dcsimg

Toxoplasma gondii ( Spanish; Castilian )

provided by wikipedia ES

Toxoplasma gondii es una especie de protozoo parásito intracelular obligado, eucariota. Es causante de la toxoplasmosis, una enfermedad en general leve, pero que puede complicarse hasta convertirse en fatal, especialmente en los gatos y en los fetos humanos.[1]​ El ciclo celular de T. gondii alterna entre la reproducción sexual en los huéspedes definitivos y la reproducción asexual en los huéspedes intermedios. El gato y otros felinos son considerados como sus hospedadores definitivos porque en ellos tiene lugar la fase sexuada de su ciclo de vida. Entre los huéspedes intermedios podemos encontrar mamíferos y pájaros.[2]​ Es un parásito muy exitoso y uno de los más frecuentes que infectan a los humanos, pues puede infectar a cualquiera de las especies de animales homeotermos. Los humanos son hospedadores habituales, en 2002 se estimaba que un tercio de la población mundial estaba infectada de forma crónica por T. gondii.[3]

 src=
T. gondii intracelular (en verde), dentro de fibroblastos humanos. Microscopio de contraste de fases.

Morfología

 src=
Corte esquemático de un #Taquizoito de Toxoplasma gondii. NU=núcleo (en gris).

Las distintas fases de desarrollo del Toxoplasma gondii muestran cambios importantes en su morfología, estas son llamadas: #Taquizoito, #Bradizoito y #Ooquiste.

El Taquizoito es la forma de la infestación aguda, tiene de 4-8 micrómetros (μm) (micrómetros) de longitud y de 2-4 μm de ancho, con aspecto de medialuna.

Un grupo de estructuras moleculares, en un extremo del Taquizoito del T. gondii, con la denominación de complejo apical, es fundamental tanto para la invasión como para la proliferación de este parásito.[4][5]

Complejo apical

 src=
Complejo apical con citoesqueleto y vesículas de un taquizoito de T. gondii.
{{{Alt
Conoide Citoesqueleto y membrana plasmática externa (negra) y dos membranas adicionales (IMC, roja) formadas por vesículas aplanadas (sacos alveolares).
 src=
Conoide y Anillo apical (en negro), del citoesqueleto del T. gondii. Microscopio electrónico.
 src=
Complejo apical, RD=ducto de roptría, R=roptría

El complejo apical (api-complex en inglés) de T. gondii, es un conjunto complejo de elementos estructurales y secretores en el extremo apical del parásito adulto, que se construye sobre un conjunto de fibras dispuestas en espiral alrededor del conoide. Este complejo tiene también tres unidades de membrana (como se ve en el esquema C): una membrana plasmática externa (en negro) y dos membranas en el complejo de membrana interna (IMC en rojo) que son las paredes de vesículas aplanadas (sacos alveolares).[6]

El complejo apical proporciona un marco semirrígido para las células puntiagudas de T. gondii y es el destino para los orgánulos secretores, que liberan varios factores de invasión.[7]

El complejo apical se organiza alrededor de un anillo polar apical (APR en inglés), que sirve como centro organizador y nuclea una serie de microtúbulos, que descienden hacia la parte posterior de la célula.

Además de su estructura, el complejo apical actúa como un centro de señalización, al ser el punto de convergencia de muchas vías reguladoras.[8]

Conoide

El conoide de T. gondii, está formado por un conjunto compacto de fibras de citoesqueleto dispuestas en espiral, que se mueven activamente durante la etapa de invasión de las células del huésped.

Las estructuras asociadas con el conoide son: los anillos pre-conoidales, en la punta distal del conoide, donde se originan las fibras conoides; el anillo polar, del que se originan 22 microtúbulos (MT) sub-peliculares; y dos MT intra-conoidales cortos, que pueden utilizarse como vías para el transporte de vesículas secretoras esenciales para la invasión.[6]

 src=
Invasión de un taquizoito de T. gondii

Pasada la etapa de invasión de T. gondii, se forma la llamada vacuola parasitófora (PV). Esta se forma tanto de la membrana plasmática de la célula huésped, como de los productos de secreción del parásito.

La vacuola PV está aislada del tráfico vesicular del huésped y está rodeada por microtúbulos, por retículo endoplásmico y por mitocondrias de la célula huésped.

T. gondii también posee orgánulos secretores especializados: las micronemas (M), las roptrías (R) y los gránulos densos (DG). La secreción en secuencia de estos tres tipos de orgánulos secretores dirigen tanto la entrada en la célula huésped, como la formación de la PV.[9]

Ooquiste

Un ooquiste es la fase esporulada del Toxoplasma. Este es un estado que puede sobrevivir fuera del hospedador por largos períodos de tiempo, dada su alta resistencia al medio ambiente. Esta es la forma durmiente del parásito, el producto de su reproducción sexual en las células intestinales de los felinos infectados. Estos pueden segregar ooquistes hasta 1 o 2 semanas después de la infección. Estos ooquistes esporulan y se hacen efectivos en 1-5 días y gracias a su gruesa pared celular pueden sobrevivir bien en el medio ambiente.[10]

Bradizoíto

El bradizoíto (del griego brady=lento y zōon=animal) es la forma de replicación lenta del parásito, no solamente de Toxoplasma gondii, sino de otros protozoos responsables de infecciones parasitarias. En la toxoplasmosis latente (crónica), el bradizoíto se presenta en conglomerados microscópicos envueltos por una pared llamados quistes, en el músculo y el tejido cerebral infectado.[11]

Taquizoito

 src=
Taquizoito de T. gondii.

Los taquizoitos son formas mótiles que forman pseudoquistes en tejidos infestados por toxoplasma. Los taquizoitos se encuentran en vacuolas dentro de las células, esta forma celular invade y se replica en las células infectadas. Activan el sistema inmune y se convierten en bradizoitos que se dividen lentamente.

Algunos de los orgánulos que pueden ser encontrados en la imagen de microscopía electrónica de la derecha son:
apicoplasto (A); anillo polar apical (APR); conoide (C); anillo conoidal (CR); aparato de Golgi (G); complejo de membrana interna (IMC); Micronemas (M); mitocondria (Mi); microtúbulos (Mt); núcleo (Nu); roptrias (R); conducto de roptria (RD); vacuola (V).

Genoma y Cepas

La mayoría de las cepas de T. gondii del mundo pertenecen a tres linajes clonales distintos (tipo I, tipo II y tipo III) con diferencias genéticas mínimas entre ellos. Sin embargo, estos T. gondii muestran una virulencia variada.
El T. gondii tipo I está representado por las cepas GT1 y la RH (aislada de un caso de encefalitis inducida por toxoplasmosis fatal en el año 1939). La cepa RH se ha adaptado al cultivo in vitro y se utiliza comúnmente en el trabajo de laboratorio. El tipo I también se asocia con toxoplasmosis congénita grave en los países europeos. El tipo II domina la toxoplasmosis humana en Estados Unidos está representado por la cepa ME49. El tipo III se asocia significativamente con huéspedes animales y está representado por las cepas VEG y CEP.[12]

Ciclo de vida

 src=
Ciclo vital de Toxoplasma.

El ciclo de vida del T. gondii tiene dos fases. La fase sexual del ciclo de vida ocurre solo en miembros de la familia Felidae (gatos domésticos y salvajes), haciendo que estos animales sean los hospedadores primarios del parásito. La fase asexual del ciclo de vida puede ocurrir en cualquier animal de sangre caliente, tales como otros mamíferos y aves. Por ello, la toxoplasmosis constituye una zoonosis parasitaria.[13]

Este protozoario puede infectar de tres formas por medio de:

Taquizoítos: encontrados en psedoquistes, estos son liberados de los bradizoítos y penetran cualquier célula infectandola hasta morir.

Bradizoítos: estos entran en forma de quiste al hospedero, donde pueden liberar taquizoítos o en el caso de hospederos de la familia Felinidae, pueden formar gametos para despues conformar un ooquiste.

Ooquiste: esta última forma de infección solo es producida en los hospederos de la familia Felinidae, pues solo es estos se puede llevar a cabo el ciclo sexual del protozoario. Estos se forman a partir de los gametos femeninos y masculinos que nacieron de los bradizoítos. En estos se encuentran 2 sacos con 4 taquizoítos cada uno y son liberados en las heces.

La forma de infección se puede dar desde consumir agua o alimentos que esten infectados con el protozoario, hasta la ingesta de carne con quistes o pseudoquistes. [14]

En el hospedador intermediario, incluyendo los felinos, los parásitos invaden células, formando un compartimento llamado vacuola parasitófora[15]​ que contienen bradizoitos, la forma de replicación lenta del parásito.[16]​ Las vacuolas forman quistes, en especial en los músculos y cerebro. Debido a que el parásito está dentro de las células, el sistema inmunitario del hospedador no detecta estos quistes. La resistencia a los antibióticos varía, pero los quistes son difíciles de erradicar enteramente.

{{{Alt
Estructura de T. gondii en etapa inicial de duplicación.

T. gondii se propaga dentro de estas vacuolas por una serie de divisiones binarias hasta que la célula infestada eventualmente se rompe, liberando a los taquizoitos. Estos son motiles, y la forma de reproducción asexual del parásito. A diferencia de los bradizoitos, los taquizoitos libres son eficazmente eliminados por la inmunidad del hospedador o huésped, a pesar de que algunos logran infectar otras células formando, manteniendo así el ciclo de vida de este parásito.

Los quistes tisulares son ingeridos por el gato al alimentarse de un ratón infectado. Los quistes sobreviven el paso por el estómago del gato y los parásitos infectan las células epiteliales del intestino delgado en donde pasan por la reproducción sexual y la formación de ooquistes, que son liberados con las heces. Otros animales, incluyendo los humanos ingieren los ooquistes (al comer vegetales no lavados adecuadamente) o los quistes tisulares al comer carne cruda o cocida inapropiadamente. T. gondii puede infectar cualquier tipo de células del huésped, con excepción de los eritrocitos; lo anterior lo realiza mediante acción enzimática o dejándose fagocitar.[cita requerida]

 src=
Ciclo de vida, taxonomía y características

Señalización entre estadios

El desarrollo de la toxoplasmosis encefálica ocurre debido a la transición de bradizoito (estadio latente) a taquizoito (estadio de rápida replicación) dentro del hospedero definitivo.[17]

La tasa de replicación de taquizoitos es más alta que la tasa de los bradizoitos y esto se debe a que tiene una serie de factores que aceleran su metabolismo.[18]​ Entre estos factores se encuentra la familia de Proteínas de Choque Térmico (Heat Shock Proteins, HSP), que contiene unas proteínas muy conservadas de bajo peso molecular 70kDa (HSP70) y que son un tipo de chaperonas ubicuas que tienen alto potencial inmunogénico.[19]​ Hasta hace poco, se creía que la función principal de este tipo de proteínas malplegadas era actuar como chaperonas intracelulares relacionadas con citoprotección luego de que las células fueran estresadas por estímulos externos. Sin embargo, ahora se sabe que las HSP70 no solamente funcionan como chaperonas, sino también como citoquinas (chaperoquinas) en el espacio extracelular.[20]

Se sabe que los HSP son importantes para la diferenciación del bradizoito ya que estudios en los que se hace Knockout a los genes hsp27, hsp70 y hsp90 se suprime la inducción de bradizoitos in vitro. Por otro lado, al utilizar potenciadores de expresión como indometacina, hay un incremento en la formación de bradizoitos.[20]​ Adicionalmente, en cultivos de médula ósea, los interferones gamma (IFN-ϒ) incrementaron la formación de bradizoitos debido a la producción de óxido nítrico (NO).[21]​ Además, se ha encontrado que las HSP de T. gondii (TgHSP70) son reconocidas por las células B del hospedero (mHSP70, ratón) a pesar de ser homólogas entre sí.[22]​ Luego la inducción de los bradizoitos se da tanto por estrés oxidativo y como consecuencia de la respuesta inmune del hospedero.

Otros descubrimientos que dan soporte a la idea de que los HSP70 están asociados a la diferenciación de los bradizoitos a taquizoitos es que en otros protozoos como Leishmania chagasi y Trypanosoma cruzi, el gen hsp70 se ha asociado a la capacidad de sobrevivir a estrés oxidativo y llevar la diferenciación de promastigotes a amastigotes.[23]

Se cree que dicha diferenciación es una respuesta al estrés causado por condiciones ambientales relacionadas con la respuesta inflamatoria del hospedero definitivo y que la respuesta al choque térmico se debe a la plasticidad metabólica del parásito durante la diferenciación.[24]

Historia

 src=
Taquizoítos de Toxoplasma gondii teñidos con tinción de Giemsa, a partir de una muestra de líquido peritoneal de ratón.

En 1908, Charles Nicolle y Louis Manceaux en Túnez demuestran la presencia del parásito en un roedor el Ctenodactylus gundi, al mismo tiempo en Brasil Splendore lo encontró en conejos. Se le denominó Toxoplasma gondii por toxo (del griego toxon ‘arco’) por su forma arqueada;[25]​ y gondii por el ratón.

Transmisión de Toxoplasma gondii

Los humanos pueden adquirir la infección por Toxoplasma gondii a través de diferentes vías.[26]​ En primer lugar, horizontalmente a través de la ingestión oral de ooquistes provenientes del medio ambiente. Además, horizontalmente por la ingestión de bradiozitos presentes en carnes crudas de huéspedes intermedios. Por último, los taquiozitos pueden ser transmitidos verticalmente durante la lactancia materna o trasmitidos desde una madre infectada al feto durante el embarazo. Esto último ocurre frecuentemente en las madres que han sido infectadas por primera vez durante la gestación, esto puede provocar problemas en el desarrollo del feto y patologías como retraso psicomotriz, anormalidades hematológicas, pérdida auditiva y visual e incluso pueden provocar la muerte del feto.[27]

Toxoplasmosis

En individuos inmunocompetentes, la infección se presenta con síntomas suaves parecidos a los de la gripe común, o son completamente asintomáticos. En este tipo de pacientes, los síntomas severos más frecuentes son infecciones retinales y linfadenopatías, que normalmente están asociados a una infección congénita que se manifiesta de forma tardía.

En humanos inmunodeprimidos, puede actuar como patógeno oportunista, por ejemplo en enfermos de sida.[28]

 src=
T.gondii es un parásito intracelular con un citoesqueleto probablemente especializado para la invasión de células que parasitar. En azul YFP-α-Tubulina, en amarillo mRFP-TgMORN1.

Tratamiento

Se recomienda el empleo de pirimetamina y sulfonamidas, la primera actúa sobre la síntesis del ácido fólico y la segunda sobre la síntesis del ácido paraaminobenzoico (sobre taquizoitos, no en quistes).

Para la prevención de la toxoplasmosis congénita en mujeres embarazadas se recomienda la espiramicina, ya que es menos tóxica. Este medicamento evita que los taquizoitos pasen el lago placentario hacia el feto. El problema de la toxoplasmosis en el embarazo son las dificultades diagnósticas porque las técnicas del diagnóstico de la infección primaria en la mujer embarazada no son totalmente absolutas ni inequívocas. Los estudios serológicos no son totalmente exactos y técnicas consideradas de elección en el diagnóstico de la toxoplasmosis aguda como IgG de baja avidez obtiene resultados no definitivos en el 25 % de los casos (cribado serológico en la gestante).[29]​ Además, cuando ya se ha producido el diagnóstico, se ha producido ya la transmisión, llegando el tratamiento tarde para evitar esta transmisión.[30]​ Es tan indeterminado el diagnóstico y mayores los efectos secundarios de las actuaciones médicas en un diagnóstico indeterminado, así como ineficacia con el tratamiento farmacológico de evitar la transmisión al feto que se aboga por no realizar el screening serológico a toxoplasma a todas las embarazadas de manera sistemática. Si el parásito ya ha atravesado la placenta ya no es eficaz, aunque parece tener beneficio disminuyendo la carga parasitaria y por lo tanto disminuyendo la severidad de los síntomas en algunos casos.[31]​ En inmunodeficientes se recomienda la combinación de pirimetamina con sulfadiazina, pero dada la mayor posibilidad de los pacientes infectados con VIH de alergia a las sulfas, en ocasiones es necesario usar la combinación de pirimetamina con la clindamicina.

Cuadro clínico

La etapa aguda de las infestaciones por toxoplasmosis pueden ser asintomáticas, pero a menudo aparecen síntomas gripales que conllevan a estados latentes. La infección latente es también, por lo general, asintomática, pero en personas inmunosuprimidas (pacientes trasplantados o con ciertas infecciones), pueden mostrar síntomas, notablemente encefalitis, que puede ser mortal.

Varía dependiendo en qué trimestre del embarazo se adquiera el parásito.[32]

La toxoplasmosis en embarazadas es rara vez sintomática pero puede provocar: linfadenopatía, fiebre, mialgia, malestar general, entre otras.

En los humanos, la infección crónica latente con T. gondii se ha relacionado previamente con la violencia autodirigida suicida, el rasgo de agresión e impulsividad y el trastorno bipolar.[33]

En cuanto a los efectos en humanos, la toxoplasmosis puede causar esquizofrenia.[34]​ El «sentido biológico» de esta infección tendría sentido cuando los humanos eran cazados por felinos, en este caso, la alteración del comportamiento promoviendo un comportamiento agresivo que llevara a la exclusión social del individuo, aumentaría las posibilidades de ser cazado por un felino.[35]​ De esta forma, el parásito podría llevar a cabo su ciclo vital reproductivo en su huésped definitivo.[36]

La infección está también relacionada con una mayor tasa de suicidio en pacientes infectados.[37]​ Esto podría estar relacionada con la alteración de la concentración de dopamina en partes específicas del cerebro que juegan un papel esencial en el comportamiento y emociones de los humanos.

Comportamiento animal

Las infecciones parásito-huésped son frecuentemente consideradas como un mecanismo evolutivo. Ambos, parásito y huésped desarrollan adaptaciones y contra-adaptaciones contra el otro, resultando en una coevolución antagonista.[38]​ Se ha observado que la infección por T. gondii tienen la facultad de cambiar el comportamiento de ratas y ratones, haciendo que se acerquen, en vez de huir del olor de los gatos. Este efecto es de beneficio para el parásito, el cual puede reproducirse sexualmente si es ingerido por el gato.[39]​ Un clásico ejemplo de manipulación del comportamiento son los grillos infectados por nematomorfos. Los mismos son manipulados para suicidarse saltando a cuerpos de agua cuando son infectados; de esta forma, el nematomorfo adulto es capaz de completar la fase reproductiva de su ciclo vital, que es acuática.[40]

La infección tiene una gran precisión, en el sentido de que no impacta los otros temores de la rata, tal como el temor de los espacios abiertos o del olor de alimentos desconocidos. Se ha especulado que el comportamiento humano puede igualmente verse afectado de algún modo, y se han encontrado correlaciones entre las infecciones latente por Toxoplasma y varias características, tales como un aumento en comportamientos de alto riesgo, tales como una lentitud para reaccionar, sentimientos de inseguridad y neurosis[41]​ que parece que aumentan la propensión al suicidio.[42]

Véase también

  • AMA1, Antígeno Apical de Membrana.

Referencias

  1. Ryan KJ, Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed. edición). McGraw Hill. pp. 722-727. ISBN 0838585299.
  2. Hill D., Dubey J.P. (2002). «Toxoplasma gondii: Transmission, diagnosis, and prevention». Clinical Microbiology and Infection 8 (10): 634-640. Consultado el 19 de abril de 2021.
  3. Requena J.M. (ed.) (2017). «Cap26:Toxoplasma gondii». Microbiologia clínica (On-line). Consultado el 25 de septiembre de 2017.
  4. Raúl Romero Cabello (2007). «149:Toxoplasma». Microbiologia y parasitologia humana (3a. edición). Médica Panamericana. p. 1458.
  5. Gómez-De León C.T., Mondragón-Flores R. (2017). «2: Morfología». En Galán-Ramírez M.dl.L.Mondragón-Flores R., ed. Toxoplasmosis Humana (PDF). ResearchGate. p. 11.
  6. a b Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, DiLullo C, Yates J., Roos D.S., Murray J.M. (2006). «Cytoskeletal Components of an Invasion Machine—The Apical Complex of Toxoplasma gondii». PLOS Pathogens (en inglés) 2 (2): e13. doi:10.1371/journal.ppat.0020013. |fechaacceso= requiere |url= (ayuda)
  7. Katris N.J., van Dooren G.G., McMillan P.J., Hanssen E., Tilley L., Waller R.F. (2014). «The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in Toxoplasma». PLOS Pathogens 10 (4): e1004074. doi:10.1371/journal.ppat.1004074. |fechaacceso= requiere |url= (ayuda)
  8. Dos Santos Pacheco N., Tosetti N., Koreny L., Waller R.F., Soldati-Favre D. (2020). «Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa». Trends in parasitology (Artículo de revisión) (ResearchGate) 36 (8): 688-704. Consultado el 20 de abril de 2021.
  9. Gendrin C., Mercier C., Braun L., Musset K., Dubremetz J-F., Cesbron‐Delauw M-F. «Toxoplasma gondii Uses Unusual Sorting Mechanisms to Deliver Transmembrane Proteins into the Host‐Cell Vacuole». Traffic (en inglés) 9 (10): 1665-1680. |fechaacceso= requiere |url= (ayuda)
  10. Tu V., Tomita T., Sugi T., Mayoral J., Han B., Yakubu R.R., Williams T., Horta A., Ma Y., Weiss L.M. (2020). «Toxoplasma gondii: cyst wall interactome». Microbe Biology (mBio) (American Society for Microbiology): 1-16. Consultado el 18 de abril de 2021.
  11. Dubey J.P., Beattie C.P.: 1988. Toxoplasmosis of animal and man. CRC Press Inc. Boca Ratón. Florida. USA.
  12. Lau Y-L., Lee W-C., Gudimella R., Zhang G., Ching X-T., Razali R., et al. (2016). «Deciphering the Draft Genome of Toxoplasma gondii RH Strain». PLoS ONE 11 (6): e0157901. doi:10.1371/journal.pone.0157901. |fechaacceso= requiere |url= (ayuda)
  13. SUÁREZ, Francisco A., FLORES, Wally G., CHÁVEZ, Amanda V., et al.: «Toxoplasmosis en alpacas de la Sierra Altoandina.» Rev. investig. vet. Perú. [en línea]. jul./dic 2004, vol. 15, n.º 2 [citado el 24 de octubre de 2007], pp. 170-173. Disponible en la World Wide Web: [1]. .
  14. «El ciclo biológico del Toxoplasma Gondii».
  15. CORTAZAR, Tania M, HERNÁNDEZ, Joselín, ECHEVERRY, María Clara et al. «Papel de la vacuola parasitófora de macrófagos de ratón infectados por Leishmania amazonensis en la adquisición de moléculas.» Biomédica [en línea], octubre de 2006, vol. 26, supl. 1 [citado el 24 de octubre de 2007], pp. 26-37. Disponible en la World Wide Web: [2]. .
  16. Dubey, J. P., Lindsay, D. S., Speer, C. A. (1998). «Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts». Clin. Microbiol. Rev. 11 (2): 267-99. PMID 9564564.
  17. (6) Kasper, L. y J. C. Boothroyd. 1993. «Toxoplasma gondii and toxoplasmosis», pp. 269-301. In K. Warren (coordinadores), Immunology and molecular biology of parasitic infections. Blackwell Scientific Publications, Boston, Mass.
  18. (7) Bohne, W., J. Hessemann y U. Gross. 1994. «Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion.» Infect. Immun. 62:1761–1767.
  19. (8) Bohne, W., J. Hessemann, and U. Gross. 1993. «Induction of bradyzoite-specific Toxoplasma gondii antigens in gamma interferon-treated mouse macrophages.» Infect. Immun. 61:1141-1145.
  20. a b (9) Asea, A., Kraeft, S. K., Kurt-Jones, E. A., et al. 2000. «HSP70 stimulates cytokine production through a CD14-dependant pathway, dem- onstrating its dual role as a chaperone and cytokine.» Nat Med 6: 435-442.
  21. (7) Tomavo, S. y J. C. Boothroyd. 1995. «Interconnection between organellar functions, development and drug resistance in the protozoan parasite, Toxoplasma gondii.» Int. J. Parasitol. 25:1293-1299.
  22. (11) Mun, H. S., Aosai, F., Yano, A. 1999. «Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii.» Microbiol Immunol 43: 471-479.
  23. (12) Requena, J. M., A. Jemernes-Ruis, M. Soto, R. Assiego, J. F. Santaren, M. C. Lopez, M. E. Patarroyo y C. Alonso. 1992. «Regulation of hsp70 expression in Trypanosoma cruzi by temperature and growth phase.» Mol. Biochem. Parasitol. 53:201-212.
  24. (13) Weiss, L. M, Takvorian, P. M., Tanowitz, H. B., Murray, W. (1998) «Bradyzoite Development in Toxoplasma gondii and the hsp70 Stress Response.» Infection & Immunity, 66:3295-3302
  25. Botero, David; Restrepo, Marcos (1998). Parasitoris humanas (tercera edición). Medellín: Corporación para Investigaciones Biológicas. p. 252. |fechaacceso= requiere |url= (ayuda)
  26. Hill, D., & Dubey, J.P. (2002). Toxoplasma gondii: Transmission, diagnosis, and prevention. Clinical Microbiology and Infection, 8(10), 634–640. https://doi.org/10.1046/j.1469-0691.2002.00485.x
  27. Montoya, J.G., & Remington, J.S. (2008). Management of Toxoplasma gondii infection during pregnancy. Clinical Infectious Diseases, 47(4), 554–566. https://doi.org/10.1086/590149
  28. Fisch, D., Clough, B., Frickel, E.M. (2019). «Human immunity to Toxoplasma gondii.». PLOS Pathogens 15 (12): 6-12. doi:10.1371/journal.ppat.1008097. Consultado el 21 de abril de 2021.
  29. Isabel García Bermejo. «Cribado serológico en la gestante: controversias y consideraciones sobre algunos patógenos de transmisión vertical». SEIMC. Servicio de Microbiología, Hospital Universitario de Getafe. Madrid. Consultado el 8 de mayo de 2017.
  30. Gilbert, R. (2001). «Effect of prenatal treatment on mother to child transmission of Toxoplasma gondii: retrospective cohort study of 554 mother-child pairs in Lyon, France». International Journal of Epidemiology (en inglés) 30 (6): 1303-1308. ISSN 0300-5771. doi:10.1093/ije/30.6.1303. Consultado el 8 de mayo de 2017.
  31. Gómez, J. E., Ruiz, B., Silva, P., Beltrán, S., Cortés, J., Montoya, J., Agudelo, A. Guía de práctica clínica para toxoplasmosis durante el embarazo y toxoplasmosis congénita en Colombia. Infectio 2007; 11: 129-141. Disponible en la World Wide Web: [3]. .
  32. Pignanelli, S. «Laboratory diagnosis of Toxoplasma gondii infection with direct and indirect diagnostic techniques.» Indian J Pathol Microbiol. 2011 Oct-Dec;54(4):786-9. PubMed PMID 22234111.
  33. Cai J., Sheng Z., Jin Y., Du Y., Yan X., Yao Y. (2021). «Potential linkage between Toxoplasma gondii infection and physical education scores of college students». PLoS ONE 16 (3): e0241653. doi:10.1371/journal.pone.0241653. Consultado el 13 de abril de 2021.
  34. Flegr, Jaroslav (2013). «Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma–human model in studying the manipulation hypothesis». Journal of Experimental Biology (en inglés) 216 (1): 127-133. ISSN 0022-0949. PMID 23225875. doi:10.1242/jeb.073635. Consultado el 8 de mayo de 2017.
  35. Brüne, M. (2020). Schizophrenia as parasitic behavior manipulation: can we put together the pieces of an evolutionary puzzle? World Psychiatry, 19(1), 119–120. https://doi.org/10.1002/wps.20637
  36. Torrey, E. F., & Yolken, R. H. (2003). Toxoplasma gondii and Schizophrenia. Emerging Infectious Diseases, 9(11), 1375–1380.
  37. Amouei, A., Moosazadeh, M., Nayeri chegeni, T., Sarvi, S., Mizani, A., Pourasghar, M., Hosseini Teshnizi, S., Hosseininejad, Z., Dodangeh, S., Pagheh, A., Pourmand, A. H., & Daryani, A. (2020). Evolutionary puzzle of Toxoplasma gondii with suicidal ideation and suicide attempts: An updated systematic review and meta-analysis. Transboundary and Emerging Diseases, 67(5), 1847–1860. https://doi.org/10.1111/tbed.13550
  38. Flegr, Jaroslav. (2013). How and why Toxoplasma makes us crazy. Trends in Parasitology, 29(4), 156–163. https://doi.org/10.1016/j.pt.2013.01.007
  39. Berdoy, M., Webster, J. P., Macdonald, D. W. (2000). «Fatal attraction in rats infected with Toxoplasma gondii». Proc. Biol. Sci. 267 (1452): 1591-4. PMID 11007336. doi:10.1098/rspb.2000.1182.
  40. Miman, O., Mutlu, E. A., Ozcan, O., Atambay, M., Karlidag, R., & Unal, S. (2010). Is there any role of Toxoplasma gondii in the etiology of obsessive-compulsive disorder? Psychiatry Research, 177(1–2), 263–265.
  41. Zimmer, Carl: The Loom. A Nation of Neurotics? Blame the Puppet Masters? 1 de agosto de 2006.
  42. Common parasite may trigger suicide attempts., 26 de agosto de 2012.

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Toxoplasma gondii: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Toxoplasma gondii es una especie de protozoo parásito intracelular obligado, eucariota. Es causante de la toxoplasmosis, una enfermedad en general leve, pero que puede complicarse hasta convertirse en fatal, especialmente en los gatos y en los fetos humanos.​ El ciclo celular de T. gondii alterna entre la reproducción sexual en los huéspedes definitivos y la reproducción asexual en los huéspedes intermedios. El gato y otros felinos son considerados como sus hospedadores definitivos porque en ellos tiene lugar la fase sexuada de su ciclo de vida. Entre los huéspedes intermedios podemos encontrar mamíferos y pájaros.​ Es un parásito muy exitoso y uno de los más frecuentes que infectan a los humanos, pues puede infectar a cualquiera de las especies de animales homeotermos. Los humanos son hospedadores habituales, en 2002 se estimaba que un tercio de la población mundial estaba infectada de forma crónica por T. gondii.​

 src= T. gondii intracelular (en verde), dentro de fibroblastos humanos. Microscopio de contraste de fases.
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Toxoplasma gondii ( Spanish; Castilian )

provided by wikipedia SL

Toxoplasma gondii (grško toxon - lok + plasma - oblika) je parazitska pražival iz debla Apicomplexa. Razširjen je po vsem svetu, pri toplokrvnih (homeotermnih) živalih, kot so glodavci in ptiči, ter pri človeku pa povzroča eno od najbolj pogostih in razširjenih parazitskih bolezni, tj. toksoplazmozo.

Številne študije so ugotovile subtilne vedenjske ali osebnostne spremembe pri okuženih ljudeh.[1] Okužbo z zajedavcem so pred kratkim povezali s številnimi nevrološkimi motnjami, posebno s shizofrenijo. Raziskava leta 2015 je dokazala kognitivne primanjkljaje pri odraslih, ki sta jih hkrati okužila toxoplasma gondii in helicobacter pylori, uporabljajoč pri tem regresijski model s kontrolnima skupinama za raso-pripadnost etniji in za doseženo raven izobrazbe.[2] Kljub temu, da vzročna zveza med latentno toksoplazmozo in temi nevrološkimi pojavi še ni ugotovljena, predhodni podatki kažejo, da okužba z "T. gondii" lahko povzroči določene spremembe v možganih, ki jih je bilo opaziti pri miših.[3][4]

 src=
Deleči se zajedavci T. gondii
 src=
Struktura T. gondii

Zgodovina

Parazit sta prva opisala Charles Nicolle in Louis Manceaux leta 1908 v glodavcih vrste Ctenodactylus gundi v Tuniziji.[5] Leta 1923 je češki oftalmolog Janků povezal toksoplazmozo s človekom, potem ko je odkril parazita v mrežnici umrlega otroka. Leta 1939 je bil prvič dokazan teratogeni učinek mikroba zaradi odkritja neposredne povezave med prirojeno (kongenitalno) toksoplazmozo in toksoplazemskim encefalitisom (vnetje možganov) kot posledico te bolezni. V Sloveniji je bil prvi primer toksoplazmoze pri otroku opisan leta 1953.

Epidemiologija

T. gondii je razširjena po vsem svetu, tako pri mesojedih in rastlinojedih živalih kot tudi pri človeku. Prekuženost s parazitom je bila nekdaj nasplošno večja kot je v današnjem času: tako je bilo npr. v epidemiološki raziskavi leta 1982 ugotovljeno, da so se protitelesa nahajala v 50-60 % populacij ljudi v Srednji Evropi, starih od 30-40 let, podobno pa je veljalo tudi za ženske v rodnem obdobju. Do današnjega časa je prekuženost žensk znatno padla, po vsej verjetnosti zaradi večje osveščenosti in izboljšave higienskih razmer. Prekuženost je večja v Franciji, manjša pa v državah, kot sta Norveška in Finska. Okužbe so navadno pogostejše v toplejših nižinskih in vlažnejših območjih, manj pogoste pa so v mrzlih gorskih in suhih predelih.[6] V Sloveniji je število prvih okužb z zajedavcem med nosečnostjo v regijah z nizkim tveganjem, kot je Primorska kot tudi v regijah z visokim tveganjem, kot je Osrednjeslovenska regija, je enako.[6]

Glede na to, da potrebuje povzročitelj za popoln razvoj mačko, bo verjetnost za okužbo večja tam, kjer je prisotnih veliko mačk, kot je npr. Kostarika, prav tako pa je verjetnost večja v deželah, kjer se uživa več surovega ali ne dovolj prekuhanega mesa, kot so Francija, Nemčija in Slovenija.

Telesne značilnosti in razvojni krog

 src=
Razvojni krog parazita

Parazit lahko nastopa v treh oblikah, in sicer v vegetativni obliki oz. kot trofozoit, tkivna cista in oocista.

Za popolni razvoj potrebuje mačko. Le-ta se lahko okuži preko zaužitja mesa manjših glodavcev in ptičev ali z neprekuhanim mesom, ki vsebuje tkivne ciste. V črevesju mačke se parazit razmnožuje nespolno z endodiogenijo (znotraj materine celice nastane dve hčerinski celici) in shizogonijo (delitev na dvoje) ter spolno z gametogonijo. Pri nespolnem razmnoževanju nastanejo t. i. shizonti, nato pa iz nekaterih nastanejo ženske in moške gamete. Po združitvi gamet nastanejo oociste, ki so dolge od 11-14 μm in široke 9-11 μm. V zunanjem okolju s primerno temperaturo in vlago dozorijo (sporulirajo) v 3 do 5 dneh: vsaka oocista vsebuje dve sporociti, vsaka sporocita pa po 4 sporozoite.

Človek, ki je vmesni gostitelj, se okuži z oocistami (pa tudi s tkivnimi cistami zaužitja neprekuhanega mesa), iz katerih se razvijejo trofozoiti, imenovani tudi tahioziti (gr. tahos - hiter). Tahioziti so hitro deleči se paraziti polmesečaste oblike, dolgi od 4-6 μm in široki od 2-3 μm. Sprednji del je zaobljen, v katerem se nahaja splet fibril (niti), ki verjetno sodelujejo pri gibanju in vstopu v gostiteljsko celico.

Zaradi neznanih dejavnikov (verjetno tudi zaradi imunskega odziva gostitelja) lahko pride do tvorbe tkivnih cist kjerkoli v telesu, v času 7-10 dni po sistemski okužbi s tahioziti.[7] Slednje so velike okoli 50-100 μm in vsebujejo več sto bradiozitov (gr. brados - počasen), ki so tanjši, manjši in se počasneje delijo. Paraziti se lahko v taki obliki nahajo v gostitelju vso življenje brez povzročanja škode. Kljub temu pa lahko ciste počijo zaradi različnih dejavnikov, kot je zmanjšanje odpornosti kot posledica obsevanja, zdravil in drugih boleznih, pri čemer sproščeni paraziti povzročijo ponoven izbruh bolezni.

Patogeneza

 src=
Oocista T. gondii z dvemi sporocitami
Glavni članek: Toksoplazmoza.

Po prenosu v gostiteljevo telo se iz oocist sprostijo sporozoiti, iz tkivnih cist pa bradioziti. Paraziti nato vdrejo v črevesne epitelijske celice (enterocite), kjer se začnejo razmnoževati; optimalna temperatura za rast v gostiteljski celici je od 37-39 °C. Po propadu gostiteljskih celic jih limfa in kri razneseta v razne organe, kot so srce, pljuča, jetra in možgani. Klinična slika je tako odvisna od prizadetega organa, pa tudi od starosti in vrste gostitelja, števila parazitov ter od načina okužbe (infekcije). Parazit ne proizvaja toksina.

V glavnem ločujemo dve vrsti toksoplazmoz, in sicer:

  • pridobljeno ali aktivirano toksoplazmozo;
  • prirojeno ali kongenitalno toksoplazmozo.

Pridobljena toksoplazmoza

Tovrstna okužba navadno ne povzroča akutne bolezni, temveč le blago obliko, ki je navadno brez bolezenskih znakov, tj. v latentni obliki. Kljub temu se pri nekaterih v času 1 do 3 tednov inkubacijske dobe lahko razvije bolezen, podobna infekcijski mononukleozi, z vročino, glavobolom, bolečinami mišic, utrujenostjo in predvsem z vnetjem bezgavk (limfadenopatija), ki se navzven kaže s povečanimi bezgavkami, predvsem na predelu vratu. Bolezen traja različno dolgo, v povprečju od 3-18 mesecev.

Težja oblika se pri odraslih lahko pojavi zaradi laboratorijske okužbe, oslabele imunosti kot posledica nekaterih bolezni (npr. Hodgkinova bolezen, levkemija, limfosarkom, AIDS) ali uporabe imunosupresivov, presaditve (transplantacije) okuženega organa in transfuzije okužene krvi. V približno 50 % je prizadeto osrednje živčevje, kar se kaže kot glavobol, zmedenost, ataksija (motena usklajenost mišičnih gibov) in krči, nazadnje pa lahko nastopi tudi smrt.

Prirojena toksoplazmoza

Okužba nosečnice ali njenega ploda povzroča manj pogosto, vendar hujšo prirojeno toksoplazmozo. Le-ta nastopi praviloma samo takrat, ko se nosečnica prvič okuži med nosečnostjo in paraziti dosežejo plod preko njenega krvnega obtoka. Plodu ženske, ki je bila okužena že pred zanositvijo, paraziti niso nevarni zaradi že nastalih protiteles, prav tako pa ženska, ki je rodila otroka s tovrstnim obolenjem, rodi naslednjega otroka zdravega.

Posledica prirojene toksoplazmoze se na plodu kažejo predvsem kot poškodbe na očeh in možganih, kot so horioretinitis (vnetje mrežnice in horoidee), hidrocefalus oz. vodenoglavost, mikrocefalija (nenormalna majhnost glave), psihomotorične zapoznelosti in zaapnitve možganov, pri novorojenčku pa se lahko pokažejo še hepatosplenomegalija (povečana jetra in vranica), pljučnica oz. pnevmonija, izpuščaji, anemija oz. slabokrvnost, zlatenica in krči. V okoli 70 % se ženskam, ki so bile okužene v zadnjem tromesečju nosečnosti, rodijo navidez zdravi otroci, bolezenski znaki pa se pojavijoi pozneje; to imenujemo asimptomatska ali subklinična toksoplazma.

Diagnoza in zdravljenje

Okužbo s T. gondii se lahko diagnosticira preko mikroskopskega pregleda biopsijskega vzorca (razmaza), narejenih iz tkiv potencialno okuženih organov, kot so možgani, kostni mozeg, bezgavke in posteljica, ali iz telesnih tekočin, tj. krvi in likvorja. Lahko se izvede tudi serološke preiskave za protitelesa IgM in IgG[8] (specifično Sabin-Feldmanov test), neposredni in posredni imunofluorescenčni test (IFT) ter ELISA, ali pa kožni test.

Najučinkovitejše zdravilo je kombinacija pirimetamina in sulfonamidov, kot je sulfadiazin.[8] Glede na to, da pirimetamin deluje škodljivo na kostni mozeg, je potrebno med zdravljenjem nadzirati krvno sliko obolelega in mu dajati pripravke s folinsko kislino. Učinkoviti so tudi spiramicin, rovamicin in klindamicin, pa tudi kortikosteroidi zaradi protivnetnega delovanja. Omenjena zdravila sicer delujejo samo na proste oblike parazita in ne na tkivne ciste.

Preventiva

Pri preventivi je pomembna predvsem higiena, saj se človek najpogosteje okuži preko neprekuhanega mesa ali vode, onesnažene z oocistami, ki izvirajo iz mačjih iztrebkov. Glede na to, da mačke slednje navadno zakopljejo, lahko oociste preživijo več mesecev ali celo več let.

Odporne so proti blagimi kislinam in lugom ter proti običajnim razkužilom, po drugi strani pa jih uničijo že navadni gospodinjski postopki, kot so kuhanje, pečenje, soljenje in dimljenje.

Za nosečnice je priporočljivo, da se izogibajo stiku z mačkami in zemljo oz. vodo, ki je potencialno onesnažena. Sicer pa je pregledovanje nosečnic na toksoplazmozo v Sloveniji in Avstriji predpisano z zakonom.

Sklici in opombe

  1. Flegr, J (Jan 2013). "Influence of latent Toxoplasma infection on human personality, physiology and morphology: Pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis". The Journal of Experimental Biology 216 (Pt 1): 127–33. PMID 23225875. doi:10.1242/jeb.073635.
  2. Gale SD; Erickson LD; Brown BL; Hedges DW (2015). "Interaction between Helicobacter pylori and latent toxoplasmosis and demographic variables on cognitive function in young to middle-aged adults". PLoS ONE 10 (1): e0116874. PMC 4295891. PMID 25590622. doi:10.1371/journal.pone.0116874.
  3. Parlog A; Schlüter D; Dunay IR (March 2015). "Toxoplasma gondii-induced neuronal alterations". Parasite Immunol. 37 (3): 159–170. PMID 25376390. doi:10.1111/pim.12157.
  4. Blanchard N; Dunay IR; Schlüter D (2015). "Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system". Parasite Immunol. 37 (3): 150–158. PMID 25573476. doi:10.1111/pim.12173.
  5. Ajioka, J.W. & Morrissette, N.S. (2009). "A century of Toxoplasma research". International Journal for Parasitology 39 (8): 859–860. doi:10.1016/j.ijpara.2009.02.006. CS1 vzdrževanje: Večkratna imena: authors list (link)
  6. 6,0 6,1 Logar, Jernej; Šoba, Barbara; Berce, Ingrid; Merljak Skočir, Lilijana; et al. (2006). "Prekuženost nosečnic s Toxoplasmo gondii v dveh zemljepisno in podnebno različnih področjih Slovenije". Medicinski razgledi 45 (1): 75–8. Dokument v dLIB
  7. Kasper, L.H. (2008). "Chapter 207: Toxoplasma Infections - Etiology". V: Harrison's Principles of Internal Medicine, 17. izdaja; urednik Kasper D.L. New York itd.: McGraw Hill. (COBISS) [elektronski vir]
  8. 8,0 8,1 Levinson, W. (2008). Review of medical microbiology and immunology, 10. izdaja. New York itd.: McGraw-Hill Medical. ISBN 978-0-07-149620-9

Viri

license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL

Toxoplasma gondii: Brief Summary ( Spanish; Castilian )

provided by wikipedia SL

Toxoplasma gondii (grško toxon - lok + plasma - oblika) je parazitska pražival iz debla Apicomplexa. Razširjen je po vsem svetu, pri toplokrvnih (homeotermnih) živalih, kot so glodavci in ptiči, ter pri človeku pa povzroča eno od najbolj pogostih in razširjenih parazitskih bolezni, tj. toksoplazmozo.

Številne študije so ugotovile subtilne vedenjske ali osebnostne spremembe pri okuženih ljudeh. Okužbo z zajedavcem so pred kratkim povezali s številnimi nevrološkimi motnjami, posebno s shizofrenijo. Raziskava leta 2015 je dokazala kognitivne primanjkljaje pri odraslih, ki sta jih hkrati okužila toxoplasma gondii in helicobacter pylori, uporabljajoč pri tem regresijski model s kontrolnima skupinama za raso-pripadnost etniji in za doseženo raven izobrazbe. Kljub temu, da vzročna zveza med latentno toksoplazmozo in temi nevrološkimi pojavi še ni ugotovljena, predhodni podatki kažejo, da okužba z "T. gondii" lahko povzroči določene spremembe v možganih, ki jih je bilo opaziti pri miših.

 src= Deleči se zajedavci T. gondii  src= Struktura T. gondii
license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL