Das Tomato-bushy-stunt-Virus (wissenschaftlich Tomato bushy stunt virus, TBSV), selten auch als Tomatenzwergbusch-Virus bezeichnet,[4] ist die Typusspezies der Viren-Gattung Tombusvirus aus der Familie Tombusviridae, Unterfamilie Procedovirinae.[5][2] TBSV ist ein Einzelstrang-RNA-Virus, das erstmals 1935 in Tomaten gefunden wurde. Es befällt hauptsächlich Gemüsepflanzen, wird aber allgemein nicht als wirtschaftlich signifikantes Pflanzenpathogen angesehen. Je nach Wirt verursacht TBSV Wachstumsstörungen, Blattflecken und deformierte oder fehlende Früchte. Das Virus ist in der Natur wahrscheinlich bodengebunden, kann aber auch mechanisch übertragen werden, beispielsweise durch kontaminierte Schneidwerkzeuge. TBSV wurde als Modellsystem in der virologischen Forschung zum Lebenszyklus von Pflanzenviren verwendet, insbesondere bei experimentellen Infektionen der Modellwirtspflanze Nicotiana benthamiana.[6][7]
Das verkümmerte (englisch to stunt ‚verkümmern‘), „buschige“ Aussehen der Tomatenpflanzen, in denen das Virus erstmals entdeckt wurde, gab dem Erreger seinen Namen.
TBSV verfügt unter experimentellen Bedingungen über ein breites Wirtsspektrum und infiziert Berichten zufolge über 120 verschiedene Pflanzenarten aus 20 Familien. Unter natürlichen Bedingungen ist sein Verbreitungsgebiet jedoch viel enger und umfasst im Allgemeinen Erntegemüse und Zierpflanzen. Es wurde erstmals in Tomatenpflanzen nachgewiesen, ist aber auch als Parasit von Apfel, Artischocke, Kirsche, Weinrebe, Hopfen, Pfeffer und Wald-Erdbeeren[4]dokumentiert. Obwohl TBSV bei Tomatenpflanzen zu erheblichen Ertragsverlusten führt, wird es nicht als wirtschaftlich bedeutender Erreger angesehen.[7][8] Es ist jedoch ein sehr gut etabliertes Modellsystem für die Untersuchung von Pflanzenviren, üblicherweise durch experimentelle Infektion von Nicotiana benthamiana oder N. clevelandii, Verwandten der Tabakpflanze, bei denen TBSV eine systemische Infektion verursachen kann. Die gemeinsame Modellpflanze Arabidopsis thaliana ist jedoch kein Wirt.[6][7] Interessanterweise kann TBSV unter Laborbedingungen auch in Hefe (Bierhefe Saccharomyces cerevisiae) replizieren.[9]
Die Anzeichen von TBSV sind wirtsabhängig. Lokale Infektionen können nekrotische oder chlorotische Läsionen verursachen. Systemische Infektionen können zu Wachstumsstörungen, deformierten oder fehlenden Früchten und beschädigten Blättern führen wie beispielsweise dem verkümmerten, "buschigen" Aussehen der Tomatenpflanzen. In der Landwirtschaft kann der Ertrag deutlich reduziert werden. Bei einigen Wirten, insbesondere bei N. benthamiana, kann TBSV tödliche systemische Nekrose verursachen.[7][8]
Es wird angenommen, dass TBSV in der Wildnis passiv übertragen wird, hauptsächlich über den Boden und Wasser. Es sind keine Vektororganismen bekannt, insbesondere ist eine Übertragung durch Blattläuse, Milben oder den Tröpfchenpilz Olpidium brassicae (Olpidiaceae) ausdrücklich ausgeschlossen.[8] Es wurde jedoch beobachtet, dass das eng verwandte Cucumber-necrosis-Virus (CNV), ebenfalls Virusgattung Tombusvirus, von Zoosporen der nahe verwandten Tröpfchenpilsspezies O. bornovanus übertragen wird, so dass die Übertragung von TBSV durch einen bislang unbekannten Vektor weiterhin möglich ist.[7] TBSV kann auch durch Samen oder durch mechanische Inokulation (Beimpfung) übertragen werden.[7][8] In experimentellen Tests kann das Virus die Passage durch das menschliche Verdauungssystem überleben, wenn es in der Nahrung aufgenommen wird, und bleibt ansteckend. Daher vermutet man, dass eine Ausbreitung durch das Abwasser erfolgen könnte.[10]
TBSV ist in Mittel- und Westeuropa, Nordafrika sowie Nord- und Südamerika ziemlich weit verbreitet.[7][8] Es gibt zwar keine Empfehlungen für spezifischen Bekämpfungsmaßnahmen. Die von der University of California herausgegebenen Richtlinien zur Schädlingsbekämpfung empfehlen jedoch, Felder mit einer TBSV-Vorgeschichte zu meiden oder lange Fruchtfolgen zu verwenden.[11]
TBSV ist die Typusart der Gattung Tombusvirus in der Familie Tombusviridae, Unterfamilie Procedovirinae.[2][12] Sowohl die Gattung als auch die Familie haben ihren Namen von einer Abkürzung für englisch tomato bushy stunt virus abgeleitet.[13]
Die Virusteilchen (Virionen) von TBSV sind nicht umhüllt, und mit ikosaedrischer Geometrie (T=3-Symmetrie). Das Kapsid ist aus 180 Untereinheiten eines einzelnen Kapsidproteins zusammengesetzt. Seine Struktur wurde ab den späten 1950er Jahren durch Röntgenkristallographie eingehend untersucht. Dabei wurde die ikosaedrische Symmetrie erstmals von dem Strukturbiologen Donald Caspar identifiziert, der auch Pionierarbeit bei der Erforschung des Tabakmosaikvirus leistete.[15] 1978 wurde von einem Forscherteam um Stephen C. Harrison eine Darstellung mit nahezu atomarer Auflösung erzielt.[16][17]
TBSV ist ein einzelsträngiges RNA-Virus mit positiver Polarität und einem linearen Genom mit einer Länge von etwa 4800 nt.[18][19] Dem RNA-Strang fehlen der 3'-Polyadenin-Schwanz und die 5'-Kappe.
Das Genom enthält fünf Gene die eine Replikase kodieren, die wie folgt zusammengesetzt ist:[7]
Die beiden Proteine p19 und p22 werden von überlappenden Genen exprimiert, die so angeordnet sind, dass der offene Leserahmen (englisch open reading frame, ORF) von p19 vollständig im ORF von p22 liegt.[20]
Die beiden Proteine p33 und p92 bilden zusammen den viralen Replikase-Komplex. Dabei ist p33 ist kleiner als p92. Letzteres wird durch ribosomales Durchlesen des p33-Stoppcodons erzeugt, was zu einer gemeinsamen N-terminalen Aminosäuresequenz und einem großen Überschuss an p33 im Vergleich zu p92 führt. Die p33-Proteine binden kooperativ einzelsträngige Nukleinsäuren, während das p92-Protein eine RNA-abhängige RNA-Polymerase (RdRp) ist. Beide sind für die Virusproliferation (die Vermehrung der Virusteilchen) essentiell. Beide Proteine sind mit Zellmembranen assoziiert.[7]
Das Kapsidprotein p41 (alias CP) ist ein doppeltes Jelly-Roll-Protein (englisch jelly roll fold). Das ikosaedrischen Kapsid zusammensetzt setzt sich aus 180 Kopien des Proteins zusammen. Um das Virus lokal in benachbarte Pflanzenzellen zu verbreiten ist die Bildung von Virionen ist nicht zwingend notwendig, da sich Ribonukleoprotein-Partikel mit dem viralen genetischen Material über Plasmodesmata (Plasmodesmen) zu den unmittelbaren Nachbarzellen ausbreiten können. Für eine systemische Infektion (anderer Pflanzen) durch voll funktionsfähige Virionen wird jedoch das Kapsidprotein benötigt.[7]
Das Protein p19 ist ein Pathogenitätsfaktor und unterdrückt den RNA-Silencing-Signalweg, eine häufige Form der antiviralen Abwehr seitens der Wirte. Das p19-Protein bindet kurze sRNAs („kleine RNA“s) und verhindert deren Einbau in den RNA-induzierten Silencing-Komplex (RISC), wodurch die Virusvermehrung in der Wirtspflanze ermöglicht wird.[6][21][22] Das Vorhandensein von p19 ist bei einigen Wirten für eine systemische oder tödliche Infektion erforderlich; im experimentellen Wirt N. benthamiana wird die letale systemische Nekrose als Ergebnis der TBSV-Infektion weitgehend durch p19 vermittelt.[7][21]
Das Protein p22 ist ein Movement-Protein, das für die Ausbreitung des Virus von Zelle zu Zelle erforderlich ist. Es handelt sich um ein RNA-bindendes Protein, das mit der Zellwand assoziiert ist und die Bewegung von viralem genetischem Material von einer Zelle zu seinem Nachbarn durch verbindende Plasmodesmen erleichtert.[7][23]
Obwohl dem RNA-Strang des Genoms der 3'-Polyadenin-Schwanz und die 5'-Kappe fehlen, werden die Proteine p33 und p92 direkt aus genomischer RNA translatiert. Wenn das Genom repliziert wird, entstehen zwei subgenomische[24] RNA-Moleküle, die als Messenger-RNA (mRNA) fungieren: Eines, aus dem das Kapsidprotein p41 (CP) exprimiert wird, und eines, aus dem die Proteine p19 und p22 exprimiert werden. Die überlappenden Gene p19 und p22 werden beide über Effekte des Leaky-Scannings (en) übersetzt.[7] Zudem wurden mehrere Wechselwirkungen zwischen linear gut getrennten und weit auseinanderliegenden Bereichen des Genoms identifiziert mit funktioneller Bedeutung für eine effiziente Replikation.[20]
DI-Moleküle (englisch defective interfering RNA) sind RNAs, die aus dem viralen Genom hergestellt werden, die aber aufgrund von Verkürzungen und anderen Fehlern nicht in der Lage sind, Zellen (wie ein Virus) alleine zu infizieren. Stattdessen müssen sie (wie ein Satellitenvirus) mit einem intakten Helfervirus koinfiziert werden. TBSV-Infektionen produzieren unter experimentellen Bedingungen häufig eine signifikante Anzahl von DIs aus vollständigen und funktionalen Teilen des Genoms; allerdings wurde dieses Verhalten in freier Wildbahn nicht beobachtet. Ihre Produktion ist wahrscheinlich hostspezifisch. Infektionen, die zu DIs führen, haben in der Regel milderen Verlauf.[7][25][26]
Eine Variante der kleinen sRNAs ist die siRNA (englisch small interfering RNA). Diese entsteht, wenn die Pflanze Virus-Erbgut erkannt und zerstückelt. Zusammen mit bestimmten Proteinen (Wegweiser- oder Helferproteine) der Pflanze können diese sich an die Virus-RNA binden und diese zum Schutz der Pflanze inaktivieren; ein Effekt, der aber nur bei einer sehr kleinen Zahl von siRNAs möglich ist. 2019 angestellte Versuche, geeignete siRNAs mit Hilfen von Agrobacterium tumefaciens in die N. benthamiana-Pflanzen einzuschleußen, und so eine Art Immunisierung der Pflanzen zu bewirken, verliefen erfolgversprechend. Diese Bakterien sind in der Lage, die Zellwand der Pflanzenzellen zu überwinden und ins Innere einzudringen.[27][28][29]
Das Tomato-bushy-stunt-Virus (wissenschaftlich Tomato bushy stunt virus, TBSV), selten auch als Tomatenzwergbusch-Virus bezeichnet, ist die Typusspezies der Viren-Gattung Tombusvirus aus der Familie Tombusviridae, Unterfamilie Procedovirinae. TBSV ist ein Einzelstrang-RNA-Virus, das erstmals 1935 in Tomaten gefunden wurde. Es befällt hauptsächlich Gemüsepflanzen, wird aber allgemein nicht als wirtschaftlich signifikantes Pflanzenpathogen angesehen. Je nach Wirt verursacht TBSV Wachstumsstörungen, Blattflecken und deformierte oder fehlende Früchte. Das Virus ist in der Natur wahrscheinlich bodengebunden, kann aber auch mechanisch übertragen werden, beispielsweise durch kontaminierte Schneidwerkzeuge. TBSV wurde als Modellsystem in der virologischen Forschung zum Lebenszyklus von Pflanzenviren verwendet, insbesondere bei experimentellen Infektionen der Modellwirtspflanze Nicotiana benthamiana.
Das verkümmerte (englisch to stunt ‚verkümmern‘), „buschige“ Aussehen der Tomatenpflanzen, in denen das Virus erstmals entdeckt wurde, gab dem Erreger seinen Namen.
Tomato bushy stunt virus (TBSV) is a virus of the tombusvirus family.[2] It was first reported in tomatoes in 1935 and primarily affects vegetable crops, though it is not generally considered an economically significant plant pathogen. Depending upon the host, TBSV causes stunting of growth, leaf mottling, and deformed or absent fruit. The virus is likely to be soil-borne in the natural setting, but can also transmitted mechanically, for example through contaminated cutting tools. TBSV has been used as a model system in virology research on the life cycle of plant viruses, particularly in experimental infections of the model host plant Nicotiana benthamiana.[3][4]
TBSV has a broad host range under experimental conditions and has been reported to infect over 120 plant species spanning 20 families. However, under natural conditions its range is much narrower and generally comprises crop vegetables and ornamental plants. It was first identified in tomato plants and also has been documented to affect apple, artichoke, cherry, grapevine, hops, and pepper. Although it causes significant loss of yield in tomato plants, it is not considered an economically significant pathogen.[4][5] It is, however, a very well-established model system for the study of plant viruses, usually through experimental infection of Nicotiana benthamiana or Nicotiana clevelandii, relatives of tobacco plants in which TBSV can cause systemic infection. Notably, the common model plant Arabidopsis thaliana is not a host.[3][4] TBSV can also replicate in yeast in laboratory conditions.[6]
The signs of TBSV are host-dependent. Local infections can cause necrotic or chlorotic lesions. Systemic infections can cause stunted growth, deformed or absent fruit, and damaged leaves; in agricultural settings yield can be significantly reduced. The stunted, "bushy" appearance of the tomato plants in which the virus was first discovered gave the pathogen its name. In some hosts, most notably N. benthamiana, TBSV can cause lethal systemic necrosis.[4][5]
TBSV is thought to be passively transmitted in the wild, primarily through soil or water. There are no known vector organisms; transmission by aphids, mites, and the fungus Olpidium brassicae has specifically been ruled out.[5] However, the closely related tombusvirus Cucumber necrosis virus (CNV) has been observed to be transmitted by Olpidium bornovanus zoospores, so transmission of TBSV by as-yet unknown vector remains a possibility.[4] TBSV can also be transmitted through seed or by mechanical inoculation.[4][5] In experimental tests, the virus can survive passage through the human digestive system if consumed in food and will remain infectious; it has been hypothesized that spread through sewage could occur.[7]
TBSV is distributed fairly widely across central and western Europe, north Africa, and North and South America.[4][5] No specific control measures are recommended for the virus, though pest management guidelines distributed by the University of California recommend avoiding fields with a history of TBSV or using long crop rotations.[8]
TBSV is assigned to the Tombusvirus genus in the family Tombusviridae.[9] Both the genus and the family derive their names from an abbreviation of "tomato bushy stunt virus".[10]
TBSV is an unenveloped icosahedral virus with a T=3 viral capsid composed of 180 subunits of a single capsid protein. Its structure was studied extensively by X-ray crystallography from the late 1950s; its icosahedral symmetry was first identified by structural biologist Donald Caspar, who also pioneered the study of the tobacco mosaic virus.[11] A near-atomic-resolution map was obtained in 1978 by a research team including Stephen C. Harrison.[12][13]
TBSV is a positive-sense single-stranded RNA virus with a linear genome of ~4800 nucleotides.[14][15] The genome contains five genes that encode a replicase composed of two proteins (p33 and p92), a capsid protein (called CP or p41), and two additional proteins, the RNA silencing suppressor p19 and movement protein p22.[4] These two proteins are expressed from overlapping genes arranged so that the open reading frame of p19 is completely within the ORF of p22.[16] The genome contains one additional possible gene, called pX, of unknown function.[4]
Together p33 and p92 comprise the viral replicase complex. P33 is smaller and p92 is produced through ribosomal read-through of the p33 stop codon, resulting in a shared N-terminal amino acid sequence and a large excess of p33 relative to p92. P33 proteins cooperatively bind single-stranded nucleic acids, while the p92 protein is a RNA-dependent RNA polymerase (RdRp). Both are essential to viral proliferation. Both proteins are associated with cell membranes.[4]
The viral capsid protein CP, or p41, is a double jelly roll protein that assembles into an icosahedral capsid containing 180 copies of the protein. Formation of virions is not always necessary for localized spread of the virus into neighboring plant cells, because ribonucleoprotein particles containing viral genetic material can spread to immediate neighbors through plasmodesmata. However, the capsid protein is required for systemic infection.[4]
The p19 protein is a pathogenicity factor and functions by suppressing the RNA silencing pathway, a common form of antiviral defense. The p19 protein binds short interfering RNAs and prevents their incorporation into the RNA-induced silencing complex (RISC), thereby allowing viral propagation in the host plant.[3][17][18] The presence of p19 is necessary for systemic infection or for lethal infection in some hosts; in the experimental host N. benthamiana, p19 largely mediates the lethal systemic necrosis that is the outcome of TBSV infection.[4][17]
The p22 protein is a movement protein that is required for the virus to spread from cell to cell. P22 is an RNA-binding protein that is associated with the cell wall and facilitates movement of viral genetic material from one cell to its neighbor through interconnecting plasmodesmata.[4]
A TBSV virion contains one copy of its positive-sense single-stranded RNA genome, which is linear and lacks a 3' polyadenine tail or 5' cap. Nevertheless, the p33 and p92 proteins are translated directly from genomic RNA. When the genome is replicated, two subgenomic RNA molecules are produced that act as messenger RNA; one from which the p41 (CP) gene is expressed, and one from the p19 and p22 genes are expressed. The overlapping p19 and p22 genes are both translated through the effects of leaky scanning.[4] Several long-distance interactions between linearly well-separated areas of the genome have been identified with functional importance in ensuring efficient replication.[16]
Defective interfering RNA (DI) molecules are RNAs that are produced from the viral genome but are not competent to infect cells on their own; instead they require coinfection with an intact "helper" virus. TBSV infections often produce significant numbers of DIs from consistent parts of the genome under experimental conditions, but this behavior has not been observed in the wild. Their production is likely to be host specific. Infections that give rise to DIs usually have milder signs.[4][19]
Tomato bushy stunt virus (TBSV) is a virus of the tombusvirus family. It was first reported in tomatoes in 1935 and primarily affects vegetable crops, though it is not generally considered an economically significant plant pathogen. Depending upon the host, TBSV causes stunting of growth, leaf mottling, and deformed or absent fruit. The virus is likely to be soil-borne in the natural setting, but can also transmitted mechanically, for example through contaminated cutting tools. TBSV has been used as a model system in virology research on the life cycle of plant viruses, particularly in experimental infections of the model host plant Nicotiana benthamiana.