dcsimg
Image of Juniperus sabina var. dauurica
Unresolved name

Pinophyta

Conifer

provided by wikipedia EN

Conifers are a group of cone-bearing seed plants, a subset of gymnosperms. Scientifically, they make up the division Pinophyta (/pɪˈnɒfɪtə, ˈpnftə/), also known as Coniferophyta (/ˌkɒnɪfəˈrɒfɪtə, -ftə/) or Coniferae. The division contains a single extant class, Pinopsida. All extant conifers are perennial woody plants with secondary growth[a]. The great majority are trees, though a few are shrubs. Examples include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews.[1] The division Pinophyta contains seven families, 60 to 65 genera, and more than 600 living species.[2]: 205 [3]

Although the total number of species is relatively small, conifers are ecologically important. They are the dominant plants over large areas of land, most notably the taiga of the Northern Hemisphere,[1] but also in similar cool climates in mountains further south. Boreal conifers have many wintertime adaptations. The narrow conical shape of northern conifers, and their downward-drooping limbs, help them shed snow. Many of them seasonally alter their biochemistry to make them more resistant to freezing. While tropical rainforests have more biodiversity and turnover, the immense conifer forests of the world represent the largest terrestrial carbon sink. Conifers are of great economic value for softwood lumber and paper production.[1]

Evolutionary history

The narrow conical shape of northern conifers, and their downward-drooping limbs, help them shed snow.

The earliest conifers appear in the fossil record during the Late Carboniferous (Pennsylvanian), over 300 million years ago. Conifers are thought to be most closely related to the Cordaitales, a group of extinct Carboniferous-Permian trees and clambering plants whose reproductive structures had some similarities to those of conifers. The most primitive conifers belong to the paraphyletic assemblage of "walchian conifers", which were small trees, and probably originated in dry upland habitats. The range of conifers expanded during the Early Permian (Cisuralian) to lowlands due to increasing aridity. Walchian conifers were gradually replaced by more advanced voltzialean or "transition" conifers.[4] Conifers were largely unaffected by the Permian–Triassic extinction event,[5] and were dominant land plants of the Mesozoic era. Modern groups of conifers emerged from the Voltziales during the Late Permian through Jurassic.[6] Conifers underwent a major decline in the Late Cretaceous corresponding to the explosive adaptive radiation of flowering plants.[7]

Taxonomy and naming

A coniferous forest pictured in the coat of arms of the Kainuu region in Finland

Conifer is a Latin word, a compound of conus (cone) and ferre (to bear), meaning "the one that bears (a) cone(s)".

The division name Pinophyta conforms to the rules of the International Code of Nomenclature for algae, fungi, and plants (ICN), which state (Article 16.1) that the names of higher taxa in plants (above the rank of family) are either formed from the name of an included family (usually the most common and/or representative), in this case Pinaceae (the pine family), or are descriptive. A descriptive name in widespread use for the conifers (at whatever rank is chosen) is Coniferae (Art 16 Ex 2).

According to the ICN, it is possible to use a name formed by replacing the termination -aceae in the name of an included family, in this case preferably Pinaceae, by the appropriate termination, in the case of this division -ophyta. Alternatively, "descriptive botanical names" may also be used at any rank above family. Both are allowed.

This means that if conifers are considered a division, they may be called Pinophyta or Coniferae. As a class, they may be called Pinopsida or Coniferae. As an order they may be called Pinales or Coniferae or Coniferales.

Conifers are the largest and economically most important component group of the gymnosperms, but nevertheless they comprise only one of the four groups. The division Pinophyta consists of just one class, Pinopsida, which includes both living and fossil taxa. Subdivision of the living conifers into two or more orders has been proposed from time to time. The most commonly seen in the past was a split into two orders, Taxales (Taxaceae only) and Pinales (the rest), but recent research into DNA sequences suggests that this interpretation leaves the Pinales without Taxales as paraphyletic, and the latter order is no longer considered distinct. A more accurate subdivision would be to split the class into three orders, Pinales containing only Pinaceae, Araucariales containing Araucariaceae and Podocarpaceae, and Cupressales containing the remaining families (including Taxaceae), but there has not been any significant support for such a split, with the majority of opinion preferring retention of all the families within a single order Pinales, despite their antiquity and diverse morphology.

Phylogeny of the Pinophyta based on cladistic analysis of molecular data.[8]

As of 2016, the conifers were accepted as composed of seven families,[9] with a total of 65–70 genera and 600–630 species (696 accepted names). The seven most distinct families are linked in the box above right and phylogenetic diagram left. In other interpretations, the Cephalotaxaceae may be better included within the Taxaceae, and some authors additionally recognize Phyllocladaceae as distinct from Podocarpaceae (in which it is included here). The family Taxodiaceae is here included in family Cupressaceae, but was widely recognized in the past and can still be found in many field guides. A new classification and linear sequence based on molecular data can be found in an article by Christenhusz et al.[10]

The conifers are an ancient group, with a fossil record extending back about 300 million years to the Paleozoic in the late Carboniferous period; even many of the modern genera are recognizable from fossils 60–120 million years old. Other classes and orders, now long extinct, also occur as fossils, particularly from the late Paleozoic and Mesozoic eras. Fossil conifers included many diverse forms, the most dramatically distinct from modern conifers being some herbaceous conifers with no woody stems. Major fossil orders of conifers or conifer-like plants include the Cordaitales, Vojnovskyales, Voltziales and perhaps also the Czekanowskiales (possibly more closely related to the Ginkgophyta).

Pinaceae

Araucariaceae

Podocarpaceae

Sciadopityaceae

Cupressaceae

Cephalotaxaceae

Taxaceae

Multiple studies also indicate that the Gnetophyta belong within the conifers despite their distinct appearances, either placing them as a sister group to Pinales (the 'gnepine' hypothesis) or as being more derived than Pinales but sister to the rest of the group. Most recent studies favor the 'gnepine' hypothesis.[11][12][13]

Morphology

All living conifers are woody plants, and most are trees, the majority having monopodial growth form (a single, straight trunk with side branches) with strong apical dominance. Many conifers have distinctly scented resin, secreted to protect the tree against insect infestation and fungal infection of wounds. Fossilized resin hardens into amber. The size of mature conifers varies from less than one metre, to over 100 metres.[14] The world's tallest, thickest, largest, and oldest living trees are all conifers. The tallest is a Coast Redwood (Sequoia sempervirens), with a height of 115.55 metres (although one Victorian mountain ash, Eucalyptus regnans, allegedly grew to a height of 140 metres, although the exact dimensions were not confirmed). The thickest, meaning the tree with the greatest trunk diameter, is a Montezuma Cypress (Taxodium mucronatum), 11.42 metres in diameter. The largest tree by three-dimensional volume is a Giant Sequoia (Sequoiadendron giganteum), with a volume 1486.9 cubic metres.[15] The smallest is the pygmy pine (Lepidothamnus laxifolius) of New Zealand, which is seldom taller than 30 cm when mature.[16] The oldest is a Great Basin Bristlecone Pine (Pinus longaeva), 4,700 years old.[17]

Foliage

Pinaceae: needle-like leaves and vegetative buds of Coast Douglas fir (Pseudotsuga menziesii var. menziesii)
Araucariaceae: Awl-like leaves of Cook Pine (Araucaria columnaris)
In Abies grandis (grand fir), and many other species with spirally arranged leaves, leaf bases are twisted to flatten their arrangement and maximize light capture.
Cupressaceae: scale leaves of Lawson's Cypress (Chamaecyparis lawsoniana); scale in mm

Since most conifers are evergreens,[1] the leaves of many conifers are long, thin and have a needle-like appearance, but others, including most of the Cupressaceae and some of the Podocarpaceae, have flat, triangular scale-like leaves. Some, notably Agathis in Araucariaceae and Nageia in Podocarpaceae, have broad, flat strap-shaped leaves. Others such as Araucaria columnaris have leaves that are awl-shaped. In the majority of conifers, the leaves are arranged spirally, exceptions being most of Cupressaceae and one genus in Podocarpaceae, where they are arranged in decussate opposite pairs or whorls of 3 (−4).

In many species with spirally arranged leaves, such as Abies grandis (pictured), the leaf bases are twisted to present the leaves in a very flat plane for maximum light capture. Leaf size varies from 2 mm in many scale-leaved species, up to 400 mm long in the needles of some pines (e.g. Apache Pine, Pinus engelmannii). The stomata are in lines or patches on the leaves and can be closed when it is very dry or cold. The leaves are often dark green in colour, which may help absorb a maximum of energy from weak sunshine at high latitudes or under forest canopy shade.

Conifers from hotter areas with high sunlight levels (e.g. Turkish Pine Pinus brutia) often have yellower-green leaves, while others (e.g. blue spruce, Picea pungens) may develop blue or silvery leaves to reflect ultraviolet light. In the great majority of genera the leaves are evergreen, usually remaining on the plant for several (2–40) years before falling, but five genera (Larix, Pseudolarix, Glyptostrobus, Metasequoia and Taxodium) are deciduous, shedding their leaves in autumn.[1] The seedlings of many conifers, including most of the Cupressaceae, and Pinus in Pinaceae, have a distinct juvenile foliage period where the leaves are different, often markedly so, from the typical adult leaves.

Tree ring structure

A thin section showing the internal structure of conifer wood

Tree rings are records of the influence of environmental conditions, their anatomical characteristics record growth rate changes produced by these changing conditions. The microscopic structure of conifer wood consists of two types of cells: parenchyma, which have an oval or polyhedral shape with approximately identical dimensions in three directions, and strongly elongated tracheids. Tracheids make up more than 90% of timber volume. The tracheids of earlywood formed at the beginning of a growing season have large radial sizes and smaller, thinner cell walls. Then, the first tracheids of the transition zone are formed, where the radial size of cells and thickness of their cell walls changes considerably. Finally, the latewood tracheids are formed, with small radial sizes and greater cell wall thickness. This is the basic pattern of the internal cell structure of conifer tree rings.[18]

Reproduction

Most conifers are monoecious, but some are subdioecious or dioecious; all are wind-pollinated. Conifer seeds develop inside a protective cone called a strobilus. The cones take from four months to three years to reach maturity, and vary in size from 2 mm to 600 mm long.

In Pinaceae, Araucariaceae, Sciadopityaceae and most Cupressaceae, the cones are woody, and when mature the scales usually spread open allowing the seeds to fall out and be dispersed by the wind. In some (e.g. firs and cedars), the cones disintegrate to release the seeds, and in others (e.g. the pines that produce pine nuts) the nut-like seeds are dispersed by birds (mainly nutcrackers, and jays), which break up the specially adapted softer cones. Ripe cones may remain on the plant for a varied amount of time before falling to the ground; in some fire-adapted pines, the seeds may be stored in closed cones for up to 60–80 years, being released only when a fire kills the parent tree.

In the families Podocarpaceae, Cephalotaxaceae, Taxaceae, and one Cupressaceae genus (Juniperus), the scales are soft, fleshy, sweet, and brightly colored, and are eaten by fruit-eating birds, which then pass the seeds in their droppings. These fleshy scales are (except in Juniperus) known as arils. In some of these conifers (e.g. most Podocarpaceae), the cone consists of several fused scales, while in others (e.g. Taxaceae), the cone is reduced to just one seed scale or (e.g. Cephalotaxaceae) the several scales of a cone develop into individual arils, giving the appearance of a cluster of berries.

The male cones have structures called microsporangia that produce yellowish pollen through meiosis. Pollen is released and carried by the wind to female cones. Pollen grains from living pinophyte species produce pollen tubes, much like those of angiosperms. The gymnosperm male gametophytes (pollen grains) are carried by wind to a female cone and are drawn into a tiny opening on the ovule called the micropyle. It is within the ovule that pollen-germination occurs. From here, a pollen tube seeks out the female gametophyte, which contains archegonia each with an egg, and if successful, fertilization occurs. The resulting zygote develops into an embryo, which along with the female gametophyte (nutritional material for the growing embryo) and its surrounding integument, becomes a seed. Eventually, the seed may fall to the ground and, if conditions permit, grow into a new plant.

In forestry, the terminology of flowering plants has commonly though inaccurately been applied to cone-bearing trees as well. The male cone and unfertilized female cone are called male flower and female flower, respectively. After fertilization, the female cone is termed fruit, which undergoes ripening (maturation).

It was found recently that the pollen of conifers transfers the mitochondrial organelles to the embryo, a sort of meiotic drive that perhaps explains why Pinus and other conifers are so productive, and perhaps also has bearing on observed sex-ratio bias.

Life cycle

Conifers are heterosporous, generating two different types of spores: male microspores and female megaspores. These spores develop on separate male and female sporophylls on separate male and female cones. In the male cones, microspores are produced from microsporocytes by meiosis. The microspores develop into pollen grains, which contain the male gametophytes. Large amounts of pollen are released and carried by the wind. Some pollen grains will land on a female cone for pollination. The generative cell in the pollen grain divides into two haploid sperm cells by mitosis leading to the development of the pollen tube. At fertilization, one of the sperm cells unites its haploid nucleus with the haploid nucleus of an egg cell. The female cone develops two ovules, each of which contains haploid megaspores. A megasporocyte is divided by meiosis in each ovule. Each winged pollen grain is a four celled male gametophyte. Three of the four cells break down leaving only a single surviving cell which will develop into a female multicellular gametophyte. The female gametophytes grow to produce two or more archegonia, each of which contains an egg. Upon fertilization, the diploid egg will give rise to the embryo, and a seed is produced. The female cone then opens, releasing the seeds which grow to a young seedling.

  1. To fertilize the ovum, the male cone releases pollen that is carried on the wind to the female cone. This is pollination. (Male and female cones usually occur on the same plant.)
  2. The pollen fertilizes the female gamete (located in the female cone). Fertilization in some species does not occur until 15 months after pollination.[19]
  3. A fertilized female gamete (called a zygote) develops into an embryo.
  4. A seed develops which contains the embryo. The seed also contains the integument cells surrounding the embryo. This is an evolutionary characteristic of the Spermatophyta.
  5. Mature seed drops out of cone onto the ground.
  6. Seed germinates and seedling grows into a mature plant.
  7. When the plant is mature, it produces cones and the cycle continues.

Female reproductive cycles

Conifer reproduction is synchronous with seasonal changes in temperate zones. Reproductive development slows to a halt during each winter season and then resumes each spring. The male strobilus development is completed in a single year. Conifers are classified by three reproductive cycles that refer to the completion of female strobilus development from initiation to seed maturation. All three types of reproductive cycle have a long gap between pollination and fertilization.

One year reproductive cycle:The genera include Abies, Picea, Cedrus, Pseudotsuga, Tsuga, Keteleeria (Pinaceae) and Cupressus, Thuja, Cryptomeria, Cunninghamia and Sequoia (Cupressaceae). Female strobili are initiated in late summer or fall in a year, then they overwinter. Female strobili emerge followed by pollination in the following spring. Fertilization takes place in summer of the following year, only 3–4 months after pollination. Cones mature and seeds are then shed by the end of that same year. Pollination and fertilization occur in a single growing season.[20]

Two-year reproductive cycle:The genera includes Widdringtonia, Sequoiadendron (Cupressaceae) and most species of Pinus. Female strobilus initials are formed in late summer or fall then overwinter. Female strobili emerge and receive pollen in the first year spring and become conelets. The conelet goes through another winter rest and, in the spring of the 2nd year archegonia form in the conelet. Fertilization of the archegonia occurs by early summer of the 2nd year, so the pollination-fertilization interval exceeds a year. After fertilization, the conelet is considered an immature cone. Maturation occurs by autumn of the 2nd year, at which time seeds are shed. In summary, the 1-year and the 2-year cycles differ mainly in the duration of the pollination- fertilization interval.[20]

Three-year reproductive cycle: Three of the conifer species are pine species (Pinus pinea, Pinus leiophylla, Pinus torreyana) which have pollination and fertilization events separated by a 2-year interval. Female strobili initiated during late summer or autumn in a year, then overwinter until the following spring. Female strobili emerge then pollination occurs in spring of the 2nd year then the pollinated strobili become conelets in the same year (i.e. the second year). The female gametophytes in the conelet develop so slowly that the megaspore does not go through free-nuclear divisions until autumn of the 3rd year. The conelet then overwinters again in the free-nuclear female gametophyte stage. Fertilization takes place by early summer of the 4th year and seeds mature in the cones by autumn of the 4th year.[20]

Tree development

The growth and form of a forest tree are the result of activity in the primary and secondary meristems, influenced by the distribution of photosynthate from its needles and the hormonal gradients controlled by the apical meristems (Fraser et al. 1964).[21] External factors also influence growth and form.

Fraser recorded the development of a single white spruce tree from 1926 to 1961. Apical growth of the stem was slow from 1926 through 1936 when the tree was competing with herbs and shrubs and probably shaded by larger trees. Lateral branches began to show reduced growth and some were no longer in evidence on the 36-year-old tree. Apical growth totaling about 340 m, 370 m, 420 m, 450 m, 500 m, 600 m, and 600 m was made by the tree in the years 1955 through 1961, respectively. The total number of needles of all ages present on the 36-year-old tree in 1961 was 5.25 million weighing 14.25 kg. In 1961, needles as old as 13 years remained on the tree. The ash weight of needles increased progressively with age from about 4% in first-year needles in 1961 to about 8% in needles 10 years old. In discussing the data obtained from the one 11 m tall white spruce, Fraser et al. (1964)[21] speculated that if the photosynthate used in making apical growth in 1961 was manufactured the previous year, then the 4 million needles that were produced up to 1960 manufactured food for about 600,000 mm of apical growth or 730 g dry weight, over 12 million mm3 of wood for the 1961 annual ring, plus 1 million new needles, in addition to new tissue in branches, bark, and roots in 1960. Added to this would be the photosynthate to produce energy to sustain respiration over this period, an amount estimated to be about 10% of the total annual photosynthate production of a young healthy tree. On this basis, one needle produced food for about 0.19 mg dry weight of apical growth, 3 mm3 wood, one-quarter of a new needle, plus an unknown amount of branch wood, bark and roots.

The order of priority of photosynthate distribution is probably: first to apical growth and new needle formation, then to buds for the next year's growth, with the cambium in the older parts of the branches receiving sustenance last. In the white spruce studied by Fraser et al. (1964),[21] the needles constituted 17.5% of the over-day weight. Undoubtedly, the proportions change with time.

Seed-dispersal mechanism

Wind and animal dispersals are two major mechanisms involved in the dispersal of conifer seeds. Wind born seed dispersal involves two processes, namely; local neighborhood dispersal (LND) and long-distance dispersal (LDD). Long-distance dispersal distances range from 11.9–33.7 kilometres (7.4–20.9 mi) from the source.[22] Birds of the crow family, Corvidae, are the primary distributor of the conifer seeds. These birds are known to cache 32,000 pine seeds and transport the seeds as far as 12–22 kilometres (7.5–13.7 mi) from the source. The birds store the seeds in the soil at depths of 2–3 centimetres (0.79–1.18 in) under conditions which favor germination.[23]

Invasive species

A Monterey Pine forest in Sydney, Australia

A number of conifers originally introduced for forestry have become invasive species in parts of New Zealand, including radiata pine (Pinus radiata), lodgepole pine (P. contorta), Douglas fir (Pseudotsuga mensiezii) and European larch (Larix decidua).[24]

In parts of South Africa, maritime pine (Pinus pinaster), patula pine (P. patula) and radiata pine have been declared invasive species.[25] These wilding conifers are a serious environmental issue causing problems for pastoral farming and for conservation.[24]

Radiata pine was introduced to Australia in the 1870s. It is "the dominant tree species in the Australian plantation estate"[26] – so much so that many Australians are concerned by the resulting loss of native wildlife habitat. The species is widely regarded as an environmental weed across southeastern and southwestern Australia[27] and the removal of individual plants beyond plantations is encouraged.[28]

Predators

At least 20 species of roundheaded borers of the family Cerambycidae feed on the wood of spruce, fir, and hemlock (Rose and Lindquist 1985).[29] Borers rarely bore tunnels in living trees, although when populations are high, adult beetles feed on tender twig bark, and may damage young living trees. One of the most common and widely distributed borer species in North America is the whitespotted sawyer (Monochamus scutellatus). Adults are found in summer on newly fallen or recently felled trees chewing tiny slits in the bark in which they lay eggs. The eggs hatch in about 2 weeks and the tiny larvae tunnel to the wood and score its surface with their feeding channels. With the onset of cooler weather, they bore into the wood making oval entrance holes and tunnel deeply. Feeding continues the following summer when larvae occasionally return to the surface of the wood and extend the feeding channels generally in a U-shaped configuration. During this time, small piles of frass extruded by the larvae accumulate under logs. Early in the spring of the second year following egg-laying, the larvae, about 30 mm long, pupate in the tunnel enlargement just below the wood surface. The resulting adults chew their way out in early summer, leaving round exit holes, so completing the usual 2-year life cycle.

Cultivation

Globosa, a cultivar of Pinus sylvestris, a northern European species, in the North American Red Butte Garden

Conifers – notably Abies (fir), Cedrus, Chamaecyparis lawsoniana (Lawson's cypress), Cupressus (cypress), juniper, Picea (spruce), Pinus (pine), Taxus (yew), Thuja (cedar) – have been the subject of selection for ornamental purposes (for more information see the silviculture page). Plants with unusual growth habits, sizes, and colours are propagated and planted in parks and gardens throughout the world.[30]

Conditions for growth

Conifers can absorb nitrogen in either the ammonium (NH4+) or nitrate (NO3) form, but the forms are not physiologically equivalent. Form of nitrogen affected both the total amount and relative composition of the soluble nitrogen in white spruce tissues (Durzan and Steward 1967).[31] Ammonium nitrogen was shown to foster arginine and amides and lead to a large increase of free guanidine compounds, whereas in leaves nourished by nitrate as the sole source of nitrogen guanidine compounds were less prominent. Durzan and Steward noted that their results, drawn from determinations made in late summer, did not rule out the occurrence of different interim responses at other times of the year. Ammonium nitrogen produced significantly heavier (dry weight) seedlings with higher nitrogen content after 5 weeks (McFee and Stone 1968)[32] than did the same amount of nitrate nitrogen. Swan (1960)[33] found the same effect in 105-day-old white spruce.

The general short-term effect of nitrogen fertilization on coniferous seedlings is to stimulate shoot growth more so than root growth (Armson and Carman 1961).[34] Over a longer period, root growth is also stimulated. Many nursery managers were long reluctant to apply nitrogenous fertilizers late in the growing season, for fear of increased danger of frost damage to succulent tissues. A presentation at the North American Forest Tree Nursery Soils Workshop at Syracuse in 1980 provided strong contrary evidence: Bob Eastman, President of the Western Maine Forest Nursery Co. stated that for 15 years he has been successful in avoiding winter “burn” to Norway spruce and white spruce in his nursery operation by fertilizing with 50–80 lb/ac (56–90 kg/ha) nitrogen in September, whereas previously winter burn had been experienced annually, often severely. Eastman also stated that the overwintering storage capacity of stock thus treated was much improved (Eastman 1980).[35]

The concentrations of nutrients in plant tissues depend on many factors, including growing conditions. Interpretation of concentrations determined by analysis is easy only when a nutrient occurs in excessively low or occasionally excessively high concentration. Values are influenced by environmental factors and interactions among the 16 nutrient elements known to be essential to plants, 13 of which are obtained from the soil, including nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur, all used in relatively large amounts (Buckman and Brady 1969).[36] Nutrient concentrations in conifers also vary with season, age, and kind of tissue sampled, and analytical technique. The ranges of concentrations occurring in well-grown plants provide a useful guide by which to assess the adequacy of particular nutrients, and the ratios among the major nutrients are helpful guides to nutritional imbalances.

Economic importance

The softwood derived from conifers is of great economic value, providing about 45% of the world's annual lumber production. Other uses of the timber include the production of paper and plastic from chemically treated wood pulp. Some conifers also provide foods such as pine nuts and juniper berries, the latter used to flavor gin.

References

  1. ^ a b c d e Campbell, Reece, "Phylum Coniferophyta". Biology. 7th. 2005. Print. P. 595
  2. ^ Judd, W.S; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghue, M.J. (2002). Plant systematics, a phylogenetic approach (2nd ed.). Sunderland, Massachussetts: Sinauer Associates Inc. ISBN 0-87893-403-0.
  3. ^ Lott, John N. A; Liu, Jessica C; Pennell, Kelly A; Lesage, Aude; West, M Marcia (2002). "Iron-rich particles and globoids in embryos of seeds from phyla Coniferophyta, Cycadophyta, Gnetophyta, and Ginkgophyta: characteristics of early seed plants". Canadian Journal of Botany. 80 (9): 954–961. doi:10.1139/b02-083.
  4. ^ Feng, Zhuo (September 2017). "Late Palaeozoic plants". Current Biology. 27 (17): R905–R909. doi:10.1016/j.cub.2017.07.041. ISSN 0960-9822. PMID 28898663.
  5. ^ Nowak, Hendrik; Schneebeli-Hermann, Elke; Kustatscher, Evelyn (23 January 2019). "No mass extinction for land plants at the Permian–Triassic transition". Nature Communications. 10 (1): 384. Bibcode:2019NatCo..10..384N. doi:10.1038/s41467-018-07945-w. ISSN 2041-1723. PMC 6344494. PMID 30674875.
  6. ^ Leslie, Andrew B.; Beaulieu, Jeremy; Holman, Garth; Campbell, Christopher S.; Mei, Wenbin; Raubeson, Linda R.; Mathews, Sarah (September 2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID 30157290.
  7. ^ Condamine, Fabien L.; Silvestro, Daniele; Koppelhus, Eva B.; Antonelli, Alexandre (17 November 2020). "The rise of angiosperms pushed conifers to decline during global cooling". Proceedings of the National Academy of Sciences. 117 (46): 28867–28875. Bibcode:2020PNAS..11728867C. doi:10.1073/pnas.2005571117. ISSN 0027-8424. PMC 7682372. PMID 33139543.
  8. ^ Derived from papers by A. Farjon and C. J. Quinn & R. A. Price in the Proceedings of the Fourth International Conifer Conference, Acta Horticulturae 615 (2003)
  9. ^ "Pinidae (conifers) description – The Gymnosperm Database". Archived from the original on 20 February 2016.
  10. ^ Christenhusz, M.J.M., Reveal, J., Farjon, A., Gardner, M.F., Mill, R.R. & Chase, M.W. (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55–70.
  11. ^ Stull, Gregory W.; Qu, Xiao-Jian; Parins-Fukuchi, Caroline; Yang, Ying-Ying; Yang, Jun-Bo; Yang, Zhi-Yun; Hu, Yi; Ma, Hong; Soltis, Pamela S.; Soltis, Douglas E.; Li, De-Zhu (August 2021). "Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms". Nature Plants. 7 (8): 1015–1025. doi:10.1038/s41477-021-00964-4. ISSN 2055-0278. PMID 34282286. S2CID 236141481.
  12. ^ Ran, Jin-Hua; Shen, Ting-Ting; Wang, Ming-Ming; Wang, Xiao-Quan (2018). "Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms". Proceedings of the Royal Society B: Biological Sciences. 285 (1881): 20181012. doi:10.1098/rspb.2018.1012. PMC 6030518. PMID 29925623.
  13. ^ Farjon, Aljos (26 March 2018). "The Kew Review: Conifers of the World". Kew Bulletin. 73 (1): 8. doi:10.1007/s12225-018-9738-5. ISSN 1874-933X. S2CID 10045023.
  14. ^ Enright, Neal J. and Robert S. Hill. 1990. Ecology of the southern conifers. Washington, DC: Smithsonian. 342pp.
  15. ^ Vidakovic, Mirko. 1991. Conifers: morphology and variation. Translated from Croatian by Maja Soljan. Croatia: Graficki Zavod Hrvatske
  16. ^ Wassilieff, Maggy. "Conifers". Te Ara – the Encyclopedia of New Zealand updated 1-Mar-09.
  17. ^ Dallimore, William, Albert Bruce Jackson, and S.G. Harrison. 1967. A handbook of Coniferae and Ginkgoaceae, 4th ed. New York: St. Martin's Press. xix, 729 p.
  18. ^ Ledig, F. Thomas; Porterfield, Richard L. (1982). "Tree Improvement in Western Conifers: Economic Aspects". Journal of Forestry. 80 (10): 653–657. doi:10.1093/jof/80.10.653 (inactive 31 December 2022).{{cite journal}}: CS1 maint: DOI inactive as of December 2022 (link)
  19. ^ "Gymnosperms". Archived from the original on 27 May 2015. Retrieved 11 May 2014.
  20. ^ a b c Singh, H. 1978. Embryology of gymnosperms. Berlin, Gebruder Borntraeger.
  21. ^ a b c Fraser, D.A.; Belanger, L.; McGuire, D.; Zdrazil, Z. 1964. Total growth of the aerial parts of a white spruce tree at Chalk River, Ontario, Canada. Can. J. Bot. 42:159–179.
  22. ^ Williams CG, LaDeau SL, Oren R, Katul GG., 2006, Modeling seed dispersal distances: implications for transgenic Pinus taeda, Ecological Applications 16:117–124
  23. ^ Tomback, D. and Y. Linhart, 1990. The evolution of bird-dispersed pines. Evolutionary Ecology 4: 185–219
  24. ^ a b "South Island wilding conifer strategy". Department of Conservation (New Zealand). 2001. Retrieved 19 April 2009.
  25. ^ Moran, V. C.; Hoffmann, J. H.; Donnelly, D.; van Wilgen, B. W.; Zimmermann, H. G. (4–14 July 1999). Spencer, Neal R. (ed.). Biological Control of Alien, Invasive Pine Trees (Pinus species) in South Africa (PDF). The X International Symposium on Biological Control of Weeds. Montana State University, Bozeman, Montana, USA. pp. 941–953.
  26. ^ "Fauna conservation in Australian plantation forests: a review" Archived 2017-08-08 at the Wayback Machine, May 2007, D.B. Lindenmayer and R.J. Hobbs
  27. ^ "Pinus radiata". Weeds of Australia. keyserver.lucidcentral.org. 2016.
  28. ^ "Blue Mountains City Council – Fact Sheets [Retrieved 1 August 2015]". Archived from the original on 24 June 2015. Retrieved 22 August 2018.
  29. ^ Rose, A.H.; Lindquist, O.H. 1985. Insects of eastern spruces, fir and, hemlock, revised edition. Gov’t Can., Can. For. Serv., Ottawa, For. Tech. Rep. 23. 159 p. (cited in Coates et al. 1994, cited orig ed 1977)
  30. ^ Farjon, Aljos (2010). A handbook of the world's conifers. Brill Academic Publishers. ISBN 978-9004177185.
  31. ^ Durzan, D.J.; Steward, F.C. 1967. The nitrogen metabolism of Picea glauca (Moench) Voss and Pinus banksiana Lamb. as influenced by mineral nutrition. Can. J. Bot. 45:695–710.
  32. ^ McFee, W.W.; Stone, E.L. 1968. Ammonium and nitrate as nitrogen sources for Pinus radiata and Picea glauca. Soil Sci. Soc. Amer. Proc. 32(6):879–884.
  33. ^ Swan, H.S.D. 1960. The mineral nutrition of Canadian pulpwood species. 1. The influence of nitrogen, phosphorus, potassium, and magnesium deficiencies on the growth and development of white spruce, black spruce, jack pine, and western hemlock seedlings grown in a controlled environment. Pulp Paper Res. Instit. Can., Montreal QC, Woodlands Res. Index No. 116, Tech. Rep. 168. 66 p.
  34. ^ Armson, K.A.; Carman, R.D. 1961. Forest tree nursery soil management. Ont. Dep. Lands & Forests, Timber Branch, Ottawa ON. 74 p.
  35. ^ Eastman, B. 1980. The Western Maine Forest Nursery Company. pp. 291–295 In Proc. of the North American Forest Tree Nursery Soils Workshop, July 28 – August 1, 1980, Syracuse, New York. Environment Canada, Canadian Forestry Service, USDA For. Serv.
  36. ^ Buckman, H.O.; Brady, N.C. 1969. The Nature and Properties of Soils, 7th ed. Macmillan NY. 653 p.
  1. ^ This depends on the placement of Gnetophytes, which have been traditionally excluded from the conifers, though recent molecular evidence suggest gnetophytes are the sister to the Pinaceae. See text for details.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Conifer: Brief Summary

provided by wikipedia EN

Conifers are a group of cone-bearing seed plants, a subset of gymnosperms. Scientifically, they make up the division Pinophyta (/pɪˈnɒfɪtə, ˈpaɪnoʊfaɪtə/), also known as Coniferophyta (/ˌkɒnɪfəˈrɒfɪtə, -oʊfaɪtə/) or Coniferae. The division contains a single extant class, Pinopsida. All extant conifers are perennial woody plants with secondary growth. The great majority are trees, though a few are shrubs. Examples include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews. The division Pinophyta contains seven families, 60 to 65 genera, and more than 600 living species.: 205 

Although the total number of species is relatively small, conifers are ecologically important. They are the dominant plants over large areas of land, most notably the taiga of the Northern Hemisphere, but also in similar cool climates in mountains further south. Boreal conifers have many wintertime adaptations. The narrow conical shape of northern conifers, and their downward-drooping limbs, help them shed snow. Many of them seasonally alter their biochemistry to make them more resistant to freezing. While tropical rainforests have more biodiversity and turnover, the immense conifer forests of the world represent the largest terrestrial carbon sink. Conifers are of great economic value for softwood lumber and paper production.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Pinidae ( Spanish; Castilian )

provided by wikipedia ES

Las coníferas (taxón Pinidae, Coniferophyta u otros) son el grupo más importante de gimnospermas desde un punto de vista ecológico y económico. Filogenéticamente son un grupo parafilético respecto a Gnetales. En un momento las coníferas fueron dominantes en las comunidades de plantas en todo el mundo. En la actualidad se encuentran desplazadas en muchos lugares por las angiospermas, pero, todavía son dominantes en muchos bosques (los bosques de coníferas).

Características

Los miembros de este grupo son llamados coníferas porque la mayoría lleva las semillas en estructuras especializadas llamadas conos. Los conos protegen a los óvulos y después a las semillas, y facilitan la polinización y la dispersión. Estos conos consisten en un eje que lleva ramas cortas altamente modificadas, las escamas ovulíferas (la evidencia de que son ramas proviene de la orientación invertida de la vasculatura y de los fósiles intermedios entre las coníferas actuales y las coníferas fósiles, y de otro fósil llamado Cordaites). Estas escamas están sostenidas por brácteas, que pueden ser grandes y conspicuas como en algunas Pinaceae, o muy pequeñas, como en otras Pinaceae, o pequeñas a grandes y más o menos fusionadas a la escama, como en Cupressaceae, en la mayoría de los conos las escamas ovulíferas son mucho más grandes que las brácteas. Las semillas están asociadas a las escamas. Las escamas de los conos de la mayoría de los miembros de Pinaceae y Cupressaceae son leñosas o coriáceas. Juniperus tiene escamas más o menos jugosas y brillantemente coloreadas, volviendo a los conos con un aspecto de baya, y dispersados por animales. En Podocarpaceae los conos son más bien reducidos, con escamas altamente modificadas, jugosas, brillantemente coloreadas con solo un óvulo. Taxaceae lleva semillas solitarias parcial o completamente rodeadas por un arilo jugoso. En Pseudotsuga las brácteas son elongadas y pueden verse en la parte de afuera de las escamas ovulíferas. Las semillas son típicamente aladas, una adaptación para la dispersión de la semilla por viento.

Las coníferas comprenden un grupo quizás monofilético de árboles o arbustos altamente ramificados con hojas simples, esto es una posible apomorfía del grupo. Las hojas de las coníferas son lineales, aciculares (como aguja) o con forma de punzón. En algunas coníferas las hojas están agrupadas en ramas cortas, en los cuales los internodos adyacentes son muy cortos. Un caso extremo es el fascículo, como en algunas especies de Pinus, que es una rama corta especializada que consiste en tejido de tallo, una o más hojas aciculares, y escamas de yemas basales persistentes. Una segunda apomorfía de las coníferas, aparentemente compartida con las gnétidas, es la pérdida de la movilidad en el esperma. Esto distingue a las coníferas de otras gimnospermas, que tienen esperma flagelado. Las coníferas, como todas las espermatofitas vivientes, son sifonógamas, es decir, el gametófito masculino desarrolla un tubo polínico. Como en las cícadas y en Ginkgo, este tubo es haustorial, consume los tejidos de la nucela (del megasporangio) por un año aproximadamente después de la polinización. Una diferencia, sin embargo, (probablemente relacionada con la no movilidad del esperma) es que el gametófito masculino de las coníferas deja a las células del esperma más directamente en el huevo por crecimiento del tubo polínico dentro de la cámara del arquegonio, donde hace contacto con el gametófito femenino en o cerca del arquegonio. Las células del esperma no nadadoras entonces son liberadas del tubo polínico, hacen contacto con la célula huevo del arquegonio, y fertilizan el núcleo de la oosfera (gameto femenino). Como hay más de un arquegonio por semilla, pueden ocurrir múltiples eventos de fertilización, resultando en múltiples embriones jóvenes, pero usualmente sólo uno sobrevive en la semilla madura.

Reproductivamente las coníferas producen conos masculinos y conos femeninos, en el mismo individuo (plantas monoicas) o menos comúnmente en individuos separados (plantas dioicas). Como en todas las plantas vasculares, la estructura reproductiva contiene hojas que llevan esporangios (a estas hojas se llama esporofilos). Como en las cícadas, el estróbilo masculino lleva microesporofilos o esporofilos masculinos, que llevan los esporangios masculinos o microsporangios, que producen los granos de polen. Los granos de polen de las coníferas son interesantes porque la mayoría tienen dos "sacca", dos vesículas que se evaginan de la pared del polen. Estas estructuras, como vejigas de aire, pueden funcionar para transportar el polen más eficientemente por viento. También pueden funcionar como dispositivos de flotación, para ayudar en la captura y el transporte de granos de polen por la gota de polinización producida en todas las gimnospermas.

Las coníferas datan del Carbonífero, hace unos 300 millones de años. Muchas de las familias actuales se desarrollaron en el Triásico tardío o el Jurásico temprano, y algunos géneros contemporáneos aparecieron a mediados del Jurásico. Hoy en día, las coníferas siguen siendo importantes en los climas más fríos, como los bosques boreales de Norteamérica y Asia, donde sus especies dominan la vegetación. Otras coníferas (particularmente Araucariaceae, Cupressaceae y Podocarpaceae) son prominentes en las regiones más frías del Hemisferio Sur. Las coníferas son valuables como ornamentales, y su madera es utilizada para papel, construcción, y muchos otros propósitos. Muchas veces son llamadas "siempreverdes" por el follaje persistente de la mayoría de sus especies, o de "madera blanda

La polinización es por viento. La mayoría de las coníferas, como la mayoría de las espermatofitas no angiospermas, utilizan una gota de polinización, que es un fluido pegajoso que exuda del óvulo en la polinización, para atrapar el polen del aire. Los granos de polen de la mayoría de Pinaceae llevan dos "saccas": apéndices pequeños, como alas, que pueden servir para que flote el grano de polen en la gota de polinización hacia el óvulo, o para orientarlo apropiadamente durante la germinación. Alternativamente, el polen puede ser atrapado en estructuras más o menos pegajosas en la vecindad del óvulo. El polen entonces germina y crece mediante un tubo de polinización hacia el óvulo (el esperma no tiene flagelos).

Los árboles de coníferas son muchas veces monopódicos con un tronco o tallo central dominante. Con el tiempo el ápice puede ramificarse irregularmente. Las ramas son muchas veces verticiladas, al menos cuando la planta es joven. Las coníferas comprenden 6 familias, con unas 600 especies.

Usos

Alimenticios

Entre los usos alimenticios, el más conocido es la recolección del piñón, que es la semilla comestible propia de las especies del género Pinus (familia Pinaceae); y la recolección del piñón patagónico, de las especies del género Araucaria (familia Araucariaceae), principalmente de la especie Araucaria araucana (la Araucaria).

El Enebro común (Juniperus communis), especie del género Juniperus (familia Cupressaceae), cuyas "bayas" se venden secas para usarlos como especia, y con ellas condimentar carnes, salsas y rellenos; y para aromatizar la ginebra.

La Kaya (Torreya nucifera), cuyas semillas, previo tratamiento, pueden ser consumidas como frutos secos.

Respectos a las especies que producen estructuras carnosas comestibles, similares a frutos podemos encontrar:

El Lleuque (Prumnopitys andina), cuyas semillas tienen forma ovalada y están envueltas por una blanda pulpa comestible y de buen sabor; con la cual se prepara una mermelada, y otras preparaciones culinarias.

El Kahikatea (Dacrycarpus dacrydioides), cuyo arilo carnoso o "koroi" fue un importante recurso de comida para los maoríes; y era servido en las fiestas en grandes cantidades

El Kusamaki (Podocarpus macrophyllus), el Illawarra (Podocarpus elatus), y el mañio (Podocarpus nubigenus), entre otros podocarpus, cuyos arilos carnosos del cono maduro son comestibles (siendo el resto de la planta tóxica).

Sinonimia

Las coníferas forman un taxón que ha recibido diversos nombres según los sistemas de clasificación, tales como Coniferae (Jussieu 1774, Eichler, Engler 1886-1924, Wettstein), Pinopsida (Burnett 1835, Kubitzki, Ehrendorfer, Ruggiero et al 2015), Coniferopsida (Sporne, Bierhorst, eol), Strobilophyta (Bessey), Coniferales (Coulter & Chamberlain), Coniferophyta (Johnson, Pant, Taylor, Cronquist, Margulis, ITIS), Coniferophytina / Pinicae (Cronquist et al), Pinatae (Kubitzki), Pinales (APG de Stevens, APWeb) y Pinidae (Chase & Reveal 2009, Christenhusz et al 2011, NCBI). Es popular Pinophyta[3]​ (Reveal 1996) y también se ha usado Coniferidae y Taxopsida. Por otro lado, Cole & Hilger (2013) diferencian el clado Pinales de las coníferas (conifers), las cuales forman un grupo parafilético respecto a las gnetales.

Filogenia

De acuerdo con la filogenia más actualizada, se puede encontrar una diferencia importante entre el clado y lo que tradicionalmente conocemos como coníferas, resultando estas últimas un grupo parafilético. Los análisis genéticos más diversos y actualizados ponen a las gnétidas o gnetales como un clado hermano de las pináceas (hipótesis gnepina), por lo que las relaciones así establecidas entre las gimnospermas se resumen en el siguiente cladograma:[4][5]

Coníferas y relacionadas  

Cordaitales (P) †

     

Voltziales (P) †

    cupresofitas Araucariales

Araucariaceae

   

Podocarpaceae

    Cupressales

Sciadopityaceae

     

Cupressaceae

   

Taxaceae

        gnepinos  

Pinales (= Pinaceae)

   

Gnetales

         

Otras hipótesis son anteriores, tienen menos respaldo en la genética y no relacionan a las gnetales con las pinales. Las gnetales nunca se consideraron coníferas dada sus diferencias morfológicas.

El clado de las "coníferas y relacionadas" se denomina a veces gnetíferas (neologismo de coníferas + gnetales) o también Pinales (Cole & Hilgher 2014). Presenta características como los gametos masculinos inmóviles, la función del tubo polínico es el transporte de estas células espermáticas y no hay cámara arquegonial. Hay ramificación, madera picnoxílica (con poco o ningún parénquima en el xilema), traqueida con torus-margo, yemas auxiliares al menos en algunos nodos, microesporangióforos y microesporangio abaxial.[6]

Clados

El clado gnepinos (Gnetales + Pinaceae) está respaldado por múltiples análisis filogenéticos, sin embargo, los sistemas taxonómicos modernos han preferido no asignarle un taxón que deviene en altamente controversial debido a las importantes diferencias morfológicas entre ambos grupos y mantienen la clasificación en los cuatro taxones tradicionales de gimnospermas.[7]​ La paleobotánica parece respaldar cronológicamente estos resultados, ya que mientras coníferas, ginkgos y cícadas se originaron hace unos 310 millones de años (con fósiles de casi 300 Ma), se encontraron pináceas de hace 155 Ma y macrofósiles gnetales de solo 120 Ma.[8]

El clado cupresofitas (Araucariales + Cupressales) (APWeb) también se le llama clado conífera II (Bowe et al 2000) o Cupressopsida (Simpson 2010),[9]​ presenta características comunes a nivel del xilema y floema. Está constituido por cinco familias agrupadas filogenéticamente del siguiente modoː {(Araucariaceae + Podocarpaceae) [Sciadopityaceae (Cupressaceae + Taxaceae)]}.

Taxonomía

Introducción teórica en Taxonomía

Según Christenhusz et al. 2011[1]​ y adoptado por el NCBI,[10]​ provee una secuencia lineal de las gimnospermas hasta género:

SUBCLASE IV. Pinidae Cronquist, Takht. & Zimmerm., Taxon 15: 134 (1966). Tipo: Pinaceae. Sinónimos: Taxidae Ehrend. ex Reveal, Phytologia 79: 71 (1996). Tipo: Taxaceae. Podocarpidae Doweld & Reveal, Phytologia 84: 366 (1999). Tipo: Podocarpaceae. Araucariidae Doweld, Tent. Syst. Pl. Vasc.: xx (2001). Tipo: Araucariaceae. Cupressidae Doweld, Tent. Syst. Pl. Vasc.: xix (2001). Tipo: Cupressaceae.[nota 1]

  • ORDEN F. Pinales Gorozh., Lekts. Morf. Sist. Archegon.: 88 (1904). Tipo: Pinaceae. Sinónimos: Abietales Link, Handbuch 2: 474 (1829). Tipo: Abietaceae.
    • Familia 7. Pinaceae Spreng. ex F.Rudolphi, Syst. Orb. Veg.: 35 (1830), nom. cons. Tipo: Pinus L. Sinónimos: Cedraceae Vest, Anleit. Stud. Bot.: 265, 280. 1818. Tipo: Cedrus Trew. Abietaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 223. (1822), nom. cons. Tipo: Abies Mill. Piceaceae Gorozh., Lekts. Morf. Sist. Archegon.: 79. (1904). Tipo: Picea A.Dietr.
      11 géneros, cerca de 225 especies, Eurasia templado a tropical, Sumatra, Filipinas, Norteamérica Sur a Nicaragua, Oeste de Indias. El árbol filogenético publicado por Liston et al. (2003) ha sido usado para crear esta secuencia.
      • 7.1. Cedrus Trew, Cedr. Lib. Hist., Apol. Mant. 1: 6 (1757), nom. cons., non Duhamel (1755, nom. rej.), non Mill. (1757, = Cedrela P.Browne, Meliaceae). Tipo: C. libani A.Rich. (≡ Pinus cedrus L.)
      • 7.2. Pinus L., Sp. Pl. 2: 1000 (1753). Tipo: P. sylvestris L. Sinónimos: Pinea Wolf, Gen. Pl.: 156 (1776). Tipo: no designado. Strobus (Sweet ex Spach) Opiz, Lotos 4: 94 (1854). Tipo: S. weymouthiana Opiz (≡ Pinus strobus L.) Caryopitys Small, Fl. S. E. U. S.: 29 (1903). Tipo: C. edulis (Engelm.) Small (≡ Pinus edulis Engelm.) Apinus Neck. ex Rydb., Bull. Torrey Bot. Club 32: 597 (1905). Tipo: Pinus cembra L. Leucopitys Nieuwl., Amer. Midl. Naturalist 3: 69 (1913), nom. illeg. (≡ Strobus (Sweet ex Spach) Opiz) Ducampopinus A.Chev., Rev. Int. Bot. Appl. Agric. Trop. 24: 30 (1944). Tipo: D. krempfii (Lecomte) A.Chev. (≡ Pinus krempfii Lecomte)
      • 7.3. Cathaya Chun & Kuang, Acta Bot. Sin. 10: 245 (1962). Tipo: C. argyrophylla Chun & Kuang
      • 7.4. Picea A.Dietr., Fl. Berlín 1(2): 794 (1824). Tipo: P. rubra A.Dietr., nom. illeg. (≡ Picea abies (L.) H.Karst., ≡ Pinus abies L.) Sinónimos: Veitchia Lindl., Gard. Chron. 1861: 265 (1861) nom. rej. non Veitchia H.Wendl., (1868, Arecaceae), nom. cons. Tipo: V. japonica Lindl.
        Nota: Este es ambiguamente sinónimo con Picea; la identidad de la especie tipo es desconocida.
      • 7.5. Pseudotsuga Carr., Traité Conif., ed. 2: 256 (1867). Tipo: P. douglasii (Sabine ex D.Don) Carr. (≡ Pinus douglasii Sabine ex D.Don) [nombre corrrecto P. menziesii (Mirb.) Franco]. Sinónimo: Abietia A.H.Kent, Man. Conif., ed. 2: 474 (1900), nom. illeg.
      • 7.6. Larix Mill., Gard. Dict. Abr., ed. 4: [sin número de página.] (1754). Tipo: L. decidua Mill. (≡ Pinus larix L.)
      • 7.7. Pseudolarix Gordon, Pinetum: 292 (1858), nom. cons. Tipo: P. kaempferi Gordon [nombre correcto P. amabilis (J.Nelson) Rehder] Sinónimos: Laricopsis A.H.Kent, Man. Conif., ed. 2: 403 (1900), nom. illeg., non Fontaine (1889). Tipo: L. kaempferi (Gordon) A.H.Kent (≡ Pseudolarix kaempferi Gordon). Chrysolarix H.E.Moore, Baileya 13: 133 (1965). Tipo: C. amabilis (J.Nelson) H.E.Moore (≡ Larix amabilis J.Nelson)
      • 7.8. Tsuga (Endl.) Carr., Traité Conif.: 185 (1855). Tipo: T. sieboldii Carr. (≡ Abies tsuga Siebold & Zucc.) Sinónimos: Hesperopeuce (Engelm.) Lemmon, Bienn. Rep. Calif. State Board Forest. 3: 126 (1890). Tipo: H. pattoniana (J.Jeffrey ex A.Murray) Lemmon (≡ Abies pattoniana J.Jeffrey ex A.Murray)
      • 7.9. Nothotsuga Huex C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 390 (1989). Tipo: N. longibracteata (W.C.Cheng) C.N.Page (≡ Tsuga longibracteata W.C.Cheng)
      • 7.10. Keteleeria Carr., Rev. Hort. 37: 449 (1866). Tipo: K. fortunei (A.Murray) Carr. (≡ Picea fortunei A.Murr., como ‘fortuni’).
      • 7.11. Abies Mill., Gard. Dict. Abr., ed. 4, vol. 1: [sin número de página] (1754). Tipo: A. alba Mill. (≡ Pinus picea L.) Sinónimo: Picea D.Don ex Loud., Arbor. Frut. Brit. 4: 2329 (1838), nom. illeg., non A.Dietr. (1824).
  • ORDEN G. Araucariales Gorozh., Lekts. Morf. Sist. Archegon.: 72 (1904). Tipo: Araucariaceae. Sinónimos: Podocarpales Pulle ex Reveal, Novon 2: 239 (1992). Tipo: Podocarpaceae. Saxegothaeales Doweld & Reveal, Phytologia 84: 365 (1999). Tipo: Saxegothaeaceae. Falcatifoliales Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000). Tipo: Falcatifoliaceae. Parasitaxales Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000). Tipo: Parasitaxaceae. Microstrobales Melikian & A.V.Bobrov ex Doweld & Reveal, Novon 11: 396 (2001). Tipo: Microstrobaceae.
    • Familia 8. Araucariaceae Henkel & W.Hochst., Syn. Nadelhölz.: xvii, 1 (1865), nom. cons. Tipo: Araucaria Juss. Sinónimos: Dammaraceae Link, Abh. Konigl. Akad. Wiss. Berlín 1827: 157 (1830), nom. illeg. Tipo: Dammara Link. Agathidaceae (Vierh.) Baum.-Bodenh. ex A.V.Bobrov & Melikian, Komarovia 4: 61 (2006). Tipo: Agathis Salisb.
      3 géneros, 41 especies, Sudeste de Asia y Filipinas a Australasia, Pacífico, sur de Sudamérica.
      • 8.1. Araucaria Juss., Gen. 413 (1789). Tipo: A. imbricata Pav., nom. illeg. (≡ Pinus araucana Molina) Dombeya Lam., Encycl. Meth., Bot. 2: 301 (1786), nom. illeg., non L’Hér. (1785), nom. rej. Tipo: D. chilensis Lam., nom. illeg. (≡ Pinus araucana Molina) Sinónimos: Columbea Salisb., Trans. Linn. Soc. London 8: 317 (1807), nom. illeg. Tipo: C. quadrifaria Salisb., nom. illeg. (≡ Pinus araucana Molina) Eutassa Salisb., Trans. Linn. Soc. London 8: 316 (1807). Tipo: E. heterophylla Salisb. (≡ Araucaria heterophylla). Eutacta Link, Linnaea 15: 543 ( 1842). Tipo: E. cunninghamii (Aiton ex A. Cunn.) Link (tipo designado aquí por Mill & Farjon) (≡ Araucaria cunninghamii Aiton ex A.Cunn.). Quadrifaria Manetti ex Gordon, Pinet. Suppl. 14 (1862). Tipo: Q. imbricata (Pav.) Manetti ex Gordon (≡ Araucaria araucana). Marywildea A.V.Bobrov & Melikian, Komarovia 4: 57 (2006). Tipo: M. bidwillii (Hook.) A.V.Bobrov & Melikian (≡ Araucaria bidwillii Hook.). Titanodendron A.V.Bobrov & Melikian, Komarovia 4: 60 (2006). Tipo: T. hunsteinii (K.Schum.) A.V.Bobrov & Melikian (≡ Araucaria hunsteinii K.Schum.).
      • 8.2. Wollemia W.G.Jones, K.D.Hill & J.M.Allen, Telopea 6: 173 (1995). Tipo: W. nobilis W.G.Jones, K.D.Hill & J.M.Allen
      • 8.3. Agathis Salisb., Trans. Linn. Soc. London 8: 311 (1807), nom. cons. Tipo: A. loranthifolia Salisb., nom. illeg. (≡ Pinus dammara (Lamb.) L.C.Rich.) Sinónimos: Dammara Link, Enum. Pl. Horti Berol. 2: 411 (1822), nom. illeg., non Gaertner (1790). Salisburyodendron A.V.Bobrov & Melikian, Komarovia 4: 62 (2006). Tipo: S. australis (Lamb.) A.V.Bobrov & Melikian (≡ Agathis australis Salisb.).
    • Familia 9. Podocarpaceae Endl., Syn. Conif.: 203 (1847), nom. cons. Tipo: Podocarpus L’Hér. ex Pers. Sinónimos: Phyllocladaceae Bessey, Nebraska Univ. Stud. 7: 325 (1907). Tipo: Phyllocladus Rich. ex Mirb. Phyllocladaceae E.L.Core ex H.Keng, Taiwania 18(2): 142 (1973), nom. illeg. Tipo: Phyllocladus Rich. ex Mirb. Pherosphaeraceae Nakai, Tyosen-Sanrin 158: 15 (1938). Tipo: Pherosphaera W.Archer bis. Nageiaceae D.Z.Fu, Acta Phytotax. Sin.: 522 (1992). Tipo: Nageia Gaertn. Acmopylaceae Melikian & A.V.Bobrov, Proc. Intern. Conf. Plant Anat. Morph. (St. Petersburg) 1997: 93 (1997). Tipo: Acmopyle Pilg. Saxegothaeaceae Gaussen ex Doweld & Reveal, Phytologia 84: 365. (1999). Tipo: Saxegothaea Lindl., nom. cons. Microcachrydaceae Doweld & Reveal, Phytologia 84: 365 (1999). Tipo: Microcachrys Hook.f. Bracteocarpaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 60 (2000). Tipo: Bracteocarpus' Melikian & A.V.Bobrov. Dacrycarpaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 59 (2000). Tipo: Dacrycarpus de Laub. Falcatifoliaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000). Tipo: Falcatifolium de Laub. Halocarpaceae Melikian & A.V.Bobrov, Bot. Zhurn.(Moscow & Leningrad) 85(7): 60 (2000). Tipo: Halocarpus Quinn. Lepidothamnaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 63 (2000). Tipo: Lepidothamnus Phil. Microstrobaceae Doweld & Reveal, Novon 11: 396 (2001). Tipo: Microstrobos J.Garden & L.A.S.Johnson. Parasitaxaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 61 (2000). Tipo: Parasitaxus de Laub. Prumnopityaceae Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000). Tipo: Prumnopitys Phil.
      19 géneros, cerca de 180 especies, montañas de África tropical, Japón a Australia y Nueva Zelanda, Sudoeste del Pacífico, Sudamérica, América Central, Islas del Caribe. Los análisis filogenéticos que se siguen aquí son los de Kelch (1997, 1998), Conran et al. (2000) y Sinclair et al. (2002).
      • 9.1. Phyllocladus Rich. ex Mirb., Mém. Mus. Hist. Nat. 13: 48 (1825), nom. cons. Tipo: P. billardieri Mirb, nom. illeg. (≡ Podocarpus aspleniifolius Labill.) [nombre correcto: Phyllocladus aspleniifolius (Labill.) Hook.f.] Sinónimos: Podocarpus Labill., Novae Holl. Pl. Spec. 2: 71, t. 221 (1806), nom. rej. (≡ Phyllocladus por tipificación). Thalamia Spreng., Anleit., ed. 2, 2: 218 (1817), nom. illeg. Tipo: T. aspleniifolia (Labill.) Spreng. (≡ Podocarpus aspleniifolius Labill.). Brownetera Rich. ex Tratt., Gen. Nov. Pl.: adt. [14] (1825), nom. illeg. Tipo: B. aspleniifolia (Labill.) Tratt. (≡ Podocarpus aspleniifolius Labill.)
      • 9.2. Lepidothamnus Phil., Linnaea 30: 730 (1861). Tipo: L. fonkii Phil.
      • 9.3. Prumnopitys Phil., Linnaea 30: 731 (1861). Tipo: P. elegans Phil. [nombre correcto: P. andina (Poepp. ex Endl.) de Laub.] Sinónimos: Stachycarpus (Endl.) Tiegh., Bull. Soc. Bot. France 38: 163 (1891). Tipo: S. andinus (Poepp. ex Endl.) Tiegh., como ‘andina’ (≡ Prumnopitys andina (Poepp. ex Endl.) de Laub., ≡ Podocarpus andinus Poepp. ex Endl., como ‘andina’). Stachypitys A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000) nom. illeg., non Schenk (1867, fossil). Tipo: S. ferrugineus (G.Benn. ex D.Don) A.V.Bobrov & Melikian (≡ Prumnopitys ferruginea (G.Benn. ex D.Don) de Laub., ≡ Podocarpus ferrugineus G.Benn. ex D.Don). Van-Tieghemia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 58 (2000) nom. illeg., non Vantieghemia Kuntze (1891, fungus). Tipo: V. montana (Humb. & Bonpl. ex Willd.) A.V.Bobrov & Melikian (≡ Prumnopitys montana (Humb. & Bonpl. ex Willd.) de Laub., ≡ Podocarpus montanus Humb. & Bonpl. ex Willd.). Botryopitys Doweld, Turczaninowia 3(4): 37 (2001). Tipo: B. montana (Humb. & Bonpl. ex Willd.) Doweld (≡ Prumnopitys montana (Humb. & Bonpl. ex Willd.) de Laub., ≡ Podocarpus montanus Humb. & Bonpl. ex Willd.).[nota 2]
      • 9.4. Sundacarpus (J.Buchholz & N.E.Gray) C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 378 (1989). Tipo: S. amarus (Blume) C.N.Page (≡ Podocarpus amarus Blume, como ‘amara’)
      • 9.5. Halocarpus Quinn, Austral. J. Bot. 30: 317 (1982). Tipo: H. bidwillii (Hook.f. ex Kirk) Quinn (≡ Dacrydium bidwillii Hook.f. ex Kirk)
      • 9.6. Parasitaxus de Laub., Fl. Nouv. Calédonie 4: 44 (1972). Tipo: P. usta (Vieill.) de Laub., como ‘ustus’ (≡ Dacrydium ustum Vieill.)
      • 9.7. Lagarostrobos Quinn, Austral. J. Bot. 30: 316 (1982). Tipo: L. franklinii (Hook.f.) Quinn (≡ Dacrydium franklinii Hook.f.)
      • 9.8. Manoao Molloy, New Zealand J. Bot. 33: 196 (1995). Tipo: M. colensoi (Hook.) Molloy (≡ Dacrydium colensoi Hook.)
      • 9.9. Saxegothaea Lindl., J. Hort. Soc. London 6: 258 (1851), como ‘Saxe-Gothaea’, nom. & orth. cons. Tipo: S. conspicua Lindl. Sinónimo: Squamataxus J.Nelson, Pinaceae 168 (1866), nom. illeg. Tipo: S. albertiana J.Nelson, nom. illeg. (≡ Saxegothaea conspicua Lindl.)
      • 9.10. Microcachrys Hook.f., London J. Bot. 4: 149 (1845). Tipo: M. tetragona (Hook.) Hook.f. (≡ Athrotaxis tetragona Hook.)
      • 9.11. Pherosphaera W.Archer bis, Hooker's J. Bot. Kew Gard. Misc. 2: 52 (1850). Tipo: P. hookeriana W.Archer bis. Sinónimo: Microstrobos J.Garden & L.A.S.Johnson, Contr. New South Wales Natl. Herb. 1: 315 (1951). Tipo: M. fitzgeraldii (F.Muell.) L.A.S.Johnson ( ≡ Pherosphaera fitzgeraldii F.Muell.)
      • 9.12. Acmopyle Pilg. in H.G.A. Engler, Nat. Pflanzenr. IV. 5 (Heft 18): 117 (1903). Tipo: A. pancheri (Brongn. & Gris) Pilger (≡ Dacrydium pancheri Brongn. & Gris)
      • 9.13. Dacrycarpus de Laub., J. Arnold Arbor. 50: 315 (1969). Tipo: D. dacrydioides (A.Rich.) de Laub. (≡ Podocarpus dacrydioides A.Rich.) Sinónimos: Bracteocarpus A.V.Bobrov & Melikian, Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol., ser. 2, 103(1): 58 (1998). Tipo: B. imbricatus (Blume) A.V.Bobrov & Melikian (≡ Dacrycarpus imbricatus (Blume) de Laub., ≡ Podocarpus imbricatus Blume). Laubenfelsia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 60 (2000). Tipo: L. vieillardii (Parl.) A.V.Bobrov & Melikian, non rite publ. (≡ Dacrycarpus vieillardii (Parl.) de Laub.).
        Nota: Si bien el nombre de la única especie de Laubenfelsia fue una publicación inválida, el nombre de género Laubenfelsia ha sido considerado válido (R.K. Brummitt, pers. comm. a Mill, 19 de febrero de 2001).
      • 9.14. Dacrydium Lamb., Descr. Pinus 1: 93 (1807). Tipo: D. cupressinum Sol. ex Lamb. Sinónimos: Corneria A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 62 (2000), nom. illeg., non Cornera Furtado (1955, Arecaceae). Tipo: C. elata (Roxb.) A.V.Bobrov & Melikian (≡ Dacrydium elatum (Roxb.) Wall. ex Hook. ≡ Juniperus elata Roxb.) Gaussenia A.V.Bobrov & Melikian, Bot. Zhurn. (Moscow & Leningrad) 85(7): 62 (2000). Tipo: G. lycopodioides (Brongn. & Gris) A.V.Bobrov & Melikian (≡ Dacrydium lycopodioides Brongn. & Gris). Metadacrydium M.G.Baum.-Bod. ex Melikian & A.V.Bobrov, Bot. Zhurn. (Moscow & Leningrad) 85(7): 63 (2000). Tipo: M. araucarioides (Brongn. & Gris) M.G.Baum.-Bod. ex Melikian & A.V.Bobrov (≡ Dacrydium araucarioides Brongn. & Gris)
      • 9.15. Falcatifolium de Laub., J. Arnold Arbor. 50: 308 (1969). Tipo: F. falciforme (Parl.) de Laub. (≡ Podocarpus falciformis Parl.)
      • 9.16. Retrophyllum C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 379 (1989). Tipo: R. vitiense (Seem.) C.N.Page (≡ Podocarpus vitiensis Seem.). Sinónimos: Decussocarpus de Laub., J. Arnold Arbor. 50: 340 (1969), nom. illeg. Tipo: D. vitiensis (Seem.) de Laub. (≡ Retrophyllum vitiense (Seem.) C.N.Page ≡ Podocarpus vitiensis Seem.)[nota 3]
      • 9.17. Nageia Gaertn., Fruct. Sem. Pl. 1: 191 (1788). Tipo: N. japonica Gaertn., nom. illeg. (≡ N. nagi (Thunb.) Kuntze, ≡ Myrica nagi Thunb.)
      • 9.18. Afrocarpus (J.Buchholz & N.E.Gray) C.N.Page, Notes Roy. Bot. Gard. Edinburgh 45: 383 (1989). Tipo: A. falcatus (Thunb.) C.N.Page, como ‘falcata’ (≡ Taxus falcata Thunb.)
      • 9.19. Podocarpus L’Hér. ex Pers., Syn. Pl. 2: 580 (1807), nom. cons. Tipo: P. elongates (Aiton) L’Her. ex Pers. (≡ Taxus elongata Aiton, typ. cons.) Sinónimo: Margbensonia A.V.Bobrov & Melikian, Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol., ser. 2, 103(1): 59 (1998). Tipo: M. macrophylla (Thunb.) A.V.Bobrov & Melikian (≡ Podocarpus macrophyllum (Thunb.) Sweet, ≡ Taxus macrophylla Thunb.)
  • ORDEN H. Cupressales Link, Handbuch 2: 470 (1829). Tipo: Cupressaceae. Sinónimos: Taxales Link, Handbuch 2: 470 (1829). Tipo: Taxaceae. Taxodiales Schimp., Traité Paléont. Vég. 2*: 309 (1870). Tipo: Taxodiaceae. Cephalotaxales Takht. ex Reveal, Phytologia 74: 175 (1993). Tipo: Cephalotaxaceae. Sciadopityales Takht. ex Reveal, Phytologia 75: 176 (1993). Tipo: Sciadopityaceae. Actinostrobales Doweld, Tent. Syst. Pl. Vasc: xx (2001). Tipo: Actinostrobaceae. Athrotaxidales Doweld, Tent. Syst. Pl. Vasc: xix (2001). Tipo: Athrotaxidaceae. Cunninghamiales Doweld, Tent. Syst. Pl. Vasc: xix (2001). Tipo: Cunninghamiaceae.
    • Familia 10. Sciadopityaceae Luerss., Grundz. Bot.: 265 (1877) Tipo: Sciadopitys Siebold & Zucc.
      1 género con una única especie en Japón.
      • 10.1. Sciadopitys Siebold & Zucc., Fl. Jap. 2: 1 (1842). Tipo: S. verticillata (Thunb.) Siebold & Zucc. (≡ Taxus verticillata Thunb.)
    • Familia 11. Cupressaceae Gray, Nat. Arr. Brit. Pl. 2: 222. (1822), nom. cons. Tipo: Cupressus L. Sinónimos: Juniperaceae J.Presl & C.Presl, Delic. Prag.: 142 (1822). Tipo: Juniperus L. Thujaceae Burnett, Outl. Bot.: 502, 1149 (1835). Tipo: Thuja L. Cunninghamiaceae Siebold & Zucc., Fl. Jap. 2: 1, 3 (1842). Tipo: Cunninghamia R.Br. Taxodiaceae Saporta, Ann. Sci. Nat.,Bot., ser. 5, 4: 44 (1865), nom. cons. Tipo: Taxodium Rich. Sequoiaceae C.Koch ex Luerss., Grundz. Bot.: 265 (1877). Tipo: Sequoia Endl. Cryptomeriaceae Gorozh., Lekts. Morf. Sist. Archegon.: 88 (1904). Tipo: Cryptomeria D.Don. Thujopsidaceae Bessey, Nebraska Univ. Stud. 7: 325 (1907). Tipo: Thujopsis Siebold & Zucc. ex Endl. Actinostrobaceae Lotsy, Vortr. Bot. Stammesgesch. 3**: 98 (1911). Tipo: Actinostrobus Miq. Callitridaceae Seward, Fossil Pl. 4: 124, 151, 336 (1919). Tipo: Callitris Vent. Limnopityaceae Hayata, Bot. Mag. (Tokyo) 46: 25. 1932. Tipo: Taxodium Rich. Taiwaniaceae Hayata, Bot. Mag. (Tokyo) 46: 26 (1932). Tipo: Taiwania Hayata. Tetraclinaceae Hayata, Bot. Mag. (Tokyo) 46: 27 (1932). Tipo: Tetraclinis Masters. Microbiotaceae Nakai, Tyosen-Sanrin 165: 13 (1938). Tipo: Microbiota Komarov. Metasequoiaceae S.Miki ex Hu & W.C.Cheng, Bull. Fan Mem. Inst. Biol., ser. 2, 1: 154 (1948). Tipo: Metasequoia Hu & W.C.Cheng. Athrotaxidaceae Doweld, Prosyllab. Tracheophyt.: xix (2001). Tipo: Athrotaxis D.Don. Libocedraceae Doweld, Novosti Sist. Vyssh. Rast. 33: 42 (2001). Tipo: Libocedrus Endl. Neocallitropsidaceae Doweld, Prosyllab. Tracheophyt.: xx (2001). Tipo: Neocallitropsis Florin. Widdringtoniaceae Doweld, Prosyllab. Tracheophyt.: xx (2001). Tipo: Widdringtonia Endl. Arceuthidaceae A.V.Bobrov & Melikian, Komarovia 4: 79 (2006). Tipo: Arceuthos Antoine & Kotschy. Diselmaceae A.V.Bobrov & Melikian, Komarovia 4: 96 (2006). Tipo: Diselma Hook.f. Fitzroyaceae A.V.Bobrov & Melikian, Komarovia 4: 80 (2006), ‘Fitz-Royaceae’. Tipo: Fitzroya Hook.f. ex Lindl. Pilgerodendraceae A.V.Bobrov & Melikian, Komarovia 4: 87 (2006). Tipo: Pilgerodendron Florin. Platycladaceae A.V.Bobrov & Melikian, Komarovia 4: 97 (2006). Tipo: Platycladus Spach
      29 géneros, cerca de 130 species, casi cosmopolita. Esta secuencia está basada en los árboles filogenéticos de Gadek et al. (2000) y Little et al. (2004).
      • 11.1. Cunninghamia R.Br. in L.C.M. Richard, Comm. Bot. Conif. Cycad. 149 (1826), nom. cons., non Schreb. (1791), nom. rej. Tipo: C. sinensis R.Br., nom. illeg. (≡ C. lanceolata (Lamb.) Hook., ≡ Pinus lanceolata Lamb.) Sinónimos: Belis Salisb., Trans. Linn. Soc. London 8: 315 (1807), nom. rej. Tipo: B. jaculifolia Salisb., nom. illeg. (≡ Pinus lanceolata Lamb.) Jacularia Raf., Gard. Mag. & Reg. Rural Domest. Improv. 8: 247 (1832), nom. illeg. Raxopitys J.Nelson, Pinaceae: 97 (1866) Tipo: R. cunninghamii J.Nelson, nom. illeg. (≡ Pinus lanceolata Lamb.)
      • 11.2. Taiwania Hayata, J. Linn. Soc., Bot. 37: 330 (1906). Tipo: T. cryptomerioides Hayata
      • 11.3. Athrotaxis D.Don, Ann. Nat. Hist. 1: 234 (1838). Tipo: A. selaginoides D.Don
      • 11.4. Metasequoia Hu & W.C.Cheng, Bull. Fan Mem. Inst. Biol., ser. 2, 1(2): 154 (1948), nom. cons., non Miki (1941, nom. rej. = fósil). Tipo: M. glyptostroboides Hu & W.C.Cheng, nom. & typ. cons.
      • 11.5. Sequoia Endl., Syn. Conif.: 197 (1847), nom. cons. Tipo: S. sempervirens (D.Don) Endl. (≡ Taxodium sempervirens D.Don)
      • 11.6. Sequoiadendron J.Buchholz, Amer. J. Bot. 26: 536 (1939), nom. cons. prop. Tipo: S. giganteum (Lindl.) J.Buchholz (≡ Wellingtonia gigantea Lindl.) Sinónimos: Wellingtonia Lindl., Gard. Chron. 1853: 823 (1853), nom. illeg., non Meisn. (1840). Tipo: W. gigantea Lindl. Americus Hanford, Great Calif. Tree: 6 (1854), nom. rej. prop. Tipo: A. gigantea (Lindl.) Hanford (≡ Sequoiadendron giganteum (Lindl.) J.Buchholz ≡ Wellingtonia gigantea Lindl.) Washingtonia Winslow, Calif. Farmer 2: 58 (1854), nom. inadmis., non Raf. ex J.M.Coulter (1900), nom. cons. Tipo: W. californica (≡ Sequoiadendron giganteum (Lindl.) J.Buchholz ≡ Wellingtonia gigantea Lindl.)
      • 11.7. Cryptomeria D.Don, Ann. Nat. Hist. 1: 233 (1838). Tipo: C. japonica (Thunb. ex L.f.) D.Don (≡ Cupressus japonica Thunb. ex L.f.)
      • 11.8. Glyptostrobus Endl., Syn. Conif.: 69 (1847). Tipo: Taxodium japonicum Brongn., nom. illeg., non (L.f.) Brongn. (= G. pensilis (Staunton ex D.Don) K.Koch)
      • 11.9. Taxodium Rich., Ann. Mus. Natl. Hist. Nat. 16: 298 (1810). Tipo: T. distichum (L.) Rich. (≡ Cupressus disticha L.) Sinónimos: Schubertia Mirb., Nouv. Bull. Sci. Soc. Philom. Paris 3: 123 (1812), nom. rej. Tipo: S. disticha (L.) Mirb. (≡ Cupressus disticha L.) Cuprespinnata J.Nelson, Pinaceae: 61 (1866), nom. illeg. Tipo: C. disticha (L.) J.Nelson (≡ Taxodium distichum (L.) Rich. ≡ Cupressus disticha L.)
      • 11.10. Papuacedrus H.L.Li, J. Arnold Arbor. 34: 25 (1953). Tipo: P. papuana (F.Muell.) H.L.Li (≡ Libocedrus papuana F.Muell.)
      • 11.11. Austrocedrus Florin & Boutelje, Acta Horti Berg. 17(2): 28 (1954). Tipo: A. chilensis (D.Don) Pic.Serm. & Bizzarri (≡ Thuja chilensis D.Don)
      • 11.12. Libocedrus Endl., Syn. Conif.: 42 (1847). Tipo: L. doniana Endl., nom. illeg. (≡ L. plumosa (D.Don) Sarg. ≡ Dacrydium plumosum D.Don) Sinónimo: Stegocedrus Doweld, Novit. Syst. Pl. Vasc. 33: 42 (2001). Tipo: S. austrocaledonica (Brongn. & Gris) Doweld (≡ Libocedrus austrocaledonica Brongn. & Gris).
      • 11.13. Pilgerodendron Florin, Svensk Bot. Tidskr. 24: 132 (1930). Tipo: P. uviferum (D.Don) Florin (≡ Juniperus uvifera D.Don)
      • 11.14. Widdringtonia Endl., Gen. Pl. Suppl. 2: 25 (1842). Tipo: W. cupressoides (L.) Endl. ( = Thuja cupressoides L.) Sinónimos: Pachylepis Brongn., Ann. Sci. Nat. (Paris) 30: 189 (1833), nom. illeg., non Less. (1832). Tipo: P. cupressoides (L.) Brongn. (≡ Widdringtonia cupressoides (L.) Endl. ≡ Thuja cupressoides L.) Parolinia Endl., Gen. Pl. Suppl. 1: 1372 (1841), nom. illeg., non Webb (1840, Brassicaceae). Tipo: Thuja cupressoides L.
      • 11.15. Diselma Hook.f., Fl. Tasmaniae 1(5): 353 (1857). Tipo: D. archeri Hook.f.
      • 11.16. Fitzroya Hook.f. ex Lindl., J. Hort. Soc. London 6: 264 (1851), como ‘Fitz-Roya’, nom. & orth. cons. Tipo: F. patagonica Hook.f. ex Lindl. (= F. cupressoides (Molina) I.M.Johnst. ≡ Pinus cupressoides Molina) Sinónimo: Cupresstellata J.Nelson, Pinaceae: 60 (1866). Tipo: Cupresstellata patagonica (Hook.f. ex Lindl.) J.Nelson (≡ Fitzroya patagonica Hook.f. ex Lindl.)
      • 11.17. Callitris Vent., Decas Gen. 10 (1808). Tipo: C. rhomboidea R.Br. ex Rich. & A.Rich. Sinónimos: Frenela Mirb., Mém. Mus. Hist. Nat. 13: 30, 74 (1825), nom. illeg. Tipo: Frenela rhomboidea (R.Br. ex Rich & A.Rich.) Endl., por tipificación (≡ Callitris rhomboidea R.Br. ex Rich. & A.Rich.) Cyparissia Hoffmanns., Preis-Verzeichn. Pfl., ed. 7: 20 (1833), nom. illeg. Tipo: C. australis (Pers.) Hoffmanns. (≡ Cupressus australis Pers. = Callitris rhomboidea R.Br. ex Rich. & A.Rich.) Octoclinis F.Muell., Trans. & Proc. Philos. Inst. Victoria 2(1): 21 (1857). Tipo: O. macleayana F.Muel l. Laechhardtia Gordon, Pinetum Suppl.: 40 (1862). Tipo: L. macleayana Gordon, nom. illeg. (≡ Frenela variabilis Carr.) Nothocallitris A.V.Bobrov & Melikian, Komarovia 4: 85 (2006). Tipo: N. sulcata (Parl.) A.V.Bobrov & Melikian (≡ Callitris sulcata Parl.).
      • 11.18. Actinostrobus Miq. en J.G.C. Lehmann, Pl. Preiss. 1: 644 (1845). Tipo: A. pyramidalis Miq.
      • 11.19. Neocallitropsis Florin, Palaeontographica, Abt. B, Paläophytol. 85B: 590 (1944). Tipo: N. araucarioides (Compton) Florin (≡ Callitropsis araucarioides Compton) Sinónimo: Callitropsis Compton, J. Linn. Soc., Bot. 45: 432 (1922), nom. illeg., non Oersted (1864). Tipo: C. araucarioides Compton
      • 11.20. Thujopsis Siebold & Zucc. ex Endl., Gen. Suppl. 2: 24 (1842), nom. cons. Tipo: T. dolabrata (Thunb. ex L.f.) Siebold & Zucc. (≡ Thuja dolabrata Thunb. ex L.f.) Sinónimo: Dolophyllum Salisb., J. Sci. Arts (London) 2: 313 (1817), nom. rej. Tipo: Thuja dolabrata Thunb. ex L.f.
      • 11.21. Thuja L., Sp. Pl. 2: 1002 (1753). Tipo: T. occidentalis L. Thya Adans., Fam. Pl. 2: 480 (1763), nom. illeg.
      • 11.22. Fokienia A.Henry & H.H.Thomas, Gard. Chron., ser. 3. 49: 67 (1911). Tipo: F. hodginsii (Dunn) A.Henry & H.H.Thomas (≡ Cupressus hodginsii Dunn)
      • 11.23. Chamaecyparis Spach, Hist. Nat. Vég. Phan. 11: 329 (1841). Tipo: C. sphaeroidea Spach, nom. illeg. (≡ C. thyoides (L.) Britton, Sterns & Poggenb. ≡ Cupressus thyoides L.). Sinónimos: Retinispora Siebold & Zucc., Fl. Jap. 2: 36 (1844). Tipo: R. obtusa Siebold & Zucc. Shishindenia Makino ex Koidz., Acta Phytotax. Geobot. 9: 101 (1940). Tipo: S. ericoides (Boehm.) Makino ex Koidz. (≡ Chamaecyparis obtusa var. ericoides Boehm.).[nota 4]
      • 11.24. Cupressus L., Sp. Pl. 2: 1002 (1753). Tipo: C. sempervirens L. Sinónimos: Callitropsis Oerst., Vidensk. Meddel. Dansk Naturhist. Foren. Kjøbenhavn 1864: 32. (1864), nom. rej. prop. Tipo: C. nootkatensis (D.Don) Florin (≡ Cupressus nootkatensis D.Don). Xanthocyparis Farjon & T.H.Nguyên, en Farjon et al., Novon 12: 179 (2002), nom. cons. prop. Tipo: X. vietnamensis Farjon & T.H.Nguyên. Tassilicyparis A.V.Bobrov & Melikian, Komarovia 4: 72 (2006). Tipo: T. dupreziana (A.Camus) A.V.Bobrov & Melikian (≡ Cupressus dupreziana A.Camus). Platycyparis A.V.Bobrov & Melikian, Komarovia 4***: 73 (2006). Tipo: P. funebris (Endl.) A.V.Bobrov & Melikian (≡ Cupressus funebris Endl.). Hesperocyparis Bartel & R.A.Price, Phytologia 91: 179 (2009). Tipo: H. macrocarpa (Hartw. ex Gordon) Bartel (≡ Cupressus macrocarpa Hartw. ex Gordon) Neocupressus de Laub., Novon 19: 301 (2009), nom. illeg. Tipo: N. macrocarpa (Hartw. ex Gordon) de Laub. (≡ Cupressus macrocarpa Hartw. ex Gordon)
        Nota: Adams et al. (2009) mostró que Cupressus formaba dos clados: el clado del Viejo Mundo de Cupressus era hermano de Juniperus, mientras que el clado del nuevo mundo de Cupressus (Hesperocyparis) inclía a Xanthocyparis vietnamensis y a Callitropsis nootkatensis. Sin embargo, Mao et al. (2010) mostró que Cupressus en su sentido más amplio incluyendo a Xanthocyparis y a Callitropsis es monofilético con sustento débil. Hasta que se llegue a la resolución de la posición filogenética de Cupressus, aquí se toma una opción conservativa y se decide posicionar a Cupressus en sentido amplio, incluyendo a Callitropsis, Hesperocyparis y a Xanthocyparis.
      • 11.25. Juniperus L., Sp. Pl. 2: 1038 (1753). Tipo: J. communis L. Sinónimos: Sabina Mill., Gard. Dict. Abr., ed. 4, 3 (1754). Tipo: S. vulgaris Antoine (≡ Juniperus sabina L.) Cedrus Duhamel, Traité Arb. Arbust. 1: xxviii, 139. t. 52 (1755), nom. rej. Tipo: No designado. Thujiaecarpus Trautv., Pl. Imag. 11 (1844). Tipo: T. juniperinus Trautv., nom. illeg. (= Juniperus oblonga M.Bieb. = J. communis var. saxatilis Pall.). Arceuthos Antoine & Kotschy, Oesterr. Bot. Wochenbl. 4: 249 (1854). Tipo: A. drupacea (Labill.) Antoine & Kotschy (≡ Juniperus drupacea Labill.) Sabinella Nakai, Tyosen-Sanrin 165: 14 (1938). Tipo: S. phoenicea (L.) Nakai (≡ Juniperus phoenicea L.)
      • 11.26. Calocedrus Kurz, J. Bot. 11: 196 (1873). Tipo: C. macrolepis Kurz Sinónimo: Heyderia C.Koch, Dendrologie 2(2): 177 (1873), nom. illeg., non Link (1833, fungus). Tipo: H. decurrens (Torrey) C.Koch (≡ Calocedrus decurrens (Torrey) Florin ≡ Libocedrus decurrens Torrey).
      • 11.27. Tetraclinis Masters, J. Roy. Hort. Soc. 14: 250 (1892). Tipo: T. articulata (Vahl) Masters (≡ Thuja articulata Vahl)
      • 11.28. Platycladus Spach, Hist. Nat. Vég. Phan. 11: 333 (1841). Tipo: P. stricta Spach, nom. illeg. (= P. orientalis (L.) Franco ≡ Thuja orientalis L.) Sinónimos: Biota (D.Don) Endl., Syn. Conif.: 46 (1847), nom. illeg., non Cass. (1825). Tipo: B. orientalis (L.) Endl. (≡ Thuja orientalis L.)
      • 11.29. Microbiota Komarov, Bot. Mater. Gerb. Glavn. Bot. Sada RSFSR 4(23/24): 180 (1923). Tipo: M. decussata Komarov
    • Familia 12. Taxaceae Gray, Nat. Arr. Brit. Pl. 2: 222, 226 (1822), nom. cons. Tipo: Taxus L. Sinónimos: Cephalotaxaceae Neger, Nadelhölzer 23, 30 (1907). Tipo: Cephalotaxus Siebold & Zucc. ex Endl. Amentotaxaceae Kudô & Yamam., in Kudô, J. Soc. Trop. Agric. 3: 110 (1931). Tipo: Amentotaxus Pilg. Austrotaxaceae Nakai, Tyosen-Sanrin 158: 14 (1938). Tipo: Austrotaxus Compton Torreyaceae Nakai, Tyosen-Sanrin 158: 14, 23 (1938). Tipo: Torreya Arnott
      6 géneros, 28 especies, Eurasia a Malesia, Norte de África, Nueva Caledonia, Norteamérica a América Central. Esta secuencia sigue los árboles filogenéticos de Hao et al. (2008). Taxaceae es monofilético cuando Cephalotaxus y Amentotaxus son incluidos (Price 2003). Se puede argüir que los resultados filogenéticos de Hao et al. (2008) sustentan una clasificación alternativa en 3 familias (Taxaceae, Cephalotaxaceae y Amentotaxaceae), pero aquí se optó por una circunscripción más amplia de Taxaceae en lugar de esas pequeñas familias.
      • 12.1. Austrotaxus Compton, J. Linn. Soc., Bot. 45: 427 (1922). Tipo: A. spicata Compton
      • 12.2. Pseudotaxus W.C.Cheng, Res. Notes Forest. Inst. Natl. Centr. Univ. Nanking, Dendrol., ser. 1: 1 (1948). Tipo: P. chienii (W.C.Cheng) W.C.Cheng (≡ Taxus chienii W.C.Cheng) Sinónimo: Nothotaxus Florin, Acta Horti Berg. 14: 394 (1948), nom. illeg.
      • 12.3. Taxus L., Sp. Pl. 2: 1040 (1753). Tipo: T. baccata L. Sinónimo: Verataxus J.Nelson, Pinaceae: 168 (1866). Tipo: Taxus communis J.Nelson (≡ T. baccata L.)
      • 12.4. Cephalotaxus Siebold & Zucc. ex Endl., Gen. Pl. Suppl. 2: 27 (1842). Tipo: C. pedunculata Siebold & Zucc. ex Endl., nom. illeg. (= C. harringtonii (Knight ex J.Forbes) K.Koch ≡ Taxus harringtonii Knight ex J.Forbes)
      • 12.5. Amentotaxus Pilger, Bot. Jahrb. Syst. 54: 41 (1916). Tipo: A. argotaenia (Hance) Pilger (≡ Podocarpus argotaenia Hance)
      • 12.6. Torreya Arnott, Ann. Nat. Hist. 1: 130 (1838), nom. cons., non Raf. (1818, Lamiaceae), non Raf. (1819, Cyperaceae), non Spreng (1820, Verbenaceae), non A.Eaton (1929, Loasaceae), all nom. rej. Tipo: T. taxifolia Arnott. Sinónimos: Tumion Raf., Good Book: 63 (1840), nom. illeg. Tipo: T. taxifolium (Arnott) Greene (≡ Torreya taxifolia Arnott) Struvea Rchb., Deutsche Bot. Herbarienbuch: 222, 236 (1841), nom. rej. Tipo: Torreya taxifolia Arnott Caryotaxus Zucc. ex Henkel & Hochst., Syn. Nadelhölzer: 365 (1865), nom. illeg. Tipo: C. nucifera (L.) Henkel & W. Hochst. (≡ Taxus nucifera L. ≡ Torreya nucifera (L.) Siebold & Zucc.) Foetataxus J.Nelson, Pinaceae: 167 (1866), nom. illeg. Tipo: F. montana J.Nelson, nom. illeg. (≡ Torreya taxifolia Arnott)

Véase también

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Pinidae: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Las coníferas (taxón Pinidae, Coniferophyta u otros) son el grupo más importante de gimnospermas desde un punto de vista ecológico y económico. Filogenéticamente son un grupo parafilético respecto a Gnetales. En un momento las coníferas fueron dominantes en las comunidades de plantas en todo el mundo. En la actualidad se encuentran desplazadas en muchos lugares por las angiospermas, pero, todavía son dominantes en muchos bosques (los bosques de coníferas).

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES