dcsimg

Brief Summary

provided by EOL authors
The hornfaced bee, also known as the orchard bee (Osmia cornifrons) is named for the prominent horn-like prongs located on the lower part of its face. The hornfaced bee is brownish-colored with light stripes on the abdomen. Males are smaller than females and have long antennae. These bees are native to Japan, but were introduced to the United States in the 1970's. Populations are now established on the east coast and in the mid-west. These bees nest in hollow reeds or grasses.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Life Cycle

provided by EOL authors
Hornfaced bees are solitary nesters; each female bee mates, builds a nest, and lays eggs. These bees are gregarious, preferring to nest in groups. Hornfaced bees emerge in early spring, with males emerging a few days before females. The bees mate and then females begin building nests and laying eggs. Adults die in late spring or early summer, after being active for about four to eight weeks. Larvae hatch in the fall, spin cocoons, turn into pupae, and then adult bees. The adult bees become dormant and remain so until they emerge in early spring.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Pollinator

provided by EOL authors
In Japan, hornfaced bees have been used since the 1960's as commercial pollinators of apple (Malus domestica) and cherry (Prunus spp.) trees. Currently, these bees are used to pollinate 75% of Japan's apple orchards. Since their introduction to the United States, the hornfaced bee has been managed to pollinate fruit orchards, particularly apple trees. Currently research is being conducted to determine if these bees could also be used as commercial mustard seed (Brassica spp.) pollinators. In addition to managed crops, hornfaced bees also pollinate ornamental plants like crabapple (Malus spp.) and bush honeysuckle (Diervilla spp.). Hornfaced bees are particularly attractive as commercial pollinators for several reasons. These bees are relatively easy to handle, because they are mild-tempered and non-aggressive. They are easy to manage; in the wild, they are solitary ground nesters, but they adapt to artificial nests made of cardboard tubes and wood blocks. Population size doubles or triples yearly, depending on the number of nest sites available. Hornfaced bees are also efficient pollinators, even more so than honey bees in some instances. Both male and female hornfaced bees visit and pollinate flowers; in honey bee populations, only female worker bees collect pollen. Hornfaced bees will fly in cool and cloudy weather, unlike honey bees. So far, hornfaced bees are unaffected by the mites and diseases that are currently affecting honey bee populations. Additionally, studies have shown that hornfaced bees spend more time per flower and do a more thorough job of pollination than honey bees (Apis mellifera). Finally, far fewer hornfaced bees than honey bees are needed to provide pollination services - depending on the crop, about 250-400 nesting hornfaced females per acre are required whereas one strong hive, between 25,000 and 30,000, of honey bees per acre are required.
license
cc-publicdomain
copyright
National Biological Information Infrastructure (NBII) at http://www.nbii.gov
original
visit source
partner site
EOL authors

Osmia cornifrons

provided by wikipedia EN

Osmia cornifrons, also known as the horned-face bee, is a species of solitary bee indigenous to Northern Asia. Physically, this species of bee is recognized for its horn-like extensions originating from its lower face. Populations of O. cornifrons have been recorded in multiple locations, including Japan, Korea, China, and Russia. O. cornifrons are more docile as compared to other species of bees and are less prone to sting when aggravated.

History

Osmia cornifrons was first introduced in Japan in the 1940s and were managed for crop pollination. Over a 50-year time period, use of O. cornifrons gradually increased until more than half of the apple orchards in Japan utilized this species.[1] In 1977, O. cornifrons was introduced in the northeastern United States in an attempt to increase pollination productivity of fruit crops. This species was reintroduced multiple times during the following years.[2]

Crop pollination

This species of bee has been utilized for its effectiveness in pollinating flowers at a rapid rate. A single bee can visit up to 2,500 flowers a day and will spend 4–8 minutes per flower.[3] Osmia cornifrons has a high flower constancy, signifying that the bee will return to the same species of flower. Both males and females will create a nest within 130 meters of a crop field; however, nest locations have been noted to exceed this distance; some being situated 700 meters away. It is a diurnal species that is most active between 6AM-8PM, depending on the location of the sun.[2] They will avoid foraging during raining spells, as they are not well suited to fly in that type of weather.[2] O. cornifrons is more adept to humid environments and performs optimally in regions that have consistent humidity, however, are capable of functioning in cooler environments. This ability to perform in a wide range of environmental temperatures makes them highly valued bees for crop pollination as well as making them more effective pollinators than honeybees.[4]

Development and biology

Osmia cornifrons have relatively short adult life spans and spend most of their time undergoing development. Life cycles can be broken up into six different stages, including: spring incubation, pre-nesting, nesting, development, prewintering, and wintering.[2] Male and female emergence times are dependent on weather conditions during spring incubation and wintering periods. The wintering period is when bees are enclosed in cocoons to decrease exposure to cold temperatures.[2] Time of emergence is temperature dependent and the rate at which heat is acquired can advance or delay emergence times.[5] Extended wintering periods increase the risk of mortality due to prolonged consumption of stored body fat.[6] Males emerge from their nests around April, just prior to the blooming of apple orchards.[7][8] Females arise from their nests 2–3 days later.[1] Emergence periods are consistently close with the blooming of crops.[6] Early emergence increases the risk of inadequate resource accumulation and flower pollination.[6] A male will wait outside of a female’s nest and attempt to court the female by mounting her back and rubbing his antennae against her abdomen. This courtship may last several hours before the female allows the male to mate with her. After mating has completed, both males and females will leave and travel to a nearby field patch where they both serve as pollinators, which is consistent with pre-nesting behavior.[6] Male bees will serve as pollinators for multiple weeks and will eventually die off. Females leave their nests for several days until ovarian development has concluded and will either return to the nest that they emerged from or create a new nest in which to lay their eggs. Poor environmental/weather stability may alter pre-nesting activity, thereby adversely affecting the timing of ovarian development.[6] A female will collect pollen from a nearby crop, bring it into the nest, and then disperse the pollen as a pollen ball. Eggs are placed on top of the pollen ball and are typically 1/10 the length of the female body'.[9][1] Females can lay up to 30 eggs over the course of their lifespan.[6] It is hypothesized that females are capable of controlling the sex of its progeny through haplodiploid sex determination. Male progeny are haploid and female progeny are diploid. Female bees are provided more pollen as larvae, which is associated with female bees having a larger stature as compared to males. Nests under distress will predominantly have male progeny. Female progeny are more costly and require consistent resources for proper development.[6] Although there is an increased energy cost for females, females are more effective in collecting resources and pollinating crops as compared to males.[6] Larvae development is temperature dependent. Adequate development occurs between 12 °C and 18 °C, but has been noted to occur at 25 °C as well.[5] Development will either decrease significantly or halt outside of this temperature range. O. cornifrons risk death when exposed to temperatures below 10 °F.[5]

Nesting

Osmia cornifrons use bamboo, reeds, and previously existing holes in trees as nesting sites.[9] To determine the size of a location, the bee will enter and move toward the end of the potential new nest. The bees will perform specific physical movements, including turning upside down and moving left and right to inspect the site thoroughly.[5] If females utilize a previously used nest, they will remove all of the remaining debris that has been left. In the nest, females will create individual cells in which they lay a single egg. After an egg has been placed, the female bee closes off the cell with mud.

Parasitism

Populations of Osmia cornifrons are antagonized by different pest species (mites) including, but not limited to, ''Chaetodactylidae nipponicus, Chaetodactylidae hirashimai, and Chaetodactylus krombeini.[2] C. krombeini have been noted to heavily infest O. cornifrons populations and have the highest negative impact on overall productivity and lifespan to horned-face bees.[10] C. krombeini that inhabit a nest will consume the pollen that was provided by a female O. cornifrons for her larvae.[8] The decrease in pollen provisions is great enough that larvae have an increased risk of mortality or inadequate development.[2] Poor development of larvae, especially of female larvae, has been directly correlated with decreased pollination ability and productivity in populations of O. cornifrons infested by mites.[2]

References

  1. ^ a b c McKinney, Matthew I.; Park, Yong-Lak (2012). "Distribution of Chaetodactylus krombeini (Acari: Chaetodactylidae) within Osmia cornifrons (Hymenoptera: Megachilidae) nests: Implications for population management". Experimental and Applied Acarology. 60 (2): 153–61. doi:10.1007/s10493-012-9629-7. PMID 23100109. S2CID 254261427.
  2. ^ a b c d e f g h White, Joseph; Son, Youngsoo; Park, Yong-Lak (2009). "Temperature-Dependent Emergence of Osmia cornifrons (Hymenoptera: Megachilidae) Adults". Journal of Economic Entomology. 102 (6): 2026–32. doi:10.1603/029.102.0602. PMID 20069827. S2CID 46241542.
  3. ^ Abel, Craig A.; Wilson, Richard L.; Luhman, Richard L. (October 2003). "Pollinating Efficacy of Osmia cornifrons and Osmia lignaria subsp. lignaria (Hymenoptera: Megachilidae) on Three Brassicaceae Species Grown Under Field Cages". Journal of Entomological Science. 38 (4): 545–52. doi:10.18474/0749-8004-38.4.545.
  4. ^ Ahn, Jeong Joon; Park, Yong-Lak; Jung, Chuleui (2014). "Modeling spring emergence of Osmia cornifrons Radoszkowski (Hymenoptera: Megachilidae) females in Korea". Journal of Asia-Pacific Entomology. 17 (4): 901–5. doi:10.1016/j.aspen.2014.10.002.
  5. ^ a b c d McKinney, Matthew I.; Park, Yong-Lak (2012). "Nesting Activity and Behavior of Osmia cornifrons(Hymenoptera: Megachilidae) Elucidated Using Videography". Psyche: A Journal of Entomology. 2012: 1–7. doi:10.1155/2012/814097.
  6. ^ a b c d e f g h Bosch, J.; Kemp, W. (2002). "Developing and establishing bee species as crop pollinators: The example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees". Bulletin of Entomological Research. 92 (1): 3–16. doi:10.1079/BER2001139. PMID 12020357. S2CID 1942186.
  7. ^ Matsumoto, Shogo; Abe, Ayumi; Maejima, Tsutomu (2009). "Foraging behavior of Osmia cornifrons in an apple orchard". Scientia Horticulturae. 121 (1): 73–9. doi:10.1016/j.scienta.2009.01.003.
  8. ^ a b Matsumoto, Shogo; Maejima, Tsutomu (2010). "Several New Aspects of the Foraging Behavior of Osmia cornifronsin an Apple Orchard". Psyche: A Journal of Entomology. 2010: 1–6. doi:10.1155/2010/384371.
  9. ^ a b McKinney, Matthew (December 2011). Nesting biology of Osmia cornifrons: implications for population management (M.S. thesis). Morgantown, WV, USA: West Virginia University. doi:10.33915/etd.680. OCLC 768434708.
  10. ^ Park, Y.-L.; Kondo, V.; White, J.; West, T.; McConnell, B.; McCutcheon, T. (2009). "Nest-to-nest dispersal of Chaetodactylus krombeini(Acari, Chaetodactylidae) associated with Osmia cornifrons(Hym., Megachilidae)". Journal of Applied Entomology. 133 (3): 174–80. doi:10.1111/j.1439-0418.2008.01351.x. S2CID 84222037.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Osmia cornifrons: Brief Summary

provided by wikipedia EN

Osmia cornifrons, also known as the horned-face bee, is a species of solitary bee indigenous to Northern Asia. Physically, this species of bee is recognized for its horn-like extensions originating from its lower face. Populations of O. cornifrons have been recorded in multiple locations, including Japan, Korea, China, and Russia. O. cornifrons are more docile as compared to other species of bees and are less prone to sting when aggravated.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN