dcsimg

Brief Summary

provided by EOL authors
The yellowbanded bumble bee (Bombus terricola) was historically found throughout the eastern and upper midwestern United States, as well as in most of southern Canada. However, populations have declined dramatically in the last decade. Yellowbanded bumble bees are primarily black, with queens and workers having some yellow on the thorax and abdomen. Workers have a fringe of brownish-yellow hairs on the abdomen. Males resemble queens and workers but additionally have pale yellowish hair on the face and top of the head.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Pollinator

provided by EOL authors
Yellowbanded bumble bees are known pollinators of wildflowers, potatoes, alfalfa, raspberry, and cranberry.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Population declining

provided by EOL authors
Yellowbanded bumble bees were once found throughout the eastern and upper midwestern parts of the United States and most of southern Canada. Populations have declined drastically in the last decade; between 2005 and 2008 these bees were only found in isolated portions of their range in the north and eastern United States. The rapid decline is believed to be caused by an introduced pathogen, possibly Nosema bombi, which was likely picked up by queen bees sent to European rearing facilities and then sent back to the United States in the early 1990's. It is hypothesized that after the return of these newly infected bees, the disease then spread to wild populations of yellowbanded bumble bees, Franklin's bumble bees (B. franklini), western bumble bees (B. occidentalis), and rusty patched bumble bees (B. affinis). A decline in each of these species was noticed in the late 1990's. Additional threats to bumble bees include other pests and diseases, habitat destruction, pesticides, invasive species, natural pests or predators, and climate change.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Conservation Status

provided by University of Alberta Museums
Of concern, populations rapidly declining (Colla and Packer 2008, Grixti et al. 2009).
license
cc-by-nc
copyright
University of Alberta Museums

Cyclicity

provided by University of Alberta Museums
Among the earliest bumblebees to emerge and establish nests in spring (Hobbs 1968).
license
cc-by-nc
copyright
University of Alberta Museums

Distribution

provided by University of Alberta Museums
Eastern nearctic region (Williams 1998).
license
cc-by-nc
copyright
University of Alberta Museums

General Description

provided by University of Alberta Museums
"Females of the subgenus Bombus s. str. can be distinguished by ocelli on the superorbital line, and flagellomere one being equal in length to flagellomere three. Bombus s.str. males can be distinguished by non-protuberant compound eyes, short antennae, and penis valves that form a wide vertical plate (Thorp et al. 1983). Bombus terricola have abdominal segments 1 and 4-6 covered with black pile while segments 2-3 are covered with yellow pile; the malar space is one-fifth to one-sixth the length of the eye(Franklin 1912). Bombus terricola can be distinguished from its close ally Bombus occidentalis nigroscutatus by the presence of yellow pile on the second abdominal segment (Franklin 1912). Franklin (1912) describes the queen as varying in length from 15 mm to 18 mm; in wing spread from 37 mm to 40 mm; and in width of second abdominal segment from 10 mm to 10.5 mm. Workers range in length from 10 mm to 14 mm; in wing spread from 26 mm to 33 mm; and in width of second abdominal segment from 5 mm to 8 mm. The length of males varies from 11 mm to 15 mm; wing spread from 27 mm to 33 mm; and the width of second abdominal segment from 6.5 mm to 8 mm."
license
cc-by-nc
copyright
University of Alberta Museums

Habitat

provided by University of Alberta Museums
Areas with dense vegetation, nests are underground with downward sloping entrances (Hobbs 1968).
license
cc-by-nc
copyright
University of Alberta Museums

Life Cycle

provided by University of Alberta Museums
Alford (1975) outlines the life history of Bombus terricola. Newly mated B. terricola queens overwinter beneath the soil litter and emerge from their hibernacula in late spring. Queens are transitory for a time, growing in size while collecting pollen and looking for a suitable nest. Once a suitable nest has been found, the queen constructs an apple sized hollow structure within it. The queen deposits her eggs within a mound of pollen on the floor of the structure; she also constructs a honeypot for storing nectar. Newly hatched larvae begin consuming the pollen mound, requiring the queen to continue provisioning it. The queen periodically incubates her brood by sitting upon it and respiring to generate body heat. The larvae spin cocoons in the final instars, as do the pupa; the cocoons may be re-used later for storage of pollen or nectar. Upon pupation, the emerged adults take nectar from the honey pot. Once the nest consists of the new young workers and the queen it can be considered a social unit and is referred to as a colony. Subsequent generations are produced differently from the first: new eggs are laid in clumps in cells atop the pupating first generation of workers, and workers are now responsible for provisioning of the growing larva and the honey pot. The caste differentiation of each generation varies throughout the year, with the first generations containing all workers, followed by a worker/male split, followed by mostly males, followed by a male/queen split, followed by mostly queens. The factor initiating queen production has not been established but it appears the colony must reach a size capable of maintaining nest temperatures and food stores before queens are produced. Young queens remain in the colony and will mate during their first week. Males leave the hive and do not return; they establish a methodical flight path and mate with encountered queens. Only the newly mated queens will overwinter in hibernacula; males, founder queens, and all workers perish.
license
cc-by-nc
copyright
University of Alberta Museums

Trophic Strategy

provided by University of Alberta Museums
Have been observed foraging upon milkweed and dogbane species of the family Apocynaceae (Plowright and Plowright 1998).
license
cc-by-nc
copyright
University of Alberta Museums

Bombus terricola

provided by wikipedia EN

Specimen

Bombus terricola, the yellow-banded bumblebee, is a species of bee in the genus Bombus. It is native to southern Canada and the east and midwest of the United States. It possesses complex behavioral traits, such as the ability to adapt to a queenless nest, choose which flower to visit, and regulate its temperature to fly during cold weather. It was at one time a common species, but has declined in numbers since the late 1990s, likely due to urban development and parasite infection. It is a good pollinator of wild flowers and crops such as alfalfa, potatoes, raspberries, and cranberries.[2]

Taxonomy and phylogeny

B. terricola belongs to the order Hymenoptera, which consists of ants, bees, wasps, and sawflies. B. terricola belongs to the family Apidae, which encompasses bumblebees, honey bees, stingless bees, and more. Within this, it is part of the genus Bombus, which consists of bumblebees. Kirby first defined this species in 1837. Bombus occidentalis has been speculated to be a subspecies of B. terricola, but most experts now agree that it is its own distinct species.[3] B. terricola is also closely related to B. affinis both phylogenetically and in terms of pheromone signalling. Oftentimes, the B. terricola is so similar to B. affinis that members of B. affinis can invade and dominate entire B. terricola nests without the hosts knowing.[4]

Description

The yellow-banded bumblebee is black and yellowish-tan, and has a characteristic fringe of short yellow-brown hairs on its fifth abdominal segment.[2] The queen is about 18 mm (0.7 in) long. The front half of the thorax is yellowish-brown, as are segments 2, 3 and 4 and the sides of segment 6 of the abdomen. The other parts of the thorax and abdomen are black. The worker is similar in appearance to the queen but smaller at a length of 9 to 14 mm (0.35 to 0.55 in). The male is intermediate in size, being 13 to 17 mm (0.5 to 0.7 in) long. In the male, abdominal segments 2, 3, and 7 are yellowish-brown as are usually the sides of abdominal segment 6.[5]

Distribution and habitat

Bombus terricola occupies the eastern and Midwestern parts of the United States as well as southern Canada. They are known to occupy a wide range of habitats including urban areas, meadows, grasslands, wetlands, woodlands, and farmlands. They can also occupy alpine meadows to lowland tropical forests.[6]

Colony cycle

In B. terricola, there are three phases of colony development. The first phase, known as colony initiation, begins when a solitary queen starts to produce her first workers by laying diploid eggs. This leads to further eusociality within the colony and the queen's continued efforts to produce more worker bees.[7] The emergence of workers is essential for colony growth. The onset of the second phase, known as the switch point, is when the queen stops laying diploid eggs and starts making haploid eggs to produce male bees.[7] During the third phase, the workers exhibit overt aggression towards each other and towards the queen. The beginning of the third phase is known as the competition point. Reciprocal oophagy also occurs during this third stage.[7]

Behavior

Reproduction

In Bombus terricola, there are female-biased investment ratios. The workers of the colony try to bias the sex ratios to be 3:1, in favor of the worker bees, which are female.[8] The workers attempt to bias the sex ratios so that they can benefit for their own gene propagation; however, the queen tries to bring the sex ratio back to a favorable 1:1 of males and females for her own benefit as well. This process is referred to conflict between kin and is commonly seen in bees. B. terricola queens usually have a single mating opportunity in one mating flight with multiple males; the queen then stores all of the sperm in a spermatheca, from which only one sperm will get to fertilize her egg.[9]

Orphaning

Sometimes, some B. terricola colonies become orphaned.[8] If there are feeble and weak queens, the queen has a decreased ability to fertilize eggs or cannot fertilize them at all. With declining queen vigor, worker-laid male eggs became more common.[8] Furthermore, the highest proportion of worker-laid male eggs was observed in smaller colonies.[8] Due to the absence of a strong queen leader, these male-dominated colonies attempt to get young, strong queens back because that would be in the best interest and benefit for the colony.

Foraging

Bombus terricola congregate in nectar rich areas. They can discern which flowers have been previously visited by other bees or are depleted of resources such as nectar or pollen.[10] They usually visit consecutive flowers in one direction and do not return to previous flowers. They tend to go to areas that are rich in resources and usually do not visit these areas again once the bees deplete the resources.[10] Instead, it has been found that B. terricola expend energy to fly to new locations of food sources. Although the flight costs energy, they expend it for future profit in finding areas abundant in resources.[10] The mechanism of their foraging beyond this information is currently unknown; it is also unknown whether they do not return to previously visited sites due to memory of the flowers or memory of landmarks (such as a nearby tree).

Flower pollination

B. terricola foragers are highly selective about the flowers they pollinate. They can visit about 12–21 flowers per minute.[11] The amount, quality, and availability of nectar and pollen are the primary qualities that B. terricola use to determine which flowers to pollinate.[12] These bees can determine the quality of pollen grain from a distance, but the method as to how this is accomplished is still not yet known.[11] Individual foragers vary in their speed, flight, directionality, and erratic movements.[11] Some bees hover over flowers but never land on them. Flower visitation rates depend on the number of rewarding or non-rewarding flowers they encountered on their flights. Rewarding flowers are ones that contain much pollen or nectar. One study noted that B. terricola bypass flowers that they have previously visited and only foraged a small amount of pollen from them.[12] Finally, the bees release their pollen by emitting one to four sharp buzzing sounds of one second each. While buzzing, B. terricola also rotate clockwise or counterclockwise.[11]

Types of flowers

B. terricola have been known to forage on milkweed (Aslepia syriaca), jewelweed (Impatiens biflora), and fireweed (Epilobium angustifolium).[12] B. terricola exhibit consistent foraging behavior and tend to visit the same flowers repeatedly, especially if these flowers were rewarding in the past in terms of the amount of nectar and pollen they carried.[12]

Temperature regulation

Bumblebees can fly at a wide range of temperatures, including normal air temperature or below freezing point. They must have body temperatures of at least 29-30 degrees Celsius before they are able to free fly independently in the air.[13] Like honeybees, they produce heat before their flight. To raise their body temperature, specifically their thoracic temperature, these bees must expend a lot of energy. These bees can visit dispersed flowers within a short span of time at either high or low air temperatures. Sometimes at low temperatures, these bees do not have enough heat to maintain continuous flight. Consequently, landing on flowers warms them up so that their thoracic temperature remains high enough for flight.[13] Since they use up a lot of energy for this thermoregulation, they take a lot of nectar from flowers that are most readily available to use as energy storage.[13] By maintaining a high thoracic temperature, B. terricola can look for new sources of food and have the advantage to fly away quickly if they are at risk for predation.[14]

Interactions with other species

Parasites

There are a few parasites that have been found to affect the populations of Bombus terricola. The larva, Physocephala, infects about twelve percent of the worker population of B. terricola from July to August in Ontario, Canada.[12] There is another parasite that is known to affect this population: the fungus Nosema bombi.[15] Classified as a fungus, Nosema bombi is a small, unicellular parasite that is known to infect bumblebees. It may also be one of the factors that is leading to the decline in numbers of Bombus terricola. There is a high prevalence of this parasite specifically in Bombus terricola populations.

Population decline

Similar to other species of the Bombus genus, B. terricola has been declining in numbers. A specific study in Illinois shows that there was a severe decline in the middle of the 20th century from 1940-1960.[16] In the state of Illinois specifically, intensive farming and urban development have taken away the natural landscapes and habitats that these bees would normally occupy. This decline in B. terricola corresponded with the huge growth in agriculture and urban development. Furthermore, the Nosema bombi parasite may also contribute to the decline in populations of B. terricola as they particularly attack these bees.

Conservation status

Like several other North American species in its subgenus Bombus, the yellow-banded bumblebee has suffered sharp declines in numbers since the mid-1990s.The Xerces Society for Insect Conservation has placed Bombus terricola on their "Red List" of endangered bees.[16] The yellow-banded bumblebee has disappeared over large parts of its range, but is still present in Vermont, New Hampshire, and Maine, where the population appears to be stabilizing and in the Great Smoky Mountains, where the population seems to be expanding. It is not clear whether this is because it has developed some resistance to the parasite, Nosema bombi, or whether the parasite has not yet spread into these parts. The rusty-patched bumblebee (Bombus affinis) has suffered an even steeper decline. It will become clearer over time whether populations of these bees will remain viable or whether the species will become extinct.[17]

References

  1. ^ Hatfield, R.; Jepsen, S.; Thorp, R.; Richardson, L.; Colla, S. (2015). "Bombus terricola". IUCN Red List of Threatened Species. 2015: e.T44937505A46440206. doi:10.2305/IUCN.UK.2015-2.RLTS.T44937505A46440206.en. Retrieved 13 November 2021.
  2. ^ a b "Bumble bees: yellow-banded bumble bee (Bombus terricola)". The Xerces Society. Archived from the original on 2014-04-24. Retrieved 2015-02-13.
  3. ^ Rao, Sujaya; Stephen, William (2007). "Bombus occidentalis (Hymenoptera: Apiformes): In decline or recovery". Pan-Pacific Entomologist. 83 (4): 360–362. doi:10.3956/2007-10.1.
  4. ^ Fisher, Richard M. (1983). "Recognition of Host Nest Odour by the Bumblebee Social Parasite Psithyrus ashtoni (Hymenoptera: Apidae)". Journal of the New York Entomological Society. 91 (4): 503–507. JSTOR 25009392.
  5. ^ "Bombus terricola Kirby, 1837". Discover Life. Retrieved 2015-02-13.
  6. ^ Cameron, S.A.; Hines, H.M.; Williams, P.H. (2007). "A comprehensive phylogeny of the bumble bees (Bombus)". Biological Journal of the Linnean Society. 91: 161–188. doi:10.1111/j.1095-8312.2007.00784.x.
  7. ^ a b c Duchateau, M.J.; Velthuis, H.H.W (1988). "Development and Reproductive Strategies in Bombus terrestris Colonies". Behaviour. 107 (3–4): 186–207. doi:10.1163/156853988x00340.
  8. ^ a b c d Rodd, Robin; Plowright, R.C. (1980). "Sex Ratios in Bumble Bee Colonies: Complications due to Orphaning?". Behavioral Ecology and Sociobiology. 7 (4): 287–291. doi:10.1007/bf00300669.
  9. ^ Baer, B.; Schmid-Hempel, P.; Boomsma, J.J. (2003). "Sperm length, sperm storage and mating systems in bumble bees". Insectes Sociaux. 50 (2): 101–108. doi:10.1007/s00040-003-0641-0.
  10. ^ a b c Heinrich, Bernd (1979). "Resource Heterogeneity and Patterns of Movement in Foraging Bumblebees". Oecologia. 40 (3): 235–245. Bibcode:1979Oecol..40..235H. doi:10.1007/bf00345321. PMID 28309608.
  11. ^ a b c d Batra, Suzanne (1993). "Male-fertile potato flowers are selectively buzz-pollinated only by Bombus terricola Kirby in Upstate New York". Journal of the Kansas Entomological Society. 66 (2): 252–254. JSTOR 25085442.
  12. ^ a b c d e Heinrich, Bernd; Mudge, Patricia; Deringis, Pamela (1977). "Laboratory Analysis of Flower Constancy in Foraging Bumblebees: Bombus ternarius and B. terricola". Behavioral Ecology and Sociobiology. 2 (3): 247–265. doi:10.1007/bf00299738.
  13. ^ a b c Heinrich, Bernd (1972). "Energetics of Temperature Regulation and Foraging in a Bumblebee, Bombus terricola Kirby". Journal of Comparative Physiology. 77: 49–64. doi:10.1007/bf00696519.
  14. ^ Heinrich, Bernd; Heinrich, Margaret (1983). "Heterothermia in foraging workers and drones of the bumblebee Bombus terricola". Physiological Zoology. 56 (4): 563–567. doi:10.1086/physzool.56.4.30155879. JSTOR 30155879.
  15. ^ McIvor, Catherine (1995). "Nosema bombi, a microsporidian pathogen of the bumble bee Bombus terrestris". New Zealand Journal of Zoology. 22: 25–31. doi:10.1080/03014223.1995.9518020.
  16. ^ a b Wong, Lisa; Cameron, Sydney; Favret, Colin; Jennifer, Grixti (2009). "Decline of bumble bees (Bombus) in the North American Midwest". Biological Conservation. 142: 75–84. doi:10.1016/j.biocon.2008.09.027.
  17. ^ Schweitzer, D.F.; Capuano, N.A. (2011-10-07). "Bombus terricola - Kirby, 1837". NatureServe. Retrieved 2015-02-13.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Bombus terricola: Brief Summary

provided by wikipedia EN
Specimen

Bombus terricola, the yellow-banded bumblebee, is a species of bee in the genus Bombus. It is native to southern Canada and the east and midwest of the United States. It possesses complex behavioral traits, such as the ability to adapt to a queenless nest, choose which flower to visit, and regulate its temperature to fly during cold weather. It was at one time a common species, but has declined in numbers since the late 1990s, likely due to urban development and parasite infection. It is a good pollinator of wild flowers and crops such as alfalfa, potatoes, raspberries, and cranberries.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN