dcsimg

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 15.3 years
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Associated Plant Communities

provided by Fire Effects Information System Animals
In addition to the plant communities listed above, western tanagers are reported from disturbed habitats. For instance, western tanagers were seen in an area of northwestern California that had been logged less than 5 years previously. Cutleaf burnweed (Erechtites glomerata) was characteristic of the youngest age class, while slightly older sites were comprised predominantly of tanoak (Lithocarpus densiflorus) with smaller amounts of snowbrush ceanothus (Ceanothus velutinus), whitebark raspberry (Rubus leucodermis), and Sierra gooseberry (Ribes roezlii) [45]. In addition, western tanagers were captured along the Rio Grande in New Mexico during spring and fall migration in an agricultural area comprised primarily of alfalfa (Medicago sativa) and corn (Zea mays) [136].

Western tanagers have also been observed in saltcedar (Tamarix spp.) communities [32,136] and in Russian-olive (Elaeagnus angustifolia) vegetation [62,136]. In New Mexico, western tanagers were observed in nearly pure stands of saltcedar 10 to 23 feet (3-7 m) tall [32]. Western tanagers were also observed in saltcedar communities during fall migration in along the Rio Grande [136]. Ten western tanagers were observed among 3 sites composed of Russian-olive in Colorado, Utah, and Idaho. All sites were dominated by Russian-olive with cheatgrass (Bromus tectorum) comprising a substantial portion of the understory [62]. Along the Rio Grande western tanagers were most often captured during fall migration in vegetation with a Rio Grande cottonwood (Populus deltoides ssp. wislizenii) overstory and a moderate to dense Russian-olive understory [136].
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Common Names

provided by Fire Effects Information System Animals
western tanager
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Direct Effects of Fire

provided by Fire Effects Information System Animals
More info for the terms: fire frequency, frequency, severity

Adult western tanagers are unlikely to suffer directly from fire. It is generally accepted that large, fast-moving fires can result in mortality, but adult birds typically have the mobility to avoid fire [26,30,73].

It is likely that nests are more vulnerable to fire [30,92]. Although there were no data directly investigating western tanager nest mortality due to fire as of 2006, literature reviews have used fire characteristics and life history of species to speculate on possible effects of fire on nesting success and bird populations [73,102]. Due to the height of most western tanager nests (see Nesting habitat), only relatively severe fires would directly impact their young. Since conditions necessary for fire severe enough to affect nests higher in the canopy typically occur after nesting season [73], it is likely that direct effects of growing-season fire on western tanager nests would be uncommon compared to species nesting lower to the ground. In addition, the possibility of western tanager renesting may reduce the direct effects of a fire on western tanager recruitment [73,102]. Nests impacted early enough in the breeding season could be compensated for by later nesting attempts. However, since western tanagers only rear 1 brood per season (see Timing of Major Life History Events) fires of enough severity in the mid- to late-breeding season are likely to have a larger effect on western tanagers than fires before or after the breeding season [72] and may have substantial impacts on the survival of western tanager nestlings and fledglings. In addition to fire severity and timing, other fire characteristics such as the uniformity of the burn and fire frequency are likely to influence the degree to which fire directly impacts western tanager reproduction [52,73].

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Distribution

provided by Fire Effects Information System Animals

The breeding range of the western tanager, as described by literature reviews and field guides, includes forests along the western coast of North America from southeastern Alaska south to northern Baja California. Western tanagers extend east to western Texas and north through central New Mexico, central Colorado, extreme northwest Nebraska, and areas of western South Dakota to southern Northwest Territories, Canada [28,54,58,117]. Reviews report the western tanager's wintering range as stretching from central Costa Rica north through Nicaragua, Honduras, El Salvador, and Guatemala to southern Baja California Sur and extreme southeastern Sonora in western Mexico and to southern Tamaulipas in northeastern Mexico. Western tanagers do not typically occur in the Caribbean lowlands. They have been reported wintering further north and have been observed as far south as Panama [28,54,58,117]. Accidentals are rare to casual in the eastern United States [117,129]. A general map of the western tanager's distribution can be found at Cornell's All About Birds website.

The following lists are speculative and are based on western tanager distribution information and the habitat characteristics and species composition of communities western tanagers are known to occupy during migration and breeding. There is not conclusive evidence that western tanagers occur in all the habitat types listed and some community types, especially nonconiferous habitats, may have been omitted. Abundance of western tanagers in the community types listed is variable. Western tanagers are rarely observed in some of the following communities and are quite common in others. See Preferred Habitat for more detail.

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Food Habits

provided by Fire Effects Information System Animals
More info for the terms: forest, fruit, seed, tussock, woodland

According to several reviews, western tanager obtain their food by foliage gleaning and hawking [28,54,58]. The degree to which each of these methods is used apparently varies across locations. For instance, in a California mixed conifer-oak forest consisting mainly of white fir, Douglas-fir, incense-cedar, and California black oak, about 47% of western tanager foraging observations were gleaning, about 40% were hawking, while lunging and hovering occurred in about 6% and 7% of observations, respectively [2]. In contrast, in the mainly Douglas-fir dominated communities of interior British Columbia, gleaning comprised 93.2% of western tanager foraging observations. Hawking only occurred in 3.7% of observations and hovering in 3.1% [88].

Western tanagers primarily glean from foliage. In the mixed conifer-oak woodland of California, 45% of western tanager foraging observations were foliage gleaning. Western tanagers gleaned from twigs in 10% of observations and from branches in 5% of observations. Hawking comprised the remainder of western tanager foraging observations [2]. In British Columbia, 88.3% of gleaning observations occurred on foliage, 10.5% on branches and twigs, and 1.2% on trunks [88].

Western tanagers eat fruits and a wide range of insects. A field guide states that western tanager's diet is about 18% plant matter and 82% insects [28]. According to a literature review, fruits eaten by western tanagers include hawthorn apples (Crataegus spp.), raspberries (Rubus spp.), mulberries (Morus spp.), elderberries (Sambucus spp.), serviceberries (Amelanchier spp.), and wild and cultivated cherries (Prunus spp.) [54,58,75]. Western tanagers have been observed foraging on Perry's agave (Agave parryi) nectar [65]. Reports of western tanager eating Eucalyptus (Eucalyptus spp.) nectar, Russian-olive fruits, and human-provided food, including bird seed and dried fruit, were summarized in a review [54]. A literature review asserts that western tanagers are major consumers of western spruce budworms (Choristoneura occidentalis) [66], and they have been observed eating Douglas-fir tussock moth larvae (Orgyia pseudotsugata) [127]. A study summarized in literature reviews [54,58] found 75% of insects in western tanager stomachs in August were Hymenopterans, mostly wasps and ants. The other insects observed were beetles (Coleoptera,12%), mainly click beetles (Elateridae) and woodborers (Bupestridae), true bugs (Hemipterans, 8%), grasshoppers (Orthoptera, 4%) and caterpillars (Lepidoptera, 2%).

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Habitat-related Fire Effects

provided by Fire Effects Information System Animals
More info for the terms: density, fire frequency, fire regime, fire severity, forest, frequency, habitat type, herbaceous, moderate-severity fire, prescribed burn, severity, stand-replacing fire, tree, wildfire, woodland

Despite several articles that discuss the effect of fire on western tanagers, results should be interpreted with caution. As noted by a literature review summarizing songbird responses to fire in southwestern ponderosa pine forests [34], there are several limitations to many studies addressing bird response to fire. Most studies are restricted in spatial or temporal scale. Many are opportunistic, include confounding factors, and/or lack sufficient replication. There is also a lack of studies that compare demographic parameters of western tanager between burned and unburned vegetation, which is necessary to determine if a site is meeting the needs of western tanagers [34].

Reviews that address the effect of fire on western tanager demonstrate that several different responses have been observed [47,63,108]. However, it is possible that fire severity explains a considerable portion of the observed variation. It appears that western tanagers generally respond positively to low-severity fire and negatively to high- severity fire.

Western tanager abundance has been observed to increase after low- to moderate-severity fire [19,21,116]. Western tanager was significantly (p<0.05) more abundant in the year after prescribed underburns in a ponderosa pine forest and pine-grassland ecotone of Wind Cave National Park, South Dakota compared to unburned sites [21]. Abundance of western tanager was much greater (103 detections) on a site moderately affected by wildfire in ponderosa pine forests in Arizona than on an unburned site (20 detections) [19]. In low- to mid-elevation conifer communities of western Montana, western tanagers were significantly (p=0.005) more abundant after wildfire resulted in <20% tree mortality than before the wildfire occurred. Western tanager abundance did not increase significantly (p>0.05) on sites subject to moderate (20%-80% tree mortality) wildfire. The differences ((after fire mean minus before fire mean) x 100) in western tanagers detected before and after fire at unburned points and points that burned at low (<20% tree mortality), moderate (20%-80% tree mortality) or high severity (>80% tree mortality) are shown in the table below (sx is in parentheses) [116].

Unburned (n=120) Low (n=52) Moderate (n=32) Severe (n=38) after fire mean - before fire mean 2.4 (5.2) 23.9 (7.3) 12.1 (8.9) -15.4 (8.6)

Much of the evidence for decreases in western tanager abundance comes from investigations of high- severity fires. In coniferous forests of Yellowstone and Grand Teton National Parks, western tanagers occurred at higher densities on unburned sites (up to 15 western tanagers/100 acres) and moderately burned sites ≤3 years old (up to 10 western tanagers/100 acres) than in areas that had burned in severe fires 2 and 3 years previously, where western tanagers were only observed outside of transects [125]. In the Sierra Nevada of California, western tanager occurred at higher densities in unburned (0.75-1.5 pairs/plot) mixed-coniferous vegetation dominated by Jeffrey pine and white fir than on sites that burned in the stand-replacing Donner Ridge Fire 6 to 8 years earlier (0-0.25 pair/plot). The burned sites were comprised of small pockets of Jeffrey pine and white fir along with post-fire vegetation such as woolly mule-ears (Wyethia >mollis), golden current (Ribes aureum), and greenleaf manzanita (Arctostaphylos patula) [20]. The trend on this site continued through 1985, with western tanager occurring at a density of 0.2 territory/plot in the burned area 15 years after the fire and 1.7 territories/plot in unburned vegetation dominated by Jeffrey pine, ponderosa pine, Washoe pine (P. washoensis), their intermediates, and white fir [98]. Although the response was not significant (p>0.05), western tanager abundance declined after severe (>80% tree mortality) wildfire in coniferous forests on low- to mid-elevation sites in western Montana [116]. A literature review that summarized the findings of 11 published and unpublished studies reported that western tanagers were more abundant on unburned sites than on 23 severely-burned conifer forest sites [63].

Studies incorporating a range of fire severities have found fire resulted in no change in western tanager abundance. For instance, in ponderosa pine-dominated forests in northern Arizona and New Mexico, western tanager did not respond to low to moderate severity prescribed burns and wildfire. The average western tanager detections over the 4 years before a prescribed burn (2.75) in Arizona were similar to the year after the fire (3.00). Average western tanager detections before a wildfire (16) on a New Mexico site were not substantially different from detections in the 2 years after the burn (13.5) [16]. Western tanagers response to high-severity surface fires in white fir and red fir communities of Yosemite National Park were inconclusive [42]. In ponderosa pine forests in Arizona, 24 western tanagers were detected on sites 3 years after they were severely burned, while 20 were detected on an adjacent unburned site [19].

Habitat type is likely to influence western tanager's response to fire. Since western tanagers appear to occur at relatively low abundance in dense forests [12,38,51] and are generally rare on very open sites such as clearcuts [25,49,128], sagebrush communities, and grasslands [57], fires that reduce tree density without dropping below some threshold may favor western tanagers. In pinyon-juniper communities of east-central Nevada, western tanagers were more abundant on a prescribed burn site than an unburned site before the burn, but were absent on the prescribed burn site after burning. In this habitat, burned areas were mainly low and herbaceous, while unburned areas were multi-layered and woody [76,77]. In addition, different western tanager responses to wildfire in different communities were reported in Grand Teton National Park. Western tanager was more abundant during the breeding season on a riparian-coniferous forest ecotone where the forest had burned in a wildfire 2 years previously than on a similar ecotone site that had not burned. However, in a sagebrush-coniferous forest ecotone western tanager breeding season abundance was greater on the unburned site than the site where the forest had burned 2 years previously [115]. According to a literature review, western tanagers occur more often in unburned than severely burned ponderosa pine forest, but are more common after stand-replacing fires in lodgepole pine communities than dense lodgepole pine forest [63].

Several factors including time since burn, occurrence of salvage logging, and fire characteristics such as size, frequency, uniformity, and season of burn are likely to influence western tanager response. However, little data are available on these factors and the type, size, and duration of their impacts on western tanager are largely unknown.

The effect of time since burn is uncertain. Nesting requirements (see Nesting habitat) suggest that extensive severe fire could result in long-term declines in western tanagers, due to the time required for large trees to regenerate on a site. However, a literature review found a higher percentage of studies reporting western tanager in early-successional burned forest (83%) than in mid-successional burned forest (20%) [56].

Salvage logging may also affect western tanagers response. In western Montana coniferous forests, western tanager density was the same in a burned forest salvaged logged to a density of 855 trees/ha, as in the unlogged burned forest with a tree density of 970/ha. However, western tanager did not occur on a salvage-logged site where a 70-ha clearcut and a 70-ha thinning to 125 trees/ha were performed after fire, while an average of 4.0 western tanagers/40 ha were observed on the burn site that was not logged (1,043 trees/ha) [50].

Given the possible importance of spatial arrangement of habitat (see Effects of spatial arrangement/area), the size and patchiness of a burn may also influence western tanager's response to fire. A literature review notes that many species that had mixed responses to fire, which included western tanager, occurred at their highest abundances within 165 feet (50 m) of the edge of burns [63]. In western Montana and northern Wyoming western tanager was negatively associated with size of stand-replacing fire, although the relationship was not significant (p>0.05) [56]. The relationship of fire to several aspects of habitat configuration is discussed in a review of the effects of fire at landscape scales [71].

Season of the burn may also affect western tanager's response. Although western tanager abundance was uniformly low in a mountain big sagebrush ecosystem (Artemisia tridentata var. vaseyana) of Wyoming, the greatest number of detections occurred in the second year following a spring prescribed burn, compared to fall prescribed burn and unburned sites [79]. Since western tanagers appear to prefer moderate to open forest stands (see Stand structure/composition), the fire frequency may affect western tanagers by influencing fire severity and forest structure [55] .

Very little information is available on the effect fire has on western tanager food resources. Although food available from gleaning foliage is likely to decline due to fire, it has been suggested that western tanager may be able to mitigate at least some of this loss by hawking aerial insects. However, little is known of these insects' response to fire [42]. General information on plant food response to fire can be found in [13,70]

Fire ecology: Western tanagers occur in a variety of habitats with a wide range of FIRE REGIMES. Breeding is most common in coniferous forests, which have FIRE REGIMES that range from frequent low-severity surface fires [18] to infrequent stand-replacement fires. A literature review provides a general overview of FIRE REGIMES in western coniferous forests [63].

FIRE REGIMES: The following table provides fire return intervals for plant communities and ecosystems where western tanager is important. Find fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".

Community or ecosystem Dominant species Fire return interval range (years) silver fir-Douglas-fir Abies amabilis-Pseudotsuga menziesii var. menziesii >200 grand fir Abies grandis 35-200 [6] sagebrush steppe Artemisia tridentata/Pseudoroegneria spicata 20-70 [93] mountain big sagebrush Artemisia tridentata var. vaseyana 15-40 [7,23,85] coastal sagebrush Artemisia californica <35 to <100 [93] saltbush-greasewood Atriplex confertifolia-Sarcobatus vermiculatus <35 to >100 [93,137] California montane chaparral Ceanothus and/or Arctostaphylos spp. 50-100 [93] mountain-mahogany-Gambel oak scrub Cercocarpus ledifolius-Quercus gambelii <35 to <100 blackbrush Coleogyne ramosissima <35 to <100 western juniper Juniperus occidentalis 20-70 Rocky Mountain juniper Juniperus scopulorum <35 creosotebush Larrea tridentata <35 to <100 [93] Engelmann spruce-subalpine fir Picea engelmannii-Abies lasiocarpa 35 to >200 [6] black spruce Picea mariana 35-200 [31] blue spruce* Picea pungens 35-200 [6] pinyon-juniper Pinus-Juniperus spp. <35 [93] whitebark pine* Pinus albicaulis 50-200 [1,4] Mexican pinyon Pinus cembroides 20-70 [87,121] Rocky Mountain lodgepole pine* Pinus contorta var. latifolia 25-340 [10,11,123] Sierra lodgepole pine* Pinus contorta var. murrayana 35-200 [6] Colorado pinyon Pinus edulis 10-400+ [37,41,59,93] Jeffrey pine Pinus jeffreyi 5-30 [6] western white pine* Pinus monticola 50-200 [6] Pacific ponderosa pine* Pinus ponderosa var. ponderosa 1-47 [6] interior ponderosa pine* Pinus ponderosa var. scopulorum 2-30 [6,9,68] Arizona pine Pinus ponderosa var. arizonica 2-15 [9,27,113] galleta-threeawn shrubsteppe Pleuraphis jamesii-Aristida purpurea <35 to <100 [93] quaking aspen-paper birch Populus tremuloides-Betula papyrifera 35-200 [31,131] quaking aspen (west of the Great Plains) Populus tremuloides 7-120 [6,44,83] mesquite Prosopis glandulosa <35 to <100 [80,93] mountain grasslands Pseudoroegneria spicata 3-40 ( x=10) [5,6] Rocky Mountain Douglas-fir* Pseudotsuga menziesii var. glauca 25-100 [6,7,8] coastal Douglas-fir* Pseudotsuga menziesii var. menziesii 40-240 [6,90,101] California mixed evergreen Pseudotsuga menziesii var. menziesii-Lithocarpus densiflorus-Arbutus menziesii <35 [6] California oakwoods Quercus spp. <35 [6] oak-juniper woodland (Southwest) Quercus-Juniperus spp. <35 to <200 [93] coast live oak Quercus agrifolia 2-75 [43] canyon live oak Quercus chrysolepis <35 to 200 [6] blue oak-foothills pine Quercus douglasii-P. sabiniana <35 [6] Oregon white oak Quercus garryana <35 [6] California black oak Quercus kelloggii 5-30 [93] interior live oak Quercus wislizenii <35 [6] redwood Sequoia sempervirens 5-200 [6,35,120] western redcedar-western hemlock Thuja plicata-Tsuga heterophylla >200 [6] western hemlock-Sitka spruce Tsuga heterophylla-Picea sitchensis >200 [6] mountain hemlock* Tsuga mertensiana 35 to >200 [6] *fire return interval varies widely; trends in variation are noted in the species review
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Habitat: Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

More info for the term: cover

SAF COVER TYPES [33]:





201 White spruce

202 White spruce-paper birch

203 Balsam poplar

204 Black spruce

205 Mountain hemlock

206 Engelmann spruce-subalpine fir

207 Red fir

208 Whitebark pine

210 Interior Douglas-fir

211 White fir

212 Western larch

213 Grand fir

215 Western white pine

216 Blue spruce

217 Aspen

218 Lodgepole pine

219 Limber pine

220 Rocky Mountain juniper

221 Red alder

222 Black cottonwood-willow

223 Sitka spruce

224 Western hemlock

225 Western hemlock-Sitka spruce

226 Coastal true fir-hemlock

227 Western redcedar-western hemlock

228 Western redcedar

229 Pacific Douglas-fir

230 Douglas-fir-western hemlock

231 Port-Orford-cedar

232 Redwood

233 Oregon white oak

234 Douglas-fir-tanoak-Pacific madrone

235 Cottonwood-willow

237 Interior ponderosa pine

238 Western juniper

239 Pinyon-juniper

240 Arizona cypress

241 Western live oak

243 Sierra Nevada mixed conifer

244 Pacific ponderosa pine-Douglas-fir

245 Pacific ponderosa pine

246 California black oak

247 Jeffrey pine

248 Knobcone pine

249 Canyon live oak

250 Blue oak-foothills pine

251 White spruce-aspen

252 Paper birch

253 Black spruce-white spruce

254 Black spruce-paper birch

255 California coast live oak

256 California mixed subalpine
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Habitat: Ecosystem

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

More info for the term: shrub

ECOSYSTEMS [39]:





FRES20 Douglas-fir

FRES21 Ponderosa pine

FRES22 Western white pine

FRES23 Fir-spruce

FRES24 Hemlock-Sitka spruce

FRES25 Larch

FRES26 Lodgepole pine

FRES27 Redwood

FRES28 Western hardwoods

FRES29 Sagebrush

FRES30 Desert shrub

FRES34 Chaparral-mountain shrub

FRES35 Pinyon-juniper

FRES36 Mountain grasslands

FRES37 Mountain meadows
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Habitat: Plant Associations

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the terms: forest, shrub, woodland

KUCHLER [64] PLANT ASSOCIATIONS:





K001 Spruce-cedar-hemlock forest

K002 Cedar-hemlock-Douglas-fir forest

K003 Silver fir-Douglas-fir forest

K004 Fir-hemlock forest

K005 Mixed conifer forest

K006 Redwood forest

K007 Red fir forest

K008 Lodgepole pine-subalpine forest

K009 Pine-cypress forest

K010 Ponderosa shrub forest

K011 Western ponderosa forest

K012 Douglas-fir forest

K013 Cedar-hemlock-pine forest

K014 Grand fir-Douglas-fir forest

K015 Western spruce-fir forest

K016 Eastern ponderosa forest

K017 Black Hills pine forest

K018 Pine-Douglas-fir forest

K019 Arizona pine forest

K020 Spruce-fir-Douglas-fir forest

K021 Southwestern spruce-fir forest

K022 Great Basin pine forest

K023 Juniper-pinyon woodland

K024 Juniper steppe woodland

K025 Alder-ash forest

K026 Oregon oakwoods

K028 Mosaic of K002 and K026

K029 California mixed evergreen forest

K030 California oakwoods

K031 Oak-juniper woodland

K032 Transition between K031 and K037

K033 Chaparral

K034 Montane chaparral

K035 Coastal sagebrush

K036 Mosaic of K030 and K035

K037 Mountain-mahogany-oak scrub

K038 Great Basin sagebrush

K039 Blackbrush

K040 Saltbush-greasewood

K041 Creosote bush

K044 Creosote bush-tarbush

K047 Fescue-oatgrass

K053 Grama-galleta steppe

K055 Sagebrush steppe

K056 Wheatgrass-needlegrass shrubsteppe

K057 Galleta-threeawn shrubsteppe

K058 Grama-tobosa shrubsteppe

K063 Foothills prairie
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Habitat: Rangeland Cover Types

provided by Fire Effects Information System Animals
More info on this topic.

This species is known to occur in association with the following Rangeland Cover Types (as classified by the Society for Range Management, SRM):

More info for the terms: association, cover, forb, shrub, shrubland, woodland

SRM (RANGELAND) COVER TYPES [114]:





107 Western juniper/big sagebrush/bluebunch wheatgrass

109 Ponderosa pine shrubland

110 Ponderosa pine-grassland

201 Blue oak woodland

202 Coast live oak woodland

203 Riparian woodland

206 Chamise chaparral

210 Bitterbrush

211 Creosote bush scrub

212 Blackbush

216 Montane meadows

304 Idaho fescue-bluebunch wheatgrass

314 Big sagebrush-bluebunch wheatgrass

315 Big sagebrush-Idaho fescue

316 Big sagebrush-rough fescue

402 Mountain big sagebrush

409 Tall forb

411 Aspen woodland

412 Juniper-pinyon woodland

413 Gambel oak

418 Bigtooth maple

422 Riparian

501 Saltbush-greasewood

502 Grama-galleta

503 Arizona chaparral

504 Juniper-pinyon pine woodland

505 Grama-tobosa shrub

508 Creosotebush-tarbush

509 Transition between oak-juniper woodland and mahogany-oak association

ALASKAN RANGELANDS

901 Alder

921 Willow
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Management Considerations

provided by Fire Effects Information System Animals
More info for the term: shrubs

Western tanager's responses to several silvicultural treatments are summarized in Preferred Habitat. Since demographic parameters of western tanagers have not been compared between thinned and control sites, it is uncertain if the increases in detections reflect increased habitat quality in thinned areas. Western tanager appear to occur at lower abundances in clearcuts than other stands [25,49,128]. A review that quantified western tanager's response across several studies, such that -1 reflected lower abundance in treated areas than in controls, demonstrates this trend. Western tanager had an average value of -0.86 in clearcuts with low shrubs (n=7) and -1.00 in clearcuts with tall shrubs (n=4) [52]. Grazing did not have significant effects on western tanager detections (p=0.98), nest success (p>0.05) or parasitism rates (p>0.05) in pinyon-juniper woodlands of New Mexico [40].

The current population trend of western tanager is uncertain. From 1966 to 1979 western tanager showed a significant (p=0.033) decline that averaged -2.9% per year, according to breeding bird survey data. No significant (p>0.05) trend in western tanager populations has been detected using breeding bird survey data from 1982 to 1991 [95]. In addition, no significant (p>0.1) trends were detected using data collected from Monitoring Avian Productivity and Survival stations in the northwest from 1992 to 1994 [29]. Patterns of abundance found in the literature suggest that western tanager is stable in New Mexico [112,134]. Another review summarizes a study that found increases in western tanager populations on Breeding Bird Survey routes with managed ponderosa pine in Arizona and New Mexico [46]. In contrast, western tanager captures/1,000 net hours at the Rio Grande Nature Center declined from 1986 to 1996. This trend was significant (p<0.05), with an average annual decline of -13.46% [135].
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Predators

provided by Fire Effects Information System Animals

Several birds prey on western tanagers. Remains of a western tanager were found in a red-tailed hawk's (Buteo jamaicensis) nest in Colorado [17]. In southwestern Idaho, western tanager remains were reported in 1 of over 170 prairie falcon (Falco mexicanus) nests observed [91]. According to literature reviews, northern goshawks (Accipiter gentilis), Mexican spotted owls (Strix occidentalis spp. lucida), sharp-shinned hawks (A. striatus) and Cooper's hawks (A. cooperii) are also western tanager predators [54,100,132]. One review asserts that accipiter hawks (Accipitrinae) and jays (Corvidae) are the major predators of western tanagers. This review also includes a report of a domestic cat (Felis catus) preying on a female western tanager in British Columbia [54].

According to literature reviews, Clark's nutcrackers (Nucifraga columbiana), northern pygmy-owls (Glaucidium gnoma), great horned owls (Bubo virginianus), and jays such as scrub jays (Aphelocoma spp.), pinyon jays (Gymnorhinus cyanocephalus) and Steller's jays (Cyanocitta stelleri) are typical avian predators of western tanager nests. Other reported nest predators include black bears (Ursus americanus), prairie rattlesnakes (Crotalus viridis), and bullsnakes (Pituophis catenifer) [54]

Western tanager nests are parasitized by brown-headed cowbirds (Molothrus aster) [36,40]. Parasitism rates can be high [40], and parasitism has been shown to dramatically reduce the number of western tanagers fledged per nest [36]. A literature review summarizes information related to western tanager nest parasitism [54].

BEHAVIOR:
According to literature reviews, western tanagers migrate alone or in groups of up to 30 birds [54,58]. On average, hatching-year western tanagers were captured later (early-Sept) at Rio Grande Nature Center than adult western tanagers (mid-August) during fall migration. Migration timing, condition of birds, and site differences in spring and fall migration were also addressed in this investigation [136].

A literature review provides a detailed summary of migration and other behaviors such as vocalizations, territoriality, and self-maintenance [54].

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Regional Distribution in the Western United States

provided by Fire Effects Information System Animals
More info on this topic.

This species can be found in the following regions of the western United States (according to the Bureau of Land Management classification of Physiographic Regions of the western United States):

BLM PHYSIOGRAPHIC REGIONS [15]:





1 Northern Pacific Border

2 Cascade Mountains

3 Southern Pacific Border

4 Sierra Mountains

5 Columbia Plateau

6 Upper Basin and Range

7 Lower Basin and Range

8 Northern Rocky Mountains

9 Middle Rocky Mountains

10 Wyoming Basin

11 Southern Rocky Mountains

12 Colorado Plateau

13 Rocky Mountain Piedmont

15 Black Hills Uplift

16 Upper Missouri Basin and Broken Lands
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

States or Provinces

provided by Fire Effects Information System Animals
(key to state/province abbreviations)
UNITED STATES AK AZ CA CO ID MT NE NV NM OR SD TX UT WA WY
CANADA AB BC NT SK YK
MEXICO Ags. B.C.S. Chis. Chih. Col. Dgo. Gto. Gro. Hgo. Jal. Mex. Mich. Mor. Nay. Oax. Pue. Qro. S.L.P. Sin. Son. Tab. Tamps. Tlax. Ver. Zac. D.F.
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Taxonomy

provided by Fire Effects Information System Animals
Piranga ludoviciana (Wilson) is the scientific name of the western
tanager, a member of the Thraupidae family [3]. According to a literature review, it hybridizes with the
flame-colored tanager (P. bidentata) in southeastern Arizona.
Hybridization between western and scarlet tanager (P. olivacea) is
uncertain [54].
license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Timing of Major Life History Events

provided by Fire Effects Information System Animals
More info for the terms: forest, woodland

Western tanagers arrive on their breeding grounds (see General Distribution) in spring. Literature reviews report breeding primarily by western tanagers that are ≥2 years old beginning in May and continuing into July, although some 1st-year western tanagers also breed [54,58]. In the Sandia Mountains of north-central New Mexico, western tanagers were heard singing beginning in late May, and the 1st nest was found in early June [124]. In public open-space areas in Boulder County, Colorado, the start of the western tanager breeding season was estimated as 28 May, and the peak of the breeding season, defined as at least 50% of western tanager nests active, was from 6 June to 1 July [36]. A review [54] summarizes records of brooding dates in several areas of the West. In the Southwest brooding generally begins in early May, while in the Northwest brooding starts typically in mid-June. Brooding can begin earlier in British Columbia and Alberta than in the northwestern United States. An egg-laying date as early as 16 May in British Columbia was estimated by back calculation, and a complete egg set was observed as early as 26 May in Alberta [54].

According to reviews, cup nests are built by the female, take about 4 or more days to construct, and are made from twigs, rootlets, grasses, and pine needles [54,58]. There is no evidence for 2nd broods in western tanagers [36,54]. However, a literature review notes a nesting attempt after a failed nest in west-central Idaho and suggests that renesting is a substantial source of late nesting attempts [54]. In addition, renesting was suggested as the explanation for a few late nests observed in Boulder County, Colorado [36].

Clutch size is typically 3 to 5 eggs [36,54,58]. Average clutch size in 10 nonparasitized nests in Boulder County was 3.8 eggs [36]. A literature review suggests that average clutch in the Southwest may be smaller than that of western tanagers nesting in the North [54]. According to a personal communication cited in a literature review, egg laying generally takes about 1 day per egg [54]. The female incubates the eggs for approximately 13 days, although shorter incubation periods have been reported. The young are fed by both parents and typically fledge 11 to 15 days after hatching [36,54,58]. According to a literature review, immature western tanagers have been observed with the parents at least 2 weeks after fledging [54].

A literature review notes that immature western tanagers initiate migration later than adult birds. Generally western tanagers leave more northerly locations in late summer or early fall while those in more southerly areas may stay as late as early November [54].

Reproductive success of western tanagers varies widely between studies and across years. A summary of nest success in a literature review included an average annual nest success probability estimate of 0.186 over 3 years, with a low of 0.035 and a high of 0.349 [54]. In a northern Arizona study area, an average of 43% (n=7) of nests succeeded to the nestling stage [16]. In Boulder County, nesting success varied from 11.3% to 75.3%, with an average of 51.8% over a 3-year period [36]. Daily nest survival rate on ungrazed sites in northeastern New Mexico was 0.955, which was not significantly (p<0.05) different from the 0.973 daily nest survival rate found on grazed sites [40]. According to a review, nest predation is the leading cause of nest failure. Predation rates ranged from 30% (n=48) in a study in New Mexico pinyon-juniper woodland to 86% (n=14) in a mixed-conifer forest in Idaho [54].

Western tanagers can live several years. A literature review includes an estimate of annual average survival rate of 0.753 and a return rate of 30.1% for western tanagers in west-central Idaho [54]. A wild western tanager 7 years and 11 months old has been documented from banding data [61].

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Use of Fire in Population Management

provided by Fire Effects Information System Animals
More info for the term: habitat type

Given the available data (see HABITAT RELATED FIRE EFFECTS) and the nesting (Nesting habitat) and foraging (Foraging habitat) requirements of western tanagers, it is likely that western tanagers will tend to increase after low- to moderate-severity fires and tend to decline after high-severity fires. Much more research is necessary, including investigations addressing the effect of fire characteristics, habitat type, and time since fire on western tanager demographics and the effects of fire on western tanager prey.

Fire's effect on abundance of predators and parasites [13] should also be considered when considering the impact of fire in potential or occupied western tanager habitat.

license
cc-publicdomain
bibliographic citation
Meyer, Rachelle. 2006. Piranga ludoviciana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/bird/pilu/all.html

Comprehensive Description

provided by Smithsonian Contributions to Zoology
Piranga ludoviciana (Wilson)

To the 5 previous records (Friedmann, 1963:135; 1971:246) of the western tanager as a victim of the brown-headed cowbird may be added three more, all from Mono County, California: one in the Western Foundation; one in the Santa Barbara Museum of Natural History; and one found, but not collected, by John Schmitt, along the Little Walker River, 30 June 1973. This nest contained two newly hatched tanagers, one tanager egg, and one egg of the cowbird. The western tanager is still to be looked upon as an uncommonly reported host. Whether the rarity of reported parasitism is due to a lack of observations or to a very low rate of parasitism, or even to rejection behavior, is an interesting question, since this species' eastern counterpart, the scarlet tanager, seems to be very heavily parasitized.

SCARLET TANAGER
license
cc-by-nc-sa-3.0
bibliographic citation
Friedmann, Herbert, Kiff, Lloyd F., and Rothstein, Stephen I. 1977. "A further contribution of knowledge of the host relations of the parasitic cowbirds." Smithsonian Contributions to Zoology. 1-75. https://doi.org/10.5479/si.00810282.235

Western tanager

provided by wikipedia EN

The western tanager (Piranga ludoviciana), is a medium-sized American songbird. Formerly placed in the tanager family (Thraupidae), other members of its genus and it are classified in the cardinal family (Cardinalidae). The species's plumage and vocalizations are similar to other members of the cardinal family.

Taxonomy

The western tanager was illustrated and formally described by American ornithologist Alexander Wilson in 1811 under the binomial name Tanagra ludoviciana from a specimen collected on the Lewis and Clark Expedition (1803-1806).[2] The type locality is Kamiah, Idaho.[3][4] The specific epithet is from the Late Latin ludovicianus for "Louis". The name is from Louisiana, the 18th-century French administrative district of New France, rather than the modern state.[5] The western tanager is now placed in the genus Piranga that was introduced by French ornithologist Louis Jean Pierre Vieillot in 1808.[6][7] The species is monotypic; no subspecies are recognized.[7]

Description

Measurements:

  • Length: 6.3-7.5 in (16-19 cm)[8]
  • Weight: 0.8-1.3 oz (24-36 g)[8]
  • Wingspan: 11.5 in (29 cm)[9]

Adults have pale, stout pointed bills, yellow underparts, and light wing bars. Adult males have a bright red face and a yellow nape, shoulder, and rump, with black upper back, wings, and tail; in non-breeding plumage, the head has no more than a reddish cast and the body has an olive tinge. Females have a yellow head and are olive on the back, with dark wings and tail.

The song of disconnected short phrases suggests an American robin's, but is hoarser and rather monotonous. The call is described as pit-er-ick.

Their breeding habitat is coniferous or mixed woods across western North America from the Mexico-U.S. border as far north as southern Alaska; thus, they are the northernmost-breeding tanager. They build a flimsy cup nest on a horizontal tree branch, usually in a conifer. They lay four bluish-green eggs with brown spots.

These birds migrate, wintering from central Mexico to Costa Rica. Some also winter in Southern California.

Distribution and habitat

The breeding range of the western tanager includes forests along the western coast of North America from southeastern Alaska south to northern Baja California, Mexico. Western tanagers extend east to western Texas and north through central New Mexico, central Colorado, extreme northwest Nebraska, and areas of western South Dakota to southern Northwest Territories, Canada.[10][11][12] The western tanager's wintering range stretches from central Costa Rica north through Nicaragua, Honduras, El Salvador, and Guatemala to southern Baja California Sur and extreme southeastern Sonora in western Mexico and to southern Tamaulipas in northeastern Mexico. Western tanagers do not typically occur in the Caribbean lowlands. They have been reported wintering further north and have been observed as far south as Panama.[10][11][12] Vagrants are rare to casual in the eastern United States.[13]

In addition to the plant communities listed above, western tanagers are reported from disturbed habitats. For instance, western tanagers were seen in an area of northwestern California that had been logged less than five years previously. Cutleaf burnweed (Erechtites glomerata) was characteristic of the youngest age class, while slightly older sites were composed predominantly of tanoak (Lithocarpus densiflorus) with smaller amounts of snowbrush ceanothus (Ceanothus velutinus), whitebark raspberry (Rubus leucodermis), and Sierra gooseberry (Ribes roezlii).[14] In addition, western tanagers were captured along the Rio Grande in New Mexico during spring and fall migration in an agricultural area composed primarily of alfalfa (Medicago sativa) and corn (Zea mays).[15]

Western tanagers have also been observed in saltcedar (Tamarix species) communities [15] and in Russian olive (Elaeagnus angustifolia) vegetation.[15] In New Mexico, western tanagers were observed in nearly pure stands of saltcedar 10 to 23 ft (3–7 m) tall. Western tanagers were also observed in saltcedar communities during fall migration in along the Rio Grande.[15] Ten western tanagers were observed among three sites composed of Russian olive in Colorado, Utah, and Idaho. All sites were dominated by Russian olive with cheatgrass (Bromus tectorum) comprising a substantial portion of the understory. Along the Rio Grande, western tanagers were most often captured during fall migration in vegetation with a Rio Grande cottonwood (Populus deltoides species wislizenii) overstory and a moderate to dense Russian olive understory.[15]

Behavior and ecology

Western tanagers migrate alone or in groups of up to 30 birds.[11][12] On average, hatching-year western tanagers were captured later (early September) at Rio Grande Nature Center than adult western tanagers (mid-August) during fall migration. Migration timing, condition of birds, and site differences in spring and fall migration were also addressed in this investigation.[15]

Breeding

Western tanagers arrive on their breeding grounds in spring. Breeding usually occurs among birds two years or older, beginning in May and continuing into July, although some first-year western tanagers also breed.[11][12] In the Sandia Mountains of north-central New Mexico, western tanagers were heard singing beginning in late May, and the first nest was found in early June.[16] In public open-space areas in Boulder County, Colorado, the start of the western tanager breeding season was estimated as 28 May, and the peak of the breeding season, defined as at least 50% of western tanager nests active, was from 6 June to 1 July.[11][17] In the Southwest, brooding generally begins in early May, while in the Northwest, brooding starts typically in mid-June. Brooding can begin earlier in British Columbia and Alberta than in the northwestern United States. An egg-laying date as early as 16 May in British Columbia was estimated by back calculation, and a complete egg set was observed as early as 26 May in Alberta.[11]

Cup nests are built by the female, take about four or more days to construct, and are made from twigs, rootlets, grasses, and pine needles.[11][12] No evidence has been found for second broods in western tanagers, but a review notes a nesting attempt after a failed nest in west-central Idaho, and suggests that renesting is a substantial source of late nesting attempts. In addition, renesting was suggested as the explanation for a few late nests observed in Boulder County, Colorado.[11][17]

Clutch size is typically three to five eggs.[11][12][17] Average clutch size in 10 nonparasitized nests in Boulder County was 3.8 eggs.[17] Average clutch in the Southwest may be smaller than that of western tanagers nesting in the north.[11] Egglaying generally takes about one day per egg.[11] The female incubates the eggs for about 13 days, although shorter incubation periods have been reported. The young are fed by both parents, and typically fledge 11 to 15 days after hatching.[11][12][17] Immature western tanagers have been observed with the parents at least two weeks after fledging.[11]

Immature western tanagers initiate migration later than adult birds. Generally, western tanagers leave more northerly locations in late summer or early fall, while those in more southerly areas may stay as late as early November.[11]

Reproductive success of western tanagers varies widely between studies and across years. An average annual nest success probability estimate is 0.186 over 3 years, with a low of 0.035 and a high of 0.349.[11] In a northern Arizona study area, an average of 43% (n=7) of nests succeeded to the nestling stage. In Boulder County, nesting success varied from 11.3% to 75.3%, with an average of 51.8% over a 3-year period.[17] Daily nest survival rate on ungrazed sites in northeastern New Mexico was 0.955, which was not significantly (p<0.05) different from the 0.973 daily nest survival rate found on grazed sites. Nest predation is the leading cause of nest failure. Predation rates ranged from 30% (n=48) in a study in New Mexico pinyon-juniper woodland to 86% (n=14) in a mixed-conifer forest in Idaho.[11]

Western tanagers can live several years. The annual average survival rate is 0.753 and a return rate is 30.1% for western tanagers in west-central Idaho.[11] A wild western tanager 7 years and 11 months old has been documented from banding data.[18]

A male enjoying the fruits of a cherry tree.

Habitat

During the breeding season, western tanagers are found primarily in relatively open coniferous forests and mixed woodlands.[10][11] During migration, western tanagers occur in more areas, including lowland woodlands of Southern California, desert oases, riparian areas, parks, and orchards.[11] In the western tanager's wintering range, it occupies pine (Pinus spp.) and pine-oak (Quercus spp.) woodlands, as well as low-canopied scrub forests, forest edges, and coffee plantations.[12]

Western tanagers breed at a wide range of elevations from about 183 ft (56 m) in the Northwest up to 10,000 ft (3,050 m).[10][11] In the northern portion of their breeding range, western tanagers have been observed on sites over 8,300 ft (2,530 m) in Oregon down to sites as low as 183 ft (56 m) in Oregon's Central Willamette Valley.[19] In the southern portion of their breeding range, western tanagers are more typical on high-elevation sites.[12] They were observed on an Arizona site 8,270 ft (2,520 m) in elevation and on a site at 9,500 ft (2,900 m) in Nevada.[20]

Nesting

Western tanagers nest in second-growth and mature conifer and mixed forests. They only breed in stands of pole- to large-sized trees and stands of pole- to medium-sized trees with>70% canopy cover.[21] Nesting was confined to older second-growth (>40 years) and mature (120+ years) Douglas fir (Pseudotsuga menziesii) communities in the western Cascade Range in Oregon.[22]

Western tanager nests are typically found in coniferous trees toward the end of horizontal branches and at heights greater than 10 ft (3 m); 79% of 43 western tanager nests in British Columbia were found in conifers, primarily Douglas fir.[11] The deciduous trees most often used were quaking aspen (Populus tremuloides) and willows (Salix spp.). The position of their nests along the branches of deciduous trees was more variable than in conifers. On this site, 56% of nests were at heights from 21 to 36 ft (6.4–11 m). Of 9 western tanager nests in an Alberta study site, eight occurred in white spruce (Picea glauca) and one was found in quaking aspen. Nest height ranged from 20 to 42 ft (6.3–12.8 m), with a mean of about 30 ft (9.3 m). On average, nests were located 80% of the distance from the trunk to the tip of the branch. Of 49 western tanager nests found in a pinyon-juniper (Pinus-Juniperus spp.) woodland in northeastern New Mexico, 98% were in Colorado pinyon (P. edulis) and the remainder occurred in Douglas fir. On this site, nest trees averaged 24 ft (7.4 m) in height and over 8 in (21.9 cm) in diameter at breast height (dbh). The average height of nests was 18 ft (5.4 m). In a nearby mixed-conifer forest, nests were found in Douglas fir and ponderosa pine (P. ponderosa). Nest trees on this site averaged nearly 50 ft (15.1 m) in height and 13 in (32.7 cm) in dbh. The average nest height was 16 ft (4.93 m) and on average nests were located about 5 ft (1.49 m) from the tree stem and 3 ft (0.97 m) from the edge of the tree's foliage.[11] Western tanager nests on a north-central New Mexico site occurred at heights from 8 to 15 ft (2–5 m), typically in white fir (Abies concolor) located in open areas.[16] In Idaho, nests were found in conifers at an average height of 40 ft (12.3 m) and ranged from 8 to 55 ft (2.4–16.8 m). Of 58 nests at a Colorado study site, 54 occurred in ponderosa pine and four were found in Douglas fir.[17] Nest height was significantly associated with tree height, with the mean nest height around 54% of tree height. On average, western tanager nests were located 63% of the distance between the trunk and the branch tip. This is closer to the bole than found in most studies, and the authors suggest that the conical shape of the ponderosa pine requires nests be placed closer in toward the trunk to provide cover. Canopy cover at nest sites averaged 71%, with a minimum of 31% cover.[17]

Foraging habitat

Female in a callery pear tree

Western tanagers forage in many habitats, in all successional stages from grass-forb communities to stands of large trees with greater than 70% cover.[21] In western Oregon, they were not observed using the grass and forb successional stages, but were observed foraging in areas not used for nesting, such as shrub/sapling and young second-growth (16–40 years old) stands typically made up of Douglas fir.[22]

Although western tanagers forage in many habitats, they are typically observed foraging in forest canopies. For instance, in an area of California primarily dominated by giant sequoia (Sequoiadendron giganteum), western tanagers spent 60% to 75% of their foraging time above 35 ft (10 m) and less than 2% of foraging time below 12 ft (4 m).[23] In coniferous forests of western Montana, they were typically observed foraging in canopy foliage above 26 ft (8 m). In mixed conifer-oak forests in California, they foraged from 16 to 92 ft (5–28 m).[24]

In primarily Douglas fir-dominated vegetation in British Columbia, the occurrence of western tanager foraging in various portions of trees and the size of those trees were investigated.[25] This species perched on stems less than 1 in (<2.5 cm) in diameter in 96.9% of observations. Nearly 85% of observations were either near the branch tip or in the middle of the branch. Western tanagers foraged on larger trees, with nearly 80% of observations on trees with a trunk diameter of more than about 8 in (20.0 cm), and over 80% of observations occurring on trees 33 ft (10 m) or taller. They used taller trees and trees with larger diameters significantly more than their availability in all silvicultural treatments analyzed.[25]

Western tanagers may preferentially forage on certain species. In a California study of foraging and habitat relationships of insect-gleaning birds in mixed conifer-oak forest, they used white fir more and incense-cedar (Calocedrus decurrens) less than would be expected from their availability. Sugar pine (Pinus lambertiana), Douglas fir, and California black oak (Quercus kelloggii) were used slightly more than their availability, but this was not considered significant, since 95% confidence intervals overlapped with use in accordance with availability. Ponderosa pine was used in proportion to its availability.[24] In mostly Douglas fir-dominated communities in British Columbia, western tanagers were observed foraging in Douglas fir in 88.9% of observations, ponderosa pine in 7.4% of observations, and in living trees of other species in 3.7% of observations. Over all sites, the preference for Douglas-fir was significantly (p<0.001) greater than availability. When sites were separated by the various silvicultural treatments, only the 3-year-old light cut (Douglas fir and ponderosa pine larger than 14 in (35 cm) in dbh and other species larger than 6 in (15 cm) dbh were harvested) and the selectively logged (20% of 6- to 8-in dbh (15.2–20.3 cm) trees, 25% of 8- to 12-in dbh (20.3–30.5 cm) trees, 45% of 12- to 24-inch dbh (30.5–61.0 cm) trees, and 75% of>24-inch dbh (>61.0 cm) trees were removed) sites showed significantly greater use of Douglas fir by western tanagers than would be expected from availability. They were reported foraging on quaking aspen, as well as balsam poplar (P. balsamifera ssp. balsamifera), speckled alder (Alnus rugosa), and white spruce in central Alberta.[11]

Although western tanagers occur in stands of varying ages and have been observed in higher densities on young sites,[14] they are typically detected more often in relatively mature stands. For example, they appear to occur more often in mature (50–60 years old) and old-growth (100+ years) quaking aspen than young (<23 years old) trembling aspen stands in the Prince Rupert Forest Region of British Columbia.[26] In Alberta, western tanager was detected significantly (p<0.001) more often in old (120+ years old) quaking aspen mixed-wood stands than in mature (50–65 years old) or young (20–30 years old) mixed-wood stands.[27] The same trend has been found in other communities. In Washington, western tanager was observed on sites dominated by older (35-year- and 60-year-old) red alder (A. rubra), but not on sites containing young (4-year- and 10-year-old sites) red alder.[19] Although western tanagers were fairly common on recently harvested sites, they were detected at the most points in "mature" and "old-growth" ponderosa pine in northern Idaho and western Montana. Western tanagers had higher densities in mature (33 ft,>10 m tall) conifer plots and young conifer/mature conifer transition plots than in young (3–33 ft, 1–10 m tall) conifer plots in British Columbia. Western tanagers occurred at an average density of 53.2 birds/100 ha in sawtimber Douglas fir stands (>80–150 years old), 37.0/100 ha in mature Douglas fir stands (>100 years old), and 3.1/100 ha in sapling Douglas fir stands (<20 years old) in northern California. Although they occurred at higher densities in young Douglas fir forest in Oregon, the stands were 40 to 72 years old. Mature forest was from 80 to 120 years old, and old-growth forest was 200 to 525 years old.

Stand structure and composition

Western tanager in the Seedskadee National Wildlife Refuge

Western tanagers appear to prefer large trees, which are considered an important component of stands for them.[28] In addition, western tanagers were significantly positively associated with large saw timber (>20% cover,>21 in [>53.2 cm] mean dbh) and significantly negatively associated with pole timber (>20% cover; conifers>10 ft [>3 m] tall and 4–12 inh (10.2–30.4 cm) mean dbh; hardwoods 10–50 ft (3–15 m) tall and 4–12 in mean dbh) stands dominated by Douglas fir, western hemlock (Tsuga heterophylla), and red alder in the central Oregon Coast Ranges. In primarily Douglas fir-dominated communities in British Columbia, western tanagers foraged in trees>33 ft (>10 m) tall in more than 80% of observations, and nearly 80% of foraging observations were in trees with trunk diameters greater than 8 in (>20.0 cm). In addition, western tanagers foraged in trees smaller than 33 ft (10 m) tall less than their availability.[25]

Most evidence suggests that western tanagers prefer areas with moderate canopy cover. They avoid continuous canopy.[21] Stands with large trees and 40 to 69% canopy cover are an optimal western tanager habitat. Large trees and canopy cover ≥70% is considered suitable habitat, while areas with large trees and <40% cover are categorized as marginal habitat. In sapling/pole and mature ponderosa pine habitats of the Black Hills in South Dakota, western tanagers occurred at the highest densities in stands with intermediate (40%-70%) canopy cover.[29] In 35- to 45-year-old Douglas fir and red alder-dominated stands, an average of 322% more western tanagers were detected on sites logged to a density of 240 to 320 trees/ha, and an average of 363% more of them were detected on sites logged to a density of 180 to 220 trees/ha, compared to controls with 410 to 710 trees/ha. The difference in western tanager detections between the logging treatments and the control grew larger over time. In Arizona, western tanagers occurred at significantly higher densities (15.8/40 ha) in forest dominated by Douglas fir and ponderosa pine the year after logging to an average of 167.7 trees/ha compared to control stands (7.7/40 ha) with average tree density of 626.2 trees/ha. Western tanager densities on the treatment and control sites were more similar the following year. In British Columbia, western tanagers occurred at significantly higher densities after "light" logging on a site containing Douglas fir and ponderosa pine. The species apparently was positively influenced by thinning a ponderosa pine stand by 20% in Arizona. In the Sierra Nevada of California, western tanagers occurred at a higher density in an open-canopied (602 trees>10 cm dbh/ha) mixed-conifer stand consisting of Jeffrey pine (Pinus jeffreyi), lodgepole pine (P. contorta), white fir, and incense-cedar compared to a closed-canopied (994 trees>10 cm dbh/ha) mixed conifer stand of incense-cedar and white fir. This same pattern was found in open- (420 trees> 10 cm dbh/ha) and closed-canopied (658 trees> 10 cm dbh) California red fir (Abies magnifica var. magnifica) stands.

Western tanagers have been reported to prefer areas with a diverse forest structure, but importance of lower forest layers is unclear. In the Black Hills of South Dakota, they were significantly more abundant in multistoried habitats with bur oak (Q. macrocarpa) and quaking aspen/paper birch (Betula papyrifera) under a ponderosa pine canopy than in sapling/pole or mature ponderosa pine stands with varying canopy cover.[29] Reviews assert the importance of a diverse forest structure [28] and a dense deciduous understory [21] for western tanagers. In some areas, though, the influence of lower forest layers may be relatively insignificant. For example, removal of incense-cedar and white fir from 1 to 10 ft (0.3–3 m) tall in giant sequoia forests had little impact on western tanager density.[23]

Western tanagers may associate with or avoid some plant species. For example, in mixed-wood forests in Alberta, western they were significantly positively associated with conifer density.[27] The western tanager was also considered a conifer-associated species in quaking aspen-dominated and mixed quaking aspen-conifer communities in British Columbia.[26] Western tanagers' preference for multistoried habitats in the Black Hills may be related to the bur oak and quaking aspen/paper birch midstory.[29] Western tanagers were not significantly related with abundance of pineland dwarf mistletoe (Arceuthobium vaginatum ssp. cryptopodum) in ponderosa pine stands in central Colorado. The western tanager species was negatively associated with subalpine fir (A. lasiocarpa) cover in northern Rocky Mountain conifer forests.[30]

Food and feeding

Western tanagers obtain their food by foliage gleaning and hawking.[10][11][12] The degree to which each of these methods is used apparently varies across locations. For instance, in a California mixed conifer-oak forest consisting mainly of white fir, Douglas fir, incense-cedar, and California black oak, about 47% of western tanager foraging observations were gleaning, about 40% were hawking, and lunging and hovering occurred in about 6% and 7% of observations, respectively.[24] In contrast, in the mainly Douglas fir-dominated communities of interior British Columbia, gleaning constituted 93.2% of western tanager foraging observations. Hawking only occurred in 3.7% of observations and hovering in 3.1%.[25]

Western tanagers primarily glean from foliage. In the mixed conifer-oak woodland of California, 45% of their foraging observations were foliage gleaning. Western tanagers gleaned from twigs in 10% of observations and from branches in 5% of observations. Hawking constituted the remainder of western tanager foraging observations.[24] In British Columbia, 88.3% of gleaning observations occurred on foliage, 10.5% on branches and twigs, and 1.2% on trunks.[25]

Western tanagers eat fruits (~18%) and a wide range of insects (~82%).[10] Fruits include hawthorn apples (Crataegus spp.), raspberries (Rubus spp.), mulberries (Morus spp.), elderberries (Sambucus spp.), serviceberries (Amelanchier spp.), and wild and cultivated cherries (Prunus spp.).[11][12] They have been observed foraging on Perry's agave (Agave parryi) nectar. Reports of western tanager eating eucalyptus (Eucalyptus spp.) nectar, Russian olive fruits, and human-provided food, including bird seed and dried fruit, were summarized.[11] Western tanagers are major consumers of western spruce budworms (Choristoneura occidentalis),[21] and they have been observed eating Douglas fir tussock moth larvae (Orgyia pseudotsugata). Hymenopterans, mostly wasps and ants, constituted 75% of insects in western tanager stomachs in August. The other insects were beetles (Coleoptera, 12%), mainly click beetles (Elateridae) and woodborers (Bupestridae), true bugs (Hemiptera, 8%), grasshoppers (Orthoptera, 4%), and caterpillars (Lepidoptera, 2%).[11][12]

Predators

Several birds prey on western tanagers. Remains of a western tanager were found in a red-tailed hawk's (Buteo jamaicensis) nest in Colorado.[31] In southwestern Idaho, western tanager remains were reported in one of over 170 prairie falcon (Falco mexicanus) nests observed. Northern goshawks (Accipiter gentilis), Mexican spotted owls (Strix occidentalis spp. lucida), sharp-shinned hawks (A. striatus) and Cooper's hawks (A. cooperii) are also western tanager predators.[11] Accipiter hawks (Accipitrinae) and jays (Corvidae) are major predators of western tanagers. Domestic cats also preyed on western tanagers in British Columbia.[11]

Clark's nutcrackers (Nucifraga columbiana), northern pygmy owls (Glaucidium gnoma), great horned owls (Bubo virginianus), and jays such as scrub jays (Aphelocoma species), pinyon jays (Gymnorhinus cyanocephalus), and Steller's jays (Cyanocitta stelleri) are typical avian predators of western tanager nests. Other reported nest predators include black bears (Ursus americanus), prairie rattlesnakes (Crotalus viridis), and bullsnakes (Pituophis catenifer).[11]

Western tanager nests are parasitized by brown-headed cowbirds (Molothrus aster).[17][32] Parasitism rates can be high, and can dramatically reduce the number of western tanagers fledged per nest.[11][17]

References

Public Domain This article incorporates public domain material from Piranga ludoviciana. United States Department of Agriculture.

  1. ^ BirdLife International (2016). "Piranga ludoviciana". IUCN Red List of Threatened Species. 2016: e.T22722471A94768218. doi:10.2305/IUCN.UK.2016-3.RLTS.T22722471A94768218.en. Retrieved 12 November 2021.
  2. ^ Wilson, Alexander (1811). American Ornithology; or, the Natural History of the Birds of the United States: Illustrated with Plates Engraved and Colored from Original drawings taken from Nature. Vol. 3. Philadelphia: Bradford and Inskeep. pp. 27–28, Plate 20 fig. 1.
  3. ^ Davis, William B.; Stevenson, James (1934). "The type localities of three birds collected by Lewis and Clark in 1806". Condor. 36 (4): 161–163 [163]. doi:10.2307/1363415. JSTOR 1363415.
  4. ^ Paynter, Raymond A. Jr, ed. (1970). Check-List of Birds of the World. Vol. 13. Cambridge, Massachusetts: Museum of Comparative Zoology. p. 307.
  5. ^ Jobling, James A. (2010). The Helm Dictionary of Scientific Bird Names. London: Christopher Helm. p. 232. ISBN 978-1-4081-2501-4.
  6. ^ Vieillot, Louis Jean Pierre (1807). Histoire naturelle des oiseaux de l'Amérique Septentrionale : contenant un grand nombre d'espèces décrites ou figurées pour la première fois (in French). Vol. 1. Paris: Chez Desray. p. iv. Dickinson, E.C.; Overstreet, L.K.; Dowsett, R.J.; Bruce, M.D. (2011). Priority! The Dating of Scientific Names in Ornithology: a Directory to the literature and its reviewers. Northampton, UK: Aves Press. p. 157. ISBN 978-0-9568611-1-5.
  7. ^ a b Gill, Frank; Donsker, David; Rasmussen, Pamela, eds. (2020). "Cardinals, grosbeaks and (tanager) allies". IOC World Bird List Version 10.2. International Ornithologists' Union. Retrieved 1 October 2020.
  8. ^ a b "Western Tanager Identification, All About Birds, Cornell Lab of Ornithology". www.allaboutbirds.org. Retrieved 2020-09-30.
  9. ^ "nps.gov - Western Tanager" (PDF).
  10. ^ a b c d e f DeGraaf, Richard M.; Scott, Virgil E.; Hamre, R. H. et al. (1991) Forest and rangeland birds of the United States: Natural history and habitat use. Agric. Handb. 688. Washington, DC: U.S. Department of Agriculture, Forest Service
  11. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Hudon, Jocelyn. 1999. Western tanager—Piranga ludoviciana. In: Poole, A.; Gill, F., eds. The birds of North America. No. 432. Ithaca, NY: Cornell Laboratory of Ornithology; Philadelphia, PA: The Academy of Natural Sciences
  12. ^ a b c d e f g h i j k l Isler, Morton L.; Isler, Phyllis R. 1987. The tanagers: Natural history, distribution, and identification. Washington, DC: Smithsonian Institution Press
  13. ^ Veit, Richard R. (2000). "Vagrants as the Expanding Fringe of a Growing Population". The Auk. 117 (1): 242–246. doi:10.1642/0004-8038(2000)117[0242:VATEFO]2.0.CO;2. JSTOR 4089566. S2CID 85877746.
  14. ^ a b Hagar, Donald C. (1960). "The interrelationships of logging, birds, and timber regeneration in the Douglas-fir region of northwestern California". Ecology. 41 (1): 116–125. doi:10.2307/1931945. JSTOR 1931945.
  15. ^ a b c d e f Yong, Wang; Finch, Deborah M. 2002. Stopover ecology of landbirds migrating along the Middle Rio Grande in spring and fall. Gen. Tech. Rep. RMRS-GTR-99. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
  16. ^ a b Tatschl, John L. (1967). "Breeding birds of the Sandia Mountains and their ecological distributions". The Condor. 69 (5): 479–490. doi:10.2307/1366148. JSTOR 1366148.
  17. ^ a b c d e f g h i j Fischer, Karen N.; Prather, John W.; Cruz, Alexander (2002). "Nest site characteristics and reproductive success of the western tanager (Piranga ludoviciana) on the Colorado Front Range". Western North American Naturalist. 62 (4): 479–483.
  18. ^ Klimkiewicz, M. Kathleen; Futcher, Anthony G. (1987). "Longevity records of North American birds: Coerebinae through Estrildidae" (PDF). Journal of Field Ornithology. 58 (3): 318–333.
  19. ^ a b Stiles, Edmund W. (1980). "Bird community structure in alder forests in Washington". The Condor. 82 (1): 20–30. doi:10.2307/1366781. JSTOR 1366781.
  20. ^ Medin, Dean E.; Welch, Bruce L.; Clary, Warren P. 2000. Bird habitat relationships along a Great Basin elevational gradient. Res. Pap. RMRS-RP-23. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
  21. ^ a b c d e Langelier, Lisa A.; Garton, Edward O. 1986. Spruce budworms handbook: Management guidelines for increasing populations of birds that feed on western spruce budworm. Agriculture Handbook No. 653. Washington, DC: U.S. Department of Agriculture, Forest Service, Cooperative State Research Service
  22. ^ a b Meslow, E. Charles; Wight, Howard M. 1975. Avifauna and succession in Douglas-fir forests of the Pacific Northwest. In: Smith, Dixie R, technical coordinator. Proceedings of the symposium on management of forest and range habitats for nongame birds; 1975 May 6–9; Tucson, AZ. Gen. Tech. Rep. WO-1. Washington, DC: U.S. Department of Agriculture, Forest Service: 266–271
  23. ^ a b Kilgore, Bruce M. (1971). "Response of breeding bird populations to habitat changes in a giant sequoia forest". The American Midland Naturalist. 85 (1): 135–152. doi:10.2307/2423918. JSTOR 2423918.
  24. ^ a b c d Airola, Daniel A.; Barrett, Reginald H. (1985). "Foraging and habitat relationships of insect-gleaning birds in a Sierra Nevada mixed-conifer forest". The Condor. 87 (2): 205–216. doi:10.2307/1366884. JSTOR 1366884.
  25. ^ a b c d e Morgan, K. H.; Savard, J-P. L.; Wetmore, S. P. (1991) Foraging behaviour of forest birds of the dry interior Douglas-fir, ponderosa pine forests of British Columbia. Technical Report Series No. 149. Delta, BC: Canadian Wildlife Service, Pacific and Yukon Region
  26. ^ a b Pojar, Rosamund A. 1995. Breeding bird communities in aspen forests of the sub-boreal spruce (dk subzone) in the Prince Rupert Forest Region. Land Management Handbook No. 33. Victoria, BC: Province of British Columbia, Ministry of Forests Research Program
  27. ^ a b Schieck, Jim; Nietfeld, Marie. 1995. Bird species richness and abundance in relation to stand age and structure in aspen mixedwood forests in Alberta. In: Stelfox, J. B., ed. Relationships between stand age, stand structure, and biodiversity in aspen mixedwood forests in Alberta. Vegreville, AB: Alberta Environmental Centre: 115–157
  28. ^ a b Zwartjes, Patrick W.; Cartron, Jean-Luc E.; Stoleson, Pamela L. L.; Haussamen, Walter C.; Crane, Tiffany E. 2005. Assessment of native species and ungulate grazing in the Southwest: terrestrial wildlife. Gen. Tech. Rep. RMRS-GTR-142. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station
  29. ^ a b c Mills, Todd R.; Rumble, Mark A.; Flake, Lester D. (2000). "Habitat of birds in ponderosa pine and aspen/birch forest in the Black Hills, South Dakota". Journal of Field Ornithology. 71 (2): 187–206. doi:10.1648/0273-8570-71.2.187. S2CID 86086800.
  30. ^ Hutto, Richard L. (1995). "Composition of bird communities following stand-replacement fires in northern Rocky Mountain (U.S.A.) conifer forests". Conservation Biology. 9 (5): 1041–1058. doi:10.1046/j.1523-1739.1995.9051033.x-i1. JSTOR 2387043. PMID 34261259.
  31. ^ Blumstein, Daniel T. (1989). "Food habits of red-tailed hawks in Boulder County, Colorado". Journal of Raptor Research. 23 (2): 53–55.
  32. ^ Goguen, Christopher B.; Mathews, Nancy E. (1998). "Songbird community composition and nesting success in grazed and ungrazed pinyon-juniper woodlands" (PDF). Journal of Wildlife Management. 62 (2): 474–484. doi:10.2307/3802321. JSTOR 380232.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Western tanager: Brief Summary

provided by wikipedia EN

The western tanager (Piranga ludoviciana), is a medium-sized American songbird. Formerly placed in the tanager family (Thraupidae), other members of its genus and it are classified in the cardinal family (Cardinalidae). The species's plumage and vocalizations are similar to other members of the cardinal family.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN