, se desarrollan ampollas o pústulas elípticas denominadas uredia. Las plantas infectadas producen menor cantidad de tallos secundarios y consecuentemente menos semilla, y en casos de infecciones severas la planta puede llegar a morir.

Los picnios o espermagonios por lo general se forman en la cara superior de las hojas de Berberis vulgaris, y la aecia se forma entre 5 a 7 días luego de la fertilización de los mismos en la cara inferior de la hoja, directamente debajo de cada espermagonio fertilizado.

Ug99

Ug99, la designación de TTKS, es una raza de la roya negra (Puccinia graminis tritici).[2]​ Es del tipo virulento en la gran mayoría de las variedades de trigo.[3]​ A diferencias de otras royas, que solo afectan de manera parcial el rendimiento de las cosechas, el UG99 puede afectar la totalidad de una cosecha y resultar en la pérdida total de la misma, por ejemplo en Kenia recientemente esta roya destruyó el 80% de la cosecha. [4]​ El brote fue detectado inicialmente en Uganda en 1999 y se ha diseminado a través de las tierras altas del Este de África. En enero del 2007, las esporas volaron hasta Yemen, y hacia el norte hasta Sudán. En marzo del 2007, la FAO anunció su preocupación por la llegada de la enfermedad a Irán de acuerdo a lo que informaron las autoridades iraníes.[5]

Historia

Los hongos antecesores de la roya negra han infectado a los pastos por millones de años y a las cosechas de cereales desde que el hombre comenzó a cultivar.[1]​ Según Jim Peterson, profesor de cultivo del trigo y genética en la Universidad del Estado de Oregón, "La roya negra destruyó más del 20% de las cosechas de trigo de Estados Unidos varias veces entre 1917 y 1935, y las pérdidas durante la década de 1950 dos veces alcanzaron al 9% de la cosecha," la última infección en Estados Unidos ocurrió en 1962 destruyendo el 5.2% de la cosecha.[1]

Nombres comunes

  • anublo, niebla de los cereales.[6]

Referencias

  1. a b c d e f Karen Kaplan A red alert for wheat July 22, 2009 BrandX/ LA Times
  2. Singh, RP et al. (2006). «Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen». CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1 (054). doi:10.1079/PAVSNNR20061054. Consultado el 19 de abril de 2007. – Review Article
  3. «Billions at risk from wheat super-blight». New Scientist Magazine (2598): 6-7. 3 de abril de 2007. Consultado el 19 de abril de 2007.
  4. Effect of a new race on wheat production/use of fungicides and its cost in large vs small scale farmers, situation of current cultivars. Kenya Agricultural Research Institute, 2005. Njoro. Cited in CIMMYT 2005 study.
  5. Dangerous wheat-killing fungus detected in Iran from UN News Centre
  6. Colmeiro, Miguel: «Diccionario de los diversos nombres vulgares de muchas plantas usuales ó notables del antiguo y nuevo mundo», Madrid, 1871.

Véase también

  • Bomba M115 - Una bomba norteamericana tipo racimo diseñada para diseminar la roya negra

Bibliografía

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Puccinia graminis: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

La roya o roya negra (Puccinia graminis) es una especie de hongo que produce una enfermedad que afecta a diversos granos de cereal. Una epidemia de roya en el trigo causada por la raza Ug99 se encuentra actualmente en dispersión a través de África, Asia y más recientemente el Medio Oriente y es motivo de gran preocupación a causa del gran número de personas que dependen del trigo para su subsistencia. La cepa fue designada por el país en la cual se la identificó (Uganda) y el año de su descubrimiento (1999).​ Se propagó por Kenia, Etiopía, Sudán, Yemen y luego Irán, volviéndose cada vez más contagiosa.​ Los científicos están trabajando en el desarrollo de cepas de trigo que sean resistentes al UG99. Sin embargo, el trigo es cultivado en un rango muy variado de medios ambientes. Lo cual significa que los programas de desarrollo aún tienen por delante un gran desafío en obtener cepas que sean resistentes a los germoplasmas con adaptaciones regionales.​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Rouille noire ( French )

provided by wikipedia FR

Puccinia graminis

Puccinia graminis est une espèce de champignons basidiomycètes de la famille des Pucciniaceae. Cette espèce parasite le blé chez lequel elle provoque la maladie de la « rouille noire ».

Historique de la lutte

En 1944, un phytopathologiste américain, Norman Borlaug, se rendit au Mexique pour lutter contre une épidémie de rouille noire à l'origine d'une famine généralisée. En croisant différentes variétés de blé du monde entier, il obtint un hybride résistant à la rouille et à haut rendement.

Cependant, la souche virulente Ug99[1],[2] du parasite, nommée ainsi parce qu'elle fut identifiée pour la première fois en Ouganda en 1999, a été responsable d'importantes pertes de rendement dans des cultures de blé d'Afrique de l'Est et les autres pays cités plus bas depuis son apparition. Progressivement, elle a gagné le Kenya, l'Éthiopie, le Soudan et le Yémen. En 2007, elle a traversé le golfe Persique pour atteindre le Yémen, puis l'Iran l'année suivante[3].

Des experts du Centre de référence mondial sur la rouille (GRRC) à l’université d’Aarhus et du Centre international pour l’amélioration du maïs et du blé (CIMMYT) ont mis en garde en 2016 contre de nouvelles souches de rouille très agressives, parmi lesquelles une souche de rouille noire baptisée TTTTF qui a frappé la Sicile en 2016[4].

Description

 src=
Cycle évolutif de P. graminis

Le champignon, classé parmi les Basidiomycètes, prend successivement quatre aspects : de petites fructifications ressemblant à des pycnides produisent des spores appelées spermaties. Ces spores haploïdes vont permettre la formation d'un dicaryon. Ce dicaryon forme ensuite une structure appelée Aecidium qui produit des écidiospores. Ces écidiospores germent et forment des sores qui produiront des urédospores puis des téleutospores. Les sores à urédospores se rencontrent surtout sur la tige. Les téteutospores sont pédicellées et bicellulaires[5].

Cycle de reproduction

Anton de Bary a décrit le cycle de cette rouille hétéroxène macrocyclique. Hétéroxène signifie que deux hôtes sont obligatoires pour boucler le cycle évolutif. Ici l'hôte principal est une graminée. Macrocyclique signifie que les quatre stades sont présents : spermatie, écidiospore, urédospore et téleutospore. C'est dans les téleutospores qu'a lieu la méiose.

L'hôte secondaire (écidien) est l'épine vinette Berberis vulgaris. L'éradication de l'épine vinette a beaucoup contribué au recul de la maladie. Les épines vinette sont contaminées au début du printemps lorsqu'elles commencent à bourgeonner et les écidies sont mûres à partir du mois de mai[5].

Dissémination

Cet agent phytopathogène est inscrit sur la liste établie par le groupe Australie[6].

Notes et références

  1. Une épidémie de rouille noire, redoutable parasite du blé, menace les grands pays céréaliers d'Asie (Le Monde.fr 21.04.2008 16.39)
  2. « Une lutte mondiale se met en place pour contrer la rouille du blé, l’Ug99 », Référence environnement,‎ 17 novembre 2008
  3. Jacques Barnouin, Ivan Sache et al. (préf. Marion Guillou), Les maladies émergentes : Épidémiologie chez le végétal, l'animal et l'homme, Versailles, Quæ, coll. « Synthèses », 2010, 444 p. (ISBN 978-2-7592-0510-3, ISSN , lire en ligne), I. Facettes et complexité de l'émergence, chap. 2 (« Les maladies émergentes affectant les végétaux »), p. 26-27, accès libre.
  4. (en) Jens Grønbech Hansen, « Risk of wheat stem rust in Mediterranean Basin in the forthcoming 2017 crop season following outbreaks on Sicily in 2016 », sur Global Rust Reference Center (GRRC) (consulté le 3 août 2019)
  5. a et b Georges Viennot-Bourgin, Les champignons parasites des plantes cultivées, 1949
  6. « Liste des agents phytopathogènes réglementés à l'exportation », sur www.australiagroup.net, juin 2012 (consulté le 10 février 2015)

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Rouille noire: Brief Summary ( French )

provided by wikipedia FR

Puccinia graminis

Puccinia graminis est une espèce de champignons basidiomycètes de la famille des Pucciniaceae. Cette espèce parasite le blé chez lequel elle provoque la maladie de la « rouille noire ».

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Puccinia graminis ( Indonesian )

provided by wikipedia ID

Karat batang adalah penyakit tumbuhan penyerang tanaman serealia yang disebabkan oleh fungi Puccinia graminis. Spesies tanaman yang diserang mencakup gandum roti, gandum durum, barley, dan triticale.[1] Epidemi karat batang saat ini menyebar melintasi Afrika menuju Timur Tengah.[2] Para ilmuwan sedang mengembangkan gandum yang tahan terhadap penyakit karat batang, terutama terhadap strain UG99 dari fungi ini.[2]

Biologi

Terdapat keanekaragaman genetik yang cukup luas di antara spesies P. graminis. Beberapa yang telah teridentifikasi dan tanaman yang diserangnya yaitu:

  • Puccinia graminis f. sp. avenae, oat
  • Puccinia graminis f. sp. dactylis
  • Puccinia graminis f. sp. hordei, barley
  • Puccinia graminis f. sp. lolii
  • Puccinia graminis f. sp. poae
  • Puccinia graminis f. sp. secalis, rye, barley
  • Puccinia graminis f. sp. tritici, gandum, barley

Fungi yang menginfeksi barley memiliki dua jenis patotipe.[3]

P. graminis adalah fungi dari filum Basidiomycota. Fungi ini dicirikan dengan warna seperti karat logam pada daun dan batang tumbuhan. Berbeda dengan kebanyakan fungi, karat batang memiliki lima tahap spora dan siklus hidup di antara dua jenis tumbuhan yang dihinggapinya. Gandum adalah tanaman hinggap utama dan Berberis vulgaris adalah yang kedua.

Patologi

Fungi karat batang menyerang bagian dari tumbuhan yang berada di atas tanah. Spora jatuh di atas bagian tumbuhan yang berwarna hijau dan membentuk bintil yang menyrang bagian luar dari batang.[2] Tumbuhan yang terinfeksi menghasilkan lebih sedikit ruas batang dan rangkaian biji. Pada infeksi yang sudah parah, tumbuhan akan mati. Infeksi dapat menyebabkan patah batang dan runtuhnya biji-bijian sebelum panen dimulai.[1]

Karat batang menyebabkan hilangnya hasil dari tanaman serealia dengan berbagai cara:[4]

  • Fungi menyerap nutrisi
  • Bintil menembus epidermis dan mengganggu transpirasi tumbuhan sehingga menyebabkan kekeringan dan infeksi oleh jamur lainnya/
  • Mengintervensi saluran pembuluh tumbuhan.
  • Fungi melemahkan batang sehingga tumbuhan dapat roboh.

Gejala

Karat batang pada gandum dicirikan dengan keberadaan bintil berwarna merah bata yang sebenarnya dapat disapu dan dibersihkan dengan tangan. Karat batang lebih sering terdapat pada gulungan daun. Infeksi pada daun terjadi pada bagian bawah daun tetapi dapat menembus hingga ke lapisan atas daun.[1]

Karat batang pada tumbuhan Berberis vulgaris muncul di musim semi dan terlihat di bagian atas daun. Lima hingga 10 hari kemudian akan membentuk struktur menyerupai cangkir yang terisi oleh spora.[4]

Referensi

  1. ^ a b c Singh, Ravi P. (2008). "Will Stem Rust Destroy The World's Wheat Crop?". Advances in Agronomy. 98: 272–309. doi:10.1016/S0065-2113(08)00205-8. Parameter |coauthors= yang tidak diketahui mengabaikan (|author= yang disarankan) (bantuan)
  2. ^ a b c Karen Kaplan A red alert for wheat July 22, 2009 BrandX/ LA Times
  3. ^ Jin, Y; Steffenson, Bj; Miller, Jd, 1994: Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis fsp tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology 84(5): 452-455
  4. ^ a b Schumann, G.L. (2000 (updated 2011)). "Stem rust of wheat (black rust)". The Plant Health Instructor. doi:10.1094/PHI-I-2000-0721-01. Parameter |coauthors= yang tidak diketahui mengabaikan (|author= yang disarankan) (bantuan); Periksa nilai tanggal di: |year= (bantuan); Tidak memiliki atau membutuhkan |url= (bantuan); Parameter |access-date= membutuhkan |url= (bantuan)

Pranala luar

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Puccinia graminis: Brief Summary ( Indonesian )

provided by wikipedia ID

Karat batang adalah penyakit tumbuhan penyerang tanaman serealia yang disebabkan oleh fungi Puccinia graminis. Spesies tanaman yang diserang mencakup gandum roti, gandum durum, barley, dan triticale. Epidemi karat batang saat ini menyebar melintasi Afrika menuju Timur Tengah. Para ilmuwan sedang mengembangkan gandum yang tahan terhadap penyakit karat batang, terutama terhadap strain UG99 dari fungi ini.

license
cc-by-sa-3.0
copyright
Penulis dan editor Wikipedia
original
visit source
partner site
wikipedia ID

Puccinia graminis ( Italian )

provided by wikipedia IT

La ruggine del grano è un'avversità causata dal fungo Puccinia graminis Pers., (1794).

Biologia

La P. graminis presenta molte altre forma specialis, che si caratterizzano per infestare determinate piante ospiti.

  • Puccinia graminis f. sp. avenae, avena
  • Puccinia graminis f. sp. dactylis
  • Puccinia graminis f. sp. lolii
  • Puccinia graminis f. sp. poae
  • Puccinia graminis f. sp. secalis, segale, orzo
  • Puccinia graminis f. sp. tritici, grano, orzo

Come altre specie del genere Puccinia, la P. graminis ha un complesso ciclo biologico che comprende l'alternarsi di generazioni.

Il P. graminis è un fungo uredinale eteroico con un ciclo di vita su due ospiti con cinque tipi di sporulazione: basidiospore (monocariotiche), picnidiospore (spermazi aploidi), ecidiospore (dicariotiche), uredospore (dicariotiche) e teleutospore (prima dicariotiche poi aploidi).

 src=
Ciclo biologico di Puccinia graminis.

Le basidiospore si sviluppano nella primavera sull'ospite secondario Berberis vulgaris. Tramite un micelio parassita intercellulare, le basidiospore inseriscono nelle foglie i tubetti germinativi con cellule aploidi uninucleate. Ogni micelio, che è stato prodotto da una basidiospora, produce dei picnidi (sacche ad anfora) sulla parte superiore delle foglie. In prossimità della faccia inferiore sviluppa una serie di ife subsferiche che formano successivamente l'ecidio.

 src=
Ecidio di Puccinia graminis sulla pagina inferiore di una foglia di Berberis vulgaris.

I picnidi avviano la fase sessuata trasferendo i nuclei attraverso la picnidiospora (spermazi uninucleati).

Un picnidio sviluppa anche delle ife ricettive sulla foglia che si fondono con gli spermazi, di segno opposto, trasportati dal vento o dagli insetti. Dato che le ife non presentano setti divisori con i nuclei corrispondenti delle picnidiospore, gli spermazi vengono trasportati fino al nucleo che diventa dicariotico.

Le cellule diventate dicariotiche si trasformano in ecidi che si aprono sulla faccia inferiore della foglia rilasciando filamenti di ecidiospore dicariotiche che possono essere sparse dal vento.

 src=
Legenda: sp picnidio, bl sezione di foglia di Berberis vulgaris, per ifa, ae ecidio, un uredospora, puce teleutospore.

Con la formazione delle ecidiospore cambia l'ospite, poiché le ecidiospore sono in grado di infettare solo le graminacee bersaglio della specie.

le ecidiospore penetrano attraverso le aperture stomatiche formando un micelio intercellulare dicariotico che forma successivamente dei conidi dicariotici detti uredospore.

Le uredospore sviluppandosi in ife raggruppate in sori (uredosori) allineati di color ruggine, lacerano la superficie della pianta fuoriuscendo.

Le uredospore propagano l'infezione nella stagione estiva, raggiungendo altre piante e formando nuovi uredosori.

Con l'autunno, negli uredosori, il micelio dicariotico produce le teleutospore bicellulari dove si fondono due nuclei (cariogamia). L'aspetto esteriore di questa nuova fase di sporulazionione è rappresentato da pustole brune e polverulente.

Le teleutospore sono adattate a superare, in quiescienza, i rigori dell'inverno avendo una spessa parete cellulare che le protegge.

 src=
Teleutospore di Puccinia graminis.

All'arrivo della primavera le teleutospore, attraverso la meiosi, formano un basidio tubolare che esce attraverso un foro germinativo preesistente.

Il basidio contiene quattro nuclei aploidi separati da setti. Ciascuno forma una basidiospora che si stacca e viene trasportata dal vento su di una nuova pianta bersaglio di Berberis vulgaris.

Storia

I due italiani Fontana e Tozzetti per primi descrissero il fungo della ruggine del grano nel 1767.[1] La ruggine del grano fu studiata anche da Giuseppe Maria Giovene (1753-1837) nel suo lavoro Lettera al dottor Cosimo Moschettini su la ruggine.[2]

I progenitori della ruggine del grano si sono sviluppati per milioni di anni sulle graminacee selvatiche e sui campi di grano dagli albori della loro coltivazione.[3] Secondo le stime di Jim Peterson, professore di genetica presso la Oregon State University, "La ruggine del grano ha distrutto più del 20% dei raccolti di grano negli Stati Uniti diverse volte fra il 1917 ed il 1935, e le perdite hanno raggiunto il 9% due volte negli anni '50", con l'ultima epidemia registrata nel 1962 che distrusse il 5.2% dei raccolti.[3]

Fitopatologia

La ruggine del grano attacca la parte aerea della pianta. Il vento trasporta le spore che, se condizioni climatiche lo consentono, sviluppano delle galle ellittiche dette uredia.[4] Le piante colpite si sviluppano meno e si rachitizzano, in caso di forte sviluppo del parassita, la pianta può morire.

Note

Bibliografia

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Puccinia graminis: Brief Summary ( Italian )

provided by wikipedia IT

La ruggine del grano è un'avversità causata dal fungo Puccinia graminis Pers., (1794).

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Stiebru rūsa ( Latvian )

provided by wikipedia LV

Stiebru jeb svītru rūsa ir rūsas sēnes Puccinia graminis izraisīta graudaugu rūsa. Sēnes infekcija var skart visu graudaugu stiebrus un lapu makstis, dažreiz arī lapas un pat sēklas. Galvenokārt inficējas kviešu sējumi. Slimība ir izplatīta visā pasaulē.[1]

Sēnes pustulas ir lielas, sarkanīgi brūnas, izkārtotas rindās, saplūstot kopā, veido svītras. Vēlās slimības stadijās tā izdala melnas sporas. Stipras infekcijas gadījumā, augi attīstās vāji, neveido ražu, sakrīt veldrē.

Attīstība

Atkarībā no inficētā saimniekauga, stiebru rūsai ir vairākas speciālas formas[2]:

  • Puccinia graminis f. sp. avenaeauzas;
  • Puccinia graminis f. sp. hordeimieži;
  • Puccinia graminis f. sp. secalisrudzi, mieži;
  • Puccinia graminis f. sp. triticikvieši, mieži.

P. graminis piemīt pilns attīstības cikls un kā starpsamnieks tiek izmantotas bārbeles. Stiebru rūsa attīstās siltā temperatūrā. Optimāli augšanas apstākļi — 18—29°C, bet spēj augt temperatūras diapazonā 15—40°C. Optimālos apstākļos auga inficēšanās notiek 6—8 stundu laikā, bet auga sekundārā infekcija turpinās pēc uredosporu nobriešanas — pēc 7—10 dienām.[3]

Patogenitāte

Sēne absorbē barības vielas, kas tiktu izmantotas graudu attīstībai. Pustulas ievaino auga epidermu, izmaina transpirācijas procesus, atvieglo citu patogēnu piekļuvi augam. Bojājumi vadaudu sistēmā izraisa graudu šķelšanos. Inficētie stiebri ir vāji, lūst un augi veldrējas.[4]

Atsauces

  1. Leonard, Kurt J., and Les J. Szabo. "Stem rust of small grains and grasses caused by Puccinia graminis." Molecular plant pathology 6.2 (2005): 99-111.
  2. Biruta Bankina, Zinta Gaile. Ziemāju labības un to slimības. Jelgava : Latvijas Lauksaimniecības universitāte, 2014. 104. lpp. ISBN 978-9984-48-141-8.
  3. Marsalis, Mark A., and Natalie Goldberg. Leaf, Stem, and Stripe Rust Diseases of Wheat. New Mexico State University, Cooperative Extension Service, College of Agricultural, Consumer and Environmental Sciences, 2016.
  4. Schumann, G. L., and K. J. Leonard. "Stem rust of wheat (black rust)." Plant Health Instructor. doi 10 (2000).
license
cc-by-sa-3.0
copyright
Wikipedia autori un redaktori
original
visit source
partner site
wikipedia LV

Stiebru rūsa: Brief Summary ( Latvian )

provided by wikipedia LV

Stiebru jeb svītru rūsa ir rūsas sēnes Puccinia graminis izraisīta graudaugu rūsa. Sēnes infekcija var skart visu graudaugu stiebrus un lapu makstis, dažreiz arī lapas un pat sēklas. Galvenokārt inficējas kviešu sējumi. Slimība ir izplatīta visā pasaulē.

Sēnes pustulas ir lielas, sarkanīgi brūnas, izkārtotas rindās, saplūstot kopā, veido svītras. Vēlās slimības stadijās tā izdala melnas sporas. Stipras infekcijas gadījumā, augi attīstās vāji, neveido ražu, sakrīt veldrē.

license
cc-by-sa-3.0
copyright
Wikipedia autori un redaktori
original
visit source
partner site
wikipedia LV

Zwarte roest ( Dutch; Flemish )

provided by wikipedia NL

Zwarte roest is een ernstige schimmelziekte voor granen, veroorzaakt door de schimmel Puccinia graminis. Reeds in de oudheid zijn gevallen van zwarte roest gedocumenteerd. Tot halverwege de twintigste eeuw veroorzaakte de schimmel regelmatig terugkerende pandemieën in de graanteelt. Door plantenveredeling dacht men vanaf 1954 de zwarte roest in tarwe te hebben uitgebannen.

Ziekteverloop

De schimmel tast de bovengrondse delen van het gewas aan. Besmette planten produceren minder aren en minder zaden. In sommige extreme gevallen kan de plant zelfs geheel afsterven. De besmettingsplek is duidelijk zichtbaar. Op plekken waar de schimmel de plant heeft aangetast zijn elliptische blaren (uredosori) zichtbaar die op roestvorming lijken.

Nieuwe variant bij tarwe

In 1999 werd in Oeganda een nieuwe, zeer virulente[1] schimmelvariant (fysio) genaamd Ug99 ontdekt. Deze variant wordt ook wel TTKSK genoemd[2]. In 2001 werd de ziekte, veroorzaakt door deze nieuwe variant, in Kenia en Ethiopië aangetroffen. In januari 2007 bleken sporen door de wind Soedan en Jemen bereikt te hebben. Er wordt geprobeerd snel voor Ug99 resistente rassen te veredelen en vermeerderen. In 2007 bleek echter circa 80% van de verschillende tarwelijnen gevoelig te zijn voor deze nieuwe schimmelvariant[3].

Wetenschappers waarschuwen, dat zwarte roest nu ook een bedreiging kan vormen voor graanoogsten in Afghanistan, Pakistan, Bangladesh en India. Volgens Nobelprijs-winnaar Norman Borlaug zal de plantziekte 'vroeger of later' in de hele wereld kunnen worden aangetroffen, ook in Noord-Amerika, Zuid-Amerika, Europa en Australië[4]

In de zomer van 2016 vond een uitbraak van zwarte roest plaats op Sicilië met aantasting van tientallen vierkante kilometers tarweakkers. Volgens het roestreferentiecentrum GRRC in het Deense Aarhus is het een uitzonderlijk agressieve variant van de schimmel. Begin februari 2017 dringt de FAO aan op snelle actie. Er is vrees dat de ziektekiemen overwaaien naar Italie en Griekenland.[5]

Biologisch wapen

Tijdens de laatste pandemie werd ongeveer 40% van de tarweoogst in de Verenigde Staten vernietigd. Zwarte roest werd vanwege deze grote economische impact door zowel de VS als de Sovjet-Unie beschouwd als potentieel biologisch wapen[3]. Beide mogendheden hadden dan ook voorraden van sporen aangelegd. Tot daadwerkelijke inzet als wapen is het nooit gekomen.

Levenscyclus

Puccina graminis lifecycle Dutch text.jpg
 src=
Aecidia op onderzijde blad zuurbes
 src=
Aecidia (onder) en spermogonia (boven)

De levenscyclus bestaat uit vijf stadia, die op twee verschillende waardplanten doorlopen worden.

Op de graanplant vindt de vegetatieve fase plaats en worden teleutosporen, basidiosporen en uredosporen gevormd en op de zuurbes (Berberis vulgaris) vindt de generatieve fase plaats, waarbij spermatiën en aecidiosporen gevormd worden. De teleutospore is de dikwandige, gekleurde rustspore, die in de loop van het seizoen gevormd wordt in het telium (vruchtlichaam). Het telium wordt net voor het afsterven van de waardplant gevormd. De gesteelde teleutospore is tweecellig en heterothallisch. In het voorjaar kiemt de teleutospore en vormt een basidium, waarop de basidiospore gevormd wordt. De basidiospore infecteert de waardplant en vormt daar een spermogonium met spermatiën en receptieve hyfen. Na bevruchting van een receptieve hyfe van het spermogonium door een spermatium met een ander paringstype wordt een aecidium met haploïde-dikaryotische aecidiosporen gevormd. De aecidiospore kiemt op de graanplant, waarna een uredinium gevormd wordt. Het uredinium vormt uredosporen, die vervolgens weer een uredinium vormen. Later in het seizoen vormt ten slotte een uredinium teleutosporen, doordat het overgaat in een telium.

Doordat op de zuurbes de generatieve fase zich afspeelt, vindt hier ook de genetische uitwisseling plaats. Daardoor kunnen er gemakkelijk nieuwe fysio's gevormd worden. Deze schimmel tast naast gewone tarwe ook rogge aan. Op deze planten vindt alleen de vegetatieve fase plaats, waardoor op deze planten alleen door mutaties nieuwe fysio's gevormd kunnen worden, wat minder snel gaat dan bij genetische uitwisseling.

Specialisatie naar gewas

Er is binnen P. graminis een behoorlijke genetische variatie, en verschillende speciale vormen worden onderscheiden, die ook verschillende granen aantasten:

Bronnen, noten en/of referenties
  1. Billions at risk from wheat super-blight, New Scientist Magazine, nummer 2598, 3 april 2007, p6-7.
  2. Singh, RP et al. (2006), Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKSK) of stem rust pathogen, in CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, volume 1, nummer 54
  3. a b Marianne Heselmans, Zwarte roest, NRC Handelsblad, 28 juli 2007
  4. 'Stem rust' fungus threatens global wheat harvest, The Guardian, 19 maart 2009
  5. Zwarte roest bedreigt graanoogst Europa NRC Handelsblad, 7 februari 2017, pag.3
Wikimedia Commons Zie de categorie Puccinia graminis van Wikimedia Commons voor mediabestanden over dit onderwerp.
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Zwarte roest: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL

Zwarte roest is een ernstige schimmelziekte voor granen, veroorzaakt door de schimmel Puccinia graminis. Reeds in de oudheid zijn gevallen van zwarte roest gedocumenteerd. Tot halverwege de twintigste eeuw veroorzaakte de schimmel regelmatig terugkerende pandemieën in de graanteelt. Door plantenveredeling dacht men vanaf 1954 de zwarte roest in tarwe te hebben uitgebannen.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Rdza zbożowa ( Polish )

provided by wikipedia POL
 src=
Cykl rozwojowy rdzy zbożowej
 src=
Przekrój przez liść berberysu z pyknidiami i ecjami rdzy zbożowej
 src=
Teliospory rdzy zbożowej na liściu zbóż

Rdza zbożowa (Puccinia graminis Pers.) – gatunek grzybów z rodziny rdzowatych (Pucciniaceae)[1]. Wywołuje chorobę zbóż zwaną rdzą źdźbłową zbóż i traw[2].

Systematyka i nazewnictwo

Pozycja w klasyfikacji według Index Fungorum: Pucciniaceae, Pucciniales, Incertae sedis, Pucciniomycetes, Pucciniomycotina, Basidiomycota, Fungi[1].

Synonimów nazwy naukowej ma około 40. Niektóre z nich[3].

  • Dicaeoma anthistiriae (Barclay) Syd. 1922
  • Puccinia albigensis Mayor 1957
  • Puccinia anthistiriae Barclay 1889
  • Puccinia brizae-maximae T.S. Ramakr. 1954
  • Puccinia cerealis H. Mart.
  • Puccinia elymina Miura 1928
  • Puccinia favargeri Mayor 1957
  • Puccinia jubata Ellis & Barthol. 1896
  • Puccinia linearis Röhl.
  • Puccinia megalopotamica Speg. 1898
  • Puccinia secalis Grove
  • Puccinia vilis Arthur 1901

Rozmnażanie się rdzy zbożowej

Jest to pasożyt dwudomowy, czyli taki, który dla pełnego cyklu rozwojowego potrzebuje dwóch gatunków roślin żywicielskich: początkową część rozwoju odbywa na liściach berberysu, pozostałą – na zbożu. Wytwarza on kilka typów zarodników[4].

Cykl rozwojowy;

Zimują w słomie lub ziemi dwukomórkowe zarodniki zwane teliosporami. Wiosną w glebie kiełkują wytwarzając krótką przedgrzybnię. Z każdej z dwóch komórek teliospory powstaje krótka strzępka, na końcu której powstaje podstawka wytwarzająca 4 zarodniki zwane sporydiami, należące do grupy bazydiospor. Wiatr przenosi je na liście berberysu, który jest pierwszym żywicielem[5]. Tu kiełkują i wytwarzają dwa rodzaje struktur; na górnej powierzchni liścia rodzaj pyknidiów zwany spermogoniami, na dolnej dużo większe ecja. W ecjach wytwarzane są zarodniki zwane ecjosporami. Wydostają się one przez otwór w ecjach i zakażają zboża, które są drugim żywicielem rdzy zbożowej. Ecjospory wnikają do tkanek źdźbła i liści przez otwór w aparacie szparkowym. Początkowo rozwijają się z nich zarodniki letnie zwane urediniosporami, które mogą zarażać sąsiednie rośliny i zazwyczaj szybko w ciągu lata rozprzestrzeniają chorobę na całym polu. W jednym sezonie wegetacyjnym powstaje kilka generacji urediniospor i to one pełnią najważniejszą rolę w rozprzestrzenianiu się choroby. Późnym latem obok urediniospor zaczynają powstawać zarodniki zimowe – teliospory, pod koniec sezonu wegetacyjnego powstają już wyłącznie teliospory. Nie zakażają one już roślin – ich zadaniem jest przetrwanie zimy[2].

Liczba chromosomów

Teliospora jest dwujądrowa, a każde z jej jąder ma haploidalną liczbę chromosomów (n). Jeszcze przed dojrzeniem następuje w niej kariogamia – zlanie się jąder, wskutek którego powstaje jedno jądro o diploidalnej liczbie chromosomów (2n). W czasie wytwarzania podstawek następuje mejoza, w wyniku której powstają haploidalne sporydia. Są one dwóch rodzajów: (+) i (–). Również haploidalna i dwóch rodzajów jest wyrosła z nich w liściach berberysu grzybnia i powstałe z niej spermatogonia. Natomiast ecja są diploidalne. Przed ich powstaniem wewnątrz tkanek berberysu różnoimienne grzybnie zlewają się z sobą i powstaje grzybnia diploidalna, o komórkach dwujądrowych. Tylko ze strzępek takiej grzybni mogą powstawać ecjospory. Zdarza się, że w jakimś liściu występuje tylko grzybnia o jednym znaku, wówczas ecja na takim liściu nie powstają, w dużej natomiast ilości wytwarzane są spermogonia[5].

Ecjospory posiadają dwa jądra i są diploidalne, tak, jak grzybnia, z której powstały. Podobnie dwujądrowe i diploidalne są wyrastające z nich uredinia, ecja i wytwarzane w nich urediniospory i teliospory[5].

Rola pyknidium

Występujące na górnej powierzchni liści berberysu bardzo drobne, pomarańczowej barwy pyknidia w niektórych opracowaniach nazywane są spermogoniami[2]. Powstające w nich pykniospory nie zarażają innych roślin. Ich zadanie jest inne. Są haploidalne i są dwóch rodzajów: (+) i (-) (tzw. heterotalizm). Roznoszone są przez owady zwabione nektarem wydzielanym przez pykniospory. Jądra dwóch pykniospor różnych znaków mogą połączyć się z sobą (kariogamia), częściej jednak zachodzi ich kontakt z receptorami pykniospor o innym znaku, i wówczas dochodzi do kariogamii różnoimiennych jąder. Powstaje grzybnia dwujądrowa, diploidalna, a z niej rozwijają się ecja. Tak więc dzięki pykniosporom ecjospory mogą być wytwarzane nawet w tych przypadkach, gdy na liściu berberysu wykiełkowały tylko sporydia tego samego znaku. Owady mogą bowiem przynieść pykniospory o innym znaku z innych liści berberysu[5]

Przypisy

  1. a b Index Fungorum (ang.). [dostęp 2015-03-30].
  2. a b c Janusz Błaszkowski, Mariusz Tadych, Tadeusz Madej: Przewodnik do ćwiczeń z fitopatologii. Wyd AR w Szczecinie, 1999. ISBN 83-87327-23-9.
  3. Species Fungorum (ang.). [dostęp 2015-03-30].
  4. Zofia Fiedorow, Barbara Gołębniak, Zbigniew Weber: Choroby roślin rolniczych. Poznań: Wyd. AR Augusta Cieszkowskiego w Poznaniu, 2008. ISBN 978-83-7160-468-3.
  5. a b c d Edmund Malinowski: Anatomia roślin. Warszawa: PWN, 1966.
license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Rdza zbożowa: Brief Summary ( Polish )

provided by wikipedia POL
 src= Cykl rozwojowy rdzy zbożowej  src= Przekrój przez liść berberysu z pyknidiami i ecjami rdzy zbożowej  src= Teliospory rdzy zbożowej na liściu zbóż

Rdza zbożowa (Puccinia graminis Pers.) – gatunek grzybów z rodziny rdzowatych (Pucciniaceae). Wywołuje chorobę zbóż zwaną rdzą źdźbłową zbóż i traw.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Svartrost ( Swedish )

provided by wikipedia SV

Svartrost (Puccinia graminis) är en svamp i ordningen Basidiomycetes. Svartrost värdväxlar mellan olika gräsarter och berberis. Då svartrost infekterar vete, korn och havre kan den orsaka stora skördeförluster. Svartrost ingår i släktet Puccinia, och familjen Pucciniaceae.[1][2]

Svartrostbekämpning genom historien

Att förekomsten av berberis hängde ihop med förekomsten av svartrost är känt åtminstone sedan 1600-talet. Förordningar om att utrota berberis finns i Frankrike från 1600-talet och i England och Amerika från 1700-talet. Att svartrost är en svamp framgick dock först under sent 1700-tal. Innan dess spekulerades det bland annat om att rosten var exkrement från insekter.[3]

I Danmark rasade den så kallade "Berberisfejden" under tidigt 1800-tal. Lantbrukare ville göra sig av med berberisbusken medan forskarvärlden ansåg att kopplingen berberis–svartrost var orimlig. Först på 1860-talet kunde den tyske forskaren Anton de Bary visa på hur svartrosten växlade värd mellan sädesslagen och berberisbusken.[3]

I Skandinavien stiftades lagar mot berberis först under tidigt 1900-tal. Under andra halvan av 1900-talet har berberisbekämpningen dock minskat i takt med introduktion av mot svartrost motståndskraftiga spannmålssorter.[3]

Underarter

Arten delas in i följande underarter:[1]

  • graminicola
  • graminis

Källor

  1. ^ [a b] Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.) (27 april 2011). ”Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.”. Species 2000: Reading, UK. http://www.catalogueoflife.org/annual-checklist/2011/search/all/key/puccinia+graminis/match/1. Läst 24 september 2012.
  2. ^ Species Fungorum. Kirk P.M., 2010-11-23
  3. ^ [a b c] Leino, Matti (2012). ”Svartrostens kärleksliv”. I kärlekens spår. Fataburen, Nordiska museets och Skansens årsbok: sid. 223–239. ISBN 978-91-7108-551-1.


license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Svartrost: Brief Summary ( Swedish )

provided by wikipedia SV

Svartrost (Puccinia graminis) är en svamp i ordningen Basidiomycetes. Svartrost värdväxlar mellan olika gräsarter och berberis. Då svartrost infekterar vete, korn och havre kan den orsaka stora skördeförluster. Svartrost ingår i släktet Puccinia, och familjen Pucciniaceae.

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

稈銹病 ( Chinese )

provided by wikipedia 中文维基百科
二名法 Puccinia graminis
Pers., (1794)

稈銹病,又稱柄銹病麥銹病黑銹病,是由真菌銹菌學名Puccinia graminis)所引發的疾病,以穀類作物為感染大宗。小麥的稈銹傳染病則是由名為「Ug99」的變種稈銹菌所引起,這種稈銹菌普遍在非洲亞洲蔓延,近期則傳到了中東地區,造成嚴重的饑荒及內亂、引起重大關切,最嚴重的地區則是非洲中、西部[1]

銹菌是一種微小真菌、侵害多種植物寄生物。銹菌常經由葉子氣孔進入植物體內,並且遍佈植物全身。有些銹菌只有一種宿主植物,有些則有兩種或以上的宿主,例如小麥銹菌可侵害小麥和小檗

Ug99稈銹菌

Ug99稈銹菌,又稱TTKS,是一稈銹菌(學名:Puccinia graminis tritici[2]。 不同於其他銹菌只能影響小部分的作物收成,Ug99稈銹菌會對絕大多數的麥種帶來毀滅性的影響,並帶來百分百的損失。肯亞便曾有因Ug99稈銹菌而發生農產量八成損失的紀錄。[3] 1999年,科學家在非洲烏干達發現了破壞農作物的變種稈銹菌,並已蔓延至整個西非高原地區。2007年1月,孢子飄過葉門、北至蘇丹。同年3月,FAO發表聲明表示Ug99稈銹菌可能即將蔓延至伊朗[4]

參考資料

  1. ^ 饑荒使非洲中西部淪陷 互联网档案馆存檔,存档日期2009-03-11.。銀行資訊中心。2008-3-13查閱。
  2. ^ RP·塞恩; 等. 當前趨勢,減輕稈銹菌Ug99 (TTKS)對小麥生產的威脅。 (PDF). CAB評論:透視農業、獸醫學、營養與自然資源. 2006, 1 (第 054號) [2007-04-19]. doi:10.1079/PAVSNNR20061054. 引文格式1维护:显式使用等标签 (link) – 評論文章
  3. ^ CIMMYT 2005 study
  4. ^ 伊朗小麥危機,聯合國新聞中心。
 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

稈銹病: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

稈銹病,又稱柄銹病、麥銹病、黑銹病,是由真菌銹菌(學名:Puccinia graminis)所引發的疾病,以穀類作物為感染大宗。小麥的稈銹傳染病則是由名為「Ug99」的變種稈銹菌所引起,這種稈銹菌普遍在非洲亞洲蔓延,近期則傳到了中東地區,造成嚴重的饑荒及內亂、引起重大關切,最嚴重的地區則是非洲中、西部。

銹菌是一種微小真菌、侵害多種植物寄生物。銹菌常經由葉子氣孔進入植物體內,並且遍佈植物全身。有些銹菌只有一種宿主植物,有些則有兩種或以上的宿主,例如小麥銹菌可侵害小麥和小檗

license
cc-by-sa-3.0
copyright
维基百科作者和编辑