dcsimg

Description

provided by Deep sea Fishes of the World LifeDesk

Body fusiform; mouth moderate, oblique; pseudobranch present; gill rakers on first arch 22–31 (geographical variation). Branchiostegal rays 10, 3 on epihyal. Dorsal-fin rays 11 (9–12); pectoral-fin rays 17–19; pelvic fin-rays 7; anal finrays 22–28; dorsal origin in advance of anal-fin origin; anus near anal fin origin; dorsal adipose fin present. Vertebrae 33–35. Swimbladder well developed, gas–filled, euphysoclistous. Scales deciduous.

Photophores (adult): ORB l; OP 3, OP3 single; BR (6); IP (6); VAV (6); AC in 3 groups as 2 long groups preceded by a single, elevated photophore: 1 + (14–17) + (89) = 23–27; PV (12–13); OA (2) + 5; SO present.

Body silver with dark back bearing light brown dorso–lateral undulating strip and a pigment extension ventrally at procurrent rays; anterior two dorsal-fin rays, dorsalmost pectoral-fin ray and outer 2 or 3 caudal-fin rays pigmented; snout and bones of jaw transparent with characteristic pigment spots.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Diagnostic Description

provided by Deep sea Fishes of the World LifeDesk

Vertebrae 33–35, usually 34. Gill rakers 28–32, usually 29–31. AC photophores 23–27, usually 25–26. Pectoral-fin rays 17–19. Head 26–29% SL, eye 8–10% SL, upper jaw 13–16% SL, maximum body depth at pectoral fin base 19–22% SL. Stomach and hind portion of intestine pigmented.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Distribution

provided by Deep sea Fishes of the World LifeDesk

Eastern North Atlantic from 40–450N to Spitsbergen and Novaya Zemlya; most western record at 47°03'°N, 43°W.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Habitat

provided by Deep sea Fishes of the World LifeDesk

Mesopelagic to benthopelagic, upper continental slopes. A diel vertical migrator.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Main Reference

provided by Deep sea Fishes of the World LifeDesk

Parin N, Kobyliansky S. 1996. Diagnoses and distribution of fifteen species recognized in genus Maurolicus Cocco (Sternoptychidae, Stomiiformes) with a key to their identification. Cybium 20(2):185–195.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Size

provided by Deep sea Fishes of the World LifeDesk

To at least 65 mm SL.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Trophic Strategy

provided by Deep sea Fishes of the World LifeDesk

What little data exists for species of the genus suggest that copepods and euphausiids are the predominant prey item.

license
cc-by-3.0
copyright
Kenaley, Christopher
author
Kenaley, Christopher

Diagnostic Description

provided by Fishbase
Silvery with a greenish-blue back (Ref. 4054).
license
cc-by-nc
copyright
FishBase
Recorder
Cristina V. Garilao
original
visit source
partner site
Fishbase

Trophic Strategy

provided by Fishbase
Although it lives close to the bottom, M. muelleri feeds almost exclusively on plankton. Daily vertical migration makes it possible to use the wealth of zooplankton at the surface (Ref. 33976). A cyclic selective feeder of copepods, euphausiids and hyperiid amphipods (Ref. 4739, 54164). It is preyed upon by cod, herring and pollock (Ref. 5951).
license
cc-by-nc
copyright
FishBase
Recorder
Pascualita Sa-a
original
visit source
partner site
Fishbase

Morphology

provided by Fishbase
Dorsal spines (total): 0; Dorsal soft rays (total): 9 - 11; Analspines: 0; Analsoft rays: 19 - 24
license
cc-by-nc
copyright
FishBase
Recorder
Cristina V. Garilao
original
visit source
partner site
Fishbase

Life Cycle

provided by Fishbase
Spawns at least twice in in a lifetime (Ref. 57912).
license
cc-by-nc
copyright
FishBase
Recorder
Susan M. Luna
original
visit source
partner site
Fishbase

Biology

provided by Fishbase
Oceanic, found to depths of at least 1,524 m. Migrate in the water column at depths of 150-250 m during the day and to about 50 m at night (Ref. 57912, 107678). Mesopelagic (Ref. 5951); abundant near continental shelf-slope breaks and seamounts, rare in the open ocean (Ref. 107678). A cyclic selective feeder of copepods and euphausiids (Ref. 4739). They become sexually mature when 1 year old. Spawning takes place in March - September, producing 200-500 eggs, floating on the surface (Ref. 35388). Lipid content is 5.5 % in fresh body weight and wax ester is 15.3 % in total lipids (Ref. 8966).
license
cc-by-nc
copyright
FishBase
Recorder
Rainer Froese
original
visit source
partner site
Fishbase

Importance

provided by Fishbase
fisheries: minor commercial; price category: unknown; price reliability:
license
cc-by-nc
copyright
FishBase
Recorder
Rainer Froese
original
visit source
partner site
Fishbase

Comprehensive Description

provided by Smithsonian Contributions to Zoology
Maurolicus muelleri

This is a moderate-size species, reaching a maximum length of about 65 mm SL (Grey, 1964). Although the distribution of M. muelleri is worldwide (Briggs, 1960), it was rare in the Ocean Acre area and was completely absent from discrete-depth samples.

Four specimens were taken in open nets in July and September, all during crepuscular periods. In July, two postlarvae, 12 and 14 mm SL, were taken in a tow at 0–250 m and a subadult, 18 mm SL, came from 0–1425 m. The lone September capture, a subadult 18 mm SL, was taken at 0–100 m.

Williams and Hart (1974) collected eggs of M. muelleri from March to October in the open North Atlantic (59°N, 19°W). Eggs were taken at depths of 100–500 m and temperatures of 8.8°–10.0° C. Most studies have reported spawning to occur near the edge of the continental shelf (Robertson, 1976, and papers cited by him). The presence of two postlarvae in our study area and the report of two smaller larvae (7–8 mm) from Beebe's 8-mile cylinder (Beebe, 1937) suggest that M. muelleri spawns in deep water near Bermuda.

Habitat Segregation and Resource Partitioning

Table 22 shows the maximum standard lengths, depths of concentration, and peak spawning seasons for the four most abundant sternoptychids. Sternoptyx diaphana is the deepest dwelling species and is almost completely separated from the other three in the water column. Although the spawning season of S. diaphana completely overlaps those of the other sternoptychids, its postlarvae are found primarily between 550 and 750 m, much deeper than postlarvae of the other species. Thus, S. diaphana does not compete for any resource with any other member of the family.

The two congeners, Argyropelecus hemigymnus and A. aculeatus, differ strikingly in size and have different (though overlapping) depth distributions, especially at night. Probably they have very different diets. In both the eastern North Atlantic (Merrett and Roe, 1974) and the Caribbean-central Gulf of Mexico region (Hopkins and Baird, 1977), stomach contents of A. hemigymnus were dominated by copepods, while those of comparable size A. aculeatus contained mostly ostracods; larger specimens of A. aculeatus from the Caribbean-Gulf region also contained significant numbers of larger prey items, such as amphipods, molluscs and tunicates, all of which were rare or absent in A. hemigymnus.

A. hemigymnus and Valenciennellus tripunctulatus are similar in size and morphology, have nearly identical diel vertical distributions, exhibit similar diel changes in pigmentation (Badcock, 1969), and even share the same feeding period: afternoon and evening (Merrett and Roe, 1974; Hopkins and Baird, 1977). However, in the eastern North Atlantic, Merrett and Roe (1974) found important differences in the diets of these two fishes, with species of the copepod genus Pleuromamma predominant in the stomachs of V. tripunctulatus. Furthermore, Hopkins and Baird (1977), who compared specimens of both species from the same haul in the eastern Gulf of Mexico, found a greater diversity of prey in the stomachs of A. hemigymnus, which contained a much higher percentage of small (<2 mm) prey items. In addition, our postlarvae of A. hemigymnus were abundant only in late summer (corresponding to the spring-summer breeding peak) and were concentrated at 401–450 m in all seasons. In contrast, postlarvae of V. tripunctulatus were scarce in the Ocean Acre area, as might be expected in a year-round spawner, and appeared in discrete-depth samples only in winter, at 301–350 m. Thus, these two very similar species probably compete little or not at all.

In summary, Ocean Acre Sternoptychidae appear to partition their resources primarily by habitat segregation in the vertical plane. Where depth distributions overlap or coincide, competition probably is reduced or eliminated by differences in feeding selectivity, which may or may not be related to differences in SL.
license
cc-by-nc-sa-3.0
bibliographic citation
Gibbs, Robert H., Jr. and Krueger, William H. 1987. "Biology of midwater fishes of the Bermuda Ocean Acre." Smithsonian Contributions to Zoology. 1-187. https://doi.org/10.5479/si.00810282.452

Mueller's pearlside

provided by wikipedia EN

Maurolicus muelleri, commonly referred to as Mueller's pearlside, Mueller's bristle-mouth fish (not to be confused with the Gonostomatidae), or the silvery lightfish (not to be confused with the Phosichthyidae) is a marine hatchetfish in the genus Maurolicus, found in deep tropical, subtropical and temperate waters of the Pacific Ocean and the Atlantic Ocean, from the surface to depths of 1,500 metres (4,900 ft). It can grow to a maximum total length of 8 centimetres (3.1 in).[2]

Distribution and habitat

Maurolicus muelleri is found across the Pacific and Atlantic Oceans from subpolar waters to the equator, as well as in the Mediterranean, however they are absent in the Indian Ocean.[2] M. muelleri is most abundant around bathymetric features such as seamounts and continental shelf breaks, and is scarce in the open ocean. This species is predominantly found at depths of around 150 to 250 metres (490 to 820 ft) during the day, but can be found as shallow as 50 metres (160 ft) during the nighttime.[2] They can be found in depths of at least 1,527 metres (5,010 ft) at maximum.[2] It lives in tropical, subtropical and temperate waters in the deep sea.[2]

Description

Ventral view of M. muelleri, showing the photophores used for counterillumination.
Maurolicus muelleri fresh specimen
Fresh-caught specimen of Maurolicus muelleri

Maurolicus muelleri has a fusiform body shape with a moderately sized, subvertical mouth. M. muelleri is countershaded to provide camouflage in the open-ocean, with a dark dorsal surface, silvered flanks and clustered photophores on the ventral surface for counterillumination. In fresh-caught specimens, these photophores are coloured a light pink/purple. They have 9 to 12 dorsal fin rays, 17-19 pectoral fin rays, 7 pelvic fin rays and 22 to 28 anal fin rays.[3] They can grow up to 8 centimetres (3.1 in) at maximum length, but usually grows up to 4 centimetres (1.6 in).[2]

Photophores

Photophores are glandular organs that, in M. muelleri, are made up of several parts. The photogenic chamber, made up of small, spherical light-producing cells, is split into a subspherical tank and conic projector, embedded inside a reflector made of guanine crystals. Ventral to the photogenic chamber is a cellular lens that is itself covered on the ventral surface by a gelatinous dioptric layer.[4]

Eyes

Maurolicus muelleri has large eyes with a retina uniquely adapted to the animal's mesopelagic habitat. M. muelleri inhabits surface waters only during twilight hours, requiring acute mesopic vision which in most vertebrates is achieved through combining dim-light rod cells and bright-light cone cells. Fish in the genus Maurolicus have developed a unique photoreceptor where a cone opsin and phototransduction cascade is found in cells transmuted into a rod-like morphology. These rod-like cone receptors are tuned to the blue-shifted mesopic light conditions dominant in M. muelleri's habitat and are likely a more efficient method of mesopic vision than would be feasible with two improperly-functioning photoreceptor types.[5]

Ecology

Trophic ecology

Mueller's pearlside is a zooplanktivore, with exact diet composition varying geographically and seasonally. For example, Copepods are the main constituent of their diet in the Sea of Japan[6] and in waters surrounding Korea,[7] with the euphausiid species Euphausia pacifica of secondary importance near Japan.[6] Euphausiids and copepods are the dominant prey items year-round off near the eastern continental slope of Tasmania.[8] In Masfjorden, Norway, copepods are most important in the autumn,[9] while earlier in the year Cladocerans are most important.[10] Amphipods and pteropods have also been reported from stomach contents.[6]

Maurolicus muelleri inhabits a tertiary trophic position[6] and, as such, provides a trophic link between zooplankton and larger predators. A wide range of fish species prey on M. muelleri, including commercially-important species such as albacores, skipjack tuna, hake, and blue whiting.[11][12][13][14] They are also predated on by several cephalopods, including the squids Illex coindetii and Todaropsis eblanae[15] and the octopus Enteroctopus magnificus[16], and marine mammals including common dolphins, sei whales, Bryde's whales, and fin whales.[11][17][18][19]

Parasitology

Due to its trophic position, M. muelleri plays a role as an intermediate or paratenic host to a variety of parasitic taxa, with very few parasites reaching adulthood while infecting the pearlside. For example, in a study that examined 1329 individual Maurolicus muelleri specimens, 3720 parasites were found with only 5 individual adult parasites.[20] Endoparasites recorded from Maurolicus muelleri include the trematodes Derogenes varicose, Brachyphallus crenatus, and Lecithaster confusus, cestodes including Bothriocephalus sp. and Scolex pleuronectis, the nematodes Hysterothylacium aduncum and Anisakis simplex[20][21]. One of the only species to reach adulthood parasitising M. muelleri is the ectoparasitic copepod Sarcotretes scopeli.[20] A "fungoid mass", tentatively identified as being from the protist genus Ichthyophonus, has been identified in pearlsides caught near Australia.[22]

Behavior

Diel vertical migration

As with many mesopelagic species, Maurolicus muelleri undergoes diel vertical migration (DVM), however this behaviour is more complex and varied in M. muelleri than that descriptor usually entails. The specific nature of this migration can vary seasonally, between years, an across geography, as well as across the ontogeny of individual fishes.[23]

The vertical migration of M. muelleri has been best studied in Masfjorden, where a fifteen-month acoustic survey was undertaken. In Masfjorden, M. muelleri formed distinct scattering layers, with the deepest layer composed of adults and a shallow layer composed of post-larvae.[23] The depth of these scattering layers is thought to be a result of M. muelleri having a "light comfort zone", inhabiting depths where light levels are neither too bright nor too dark. Individual fish may move between scattering layers, indicating that the comfort zones are broader than suggested in the typical isolume hypothesis.[24] Here, M. muelleri displayed consistent, typical DVM patterns (i.e. remaining at depth during the day and ascending to the surface at night) during summer months only, with individuals feeding at dawn and dusk.[23]

Their behaviour, however, varied in the autumn and winter. In years where their Calanus copepod prey, which overwinter at depth, were abundant, adults in the winter delayed their vertical migration until approximately three hours before dawn due potentially to a reduced need to feed at the surface, with some individuals remaining at depth for the entire night, feeding entirely on deep-overwintering prey. Towards the end of the winter, adults underwent interrupted ascents, migrating to depths that were greater than reached during typical DVM as they preyed on deep-wintering prey partway through their seasonal ascent to the surface. Some individuals undertook a reversed DVM during winter, diving to slightly greater depths during daylight hours, to feed on deep-overwintering prey in optimal light conditions.[23] In the Benguela system and in the Gulf of Oman, DVM is known to occur, with fish ascending to within 10m of the surface in response to the first light of dawn before diving into deep waters.[25]

Predator evasion

In latitudes where summer nights are short and bright, such as in the Arctic Circle, M. muelleri may school in shallow waters at night to reduce the threat of predation.[26] Maurolicus muelleri in scattering layers can detect predators at distances of several metres during the day, and respond by diving as far as 50m below their original depths at speeds of 15-20cm/s.[24] While most individuals reside in scattering layers to reduce predation risk, certain "bold individuals" will make forays into shallower waters above scattering layers, presumably in order to feed in move favourable light levels. It is unknown whether these bold individuals are atypical or whether a change in individual state (e.g. hunger) prompts these forays.[24]

Life History

Spawn timing in Maurolicus muelleri is regionally variable. In the Benguela system, breeding occurs year round, while in Australia spawning occurs in late winter and early spring.[22][27] In Norway, spawning occurs between March and September,[28] however hatch timing is a strong predictor of recruitment success, with individuals hatching before mid-September experiencing poor conditions for growth.[29] Females mature at lengths of around 35mm, at the end of their first year, and fish below 30mm cannot be sexed.[22] A small fraction of individuals survive into their second year, reaching lengths of up to 50mm in Australia.[22]

Individual females can contain as many as 738 ova,[22] and in enclosed spaces eggs can be extremely abundant, reaching numbers as high as 5.8x10^11 in Fensfjorden.[30] Eggs settle at a depth of around 200m in the Benguela system.[27] The eggs are surrounded by a distinctive hexagonal-patterned membrane.[22]

Importance to Fisheries

At present, M. muelleri is of minor importance to fisheries, with several countries, including Russia, Iceland, and the Faroe Islands attempting to pursue it as a resource after the collapse of other fisheries, with no nation landing more than 50,000 tonnes in a single year.[1] The species continues to be a focus of speculation for future mesopelagic fisheries,[31] however a number of technical hurdles will need to be surmounted in order to make pearlsides a cost-effective fishery target.[32]

References

  1. ^ a b A. Harold; R. Milligan (2019). "Maurolicus muelleri". IUCN Red List of Threatened Species. IUCN. 2019: e.T198760A21913754. doi:10.2305/IUCN.UK.2019-2.RLTS.T198760A21913754.en.
  2. ^ a b c d e f Froese, Rainer; Pauly, Daniel (eds.) (2006). "Maurolicus muelleri" in FishBase. March 2006 version.
  3. ^ Peter James Palmer Whitehead (1986). Fishes of the North-eastern Atlantic and the Mediterranean. Paris: Unesco. ISBN 92-3-002215-2. OCLC 13186416.
  4. ^ Cavallaro, M.; Mammola, C. L.; Verdiglione, R. (June 2004). "Structural and ultrastructural comparison of photophores of two species of deep-sea fishes: Argyropelecus hemigymnus and Maurolicus muelleri: comparison of photophores in two species of fishes". Journal of Fish Biology. 64 (6): 1552–1567. doi:10.1111/j.0022-1112.2004.00410.x.
  5. ^ de Busserolles, Fanny; Cortesi, Fabio; Helvik, Jon Vidar; Davies, Wayne I. L.; Templin, Rachel M.; Sullivan, Robert K. P.; Michell, Craig T.; Mountford, Jessica K.; Collin, Shaun P.; Irigoien, Xabier; Kaartvedt, Stein; Marshall, Justin (2017-11-03). "Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides". Science Advances. 3 (11): eaao4709. doi:10.1126/sciadv.aao4709. ISSN 2375-2548. PMC 5677336. PMID 29134201.
  6. ^ a b c d Ikeda, T; Hirakawa, K; Kajihara, N (1994). "Diet composition and prey size of the mesopelagic fish Maurolicus muelleri (Sternoptychidae) in the Japan sea". Bulletin of Plankton Society of Japan. 41.
  7. ^ Cha, Byung-Yul (1998). "Spawning ecology and feeding habits of Maurolicus muelleri". Korean Journal of Ichthyology. 10 (2): 176–183.
  8. ^ Young, J. W.; Blaber, S. J. M. (October 1986). "Feeding ecology of three species of midwater fishes associated with the continental slope of eastern Tasmania, Australia". Marine Biology. 93 (1): 147–156. doi:10.1007/bf00428663. ISSN 0025-3162.
  9. ^ Srisomwong, Jantra (2009). Diel vertical migration and feeding pattern of M. muelleri in Masfjorden in late autumn (Master thesis). The University of Bergen. hdl:1956/21213.
  10. ^ Rasmussen, O. I.; Giske, J. (1994-11-01). "Life-history parameters and vertical distribution of Maurolicus muelleri in Masfjorden in summer". Marine Biology. 120 (4): 649–664. doi:10.1007/BF00350086. ISSN 1432-1793.
  11. ^ a b Hassani, S; Antoine, L; Ridoux, V (December 1997). "Diets of Albacore,Thunnus alalunga, and Dolphins,Delphinus delphisandStenella coerulaeoalba, Caught in the Northeast AtlanticAlbacore Drift-net Fishery:A Progress Report". Journal of Northwest Atlantic Fishery Science. 22: 119–123. doi:10.2960/j.v22.a10. ISSN 0250-6408.
  12. ^ Ankenbrandt, Lisa (1985). "Food habits of bait-caught Skipjack Tuna, Katsuwonus pelamis, from the Southwestern Atlantic Ocean". Fishery Bulletin. 83 (3): 373–393.
  13. ^ Cartes, Joan E.; Hidalgo, Manuel; Papiol, Vanesa; Massutí, Enric; Moranta, Joan (March 2009). "Changes in the diet and feeding of the hake Merluccius merluccius at the shelf-break of the Balearic Islands: Influence of the mesopelagic-boundary community". Deep Sea Research Part I: Oceanographic Research Papers. 56 (3): 344–365. doi:10.1016/j.dsr.2008.09.009. ISSN 0967-0637.
  14. ^ Bjelland, Otte; Monstad, Terje (1997). "Blue whiting in the Norwegian Sea, spring and summer 1995 and 1996". ICES.
  15. ^ Lordan, C.; Burnell, G. M.; Cross, T. F. (December 1998). "The diet and ecological importance ofIllex coindetiiandTodaropsis eblanae(Cephalopoda: Ommastrephidae) in Irish waters". South African Journal of Marine Science. 20 (1): 153–163. doi:10.2989/025776198784126214. ISSN 0257-7615.
  16. ^ Villanueva, R. (June 1993). "Diet and mandibular growth ofOctopus magnificus(Cephalopoda)". South African Journal of Marine Science. 13 (1): 121–126. doi:10.2989/025776193784287239. ISSN 0257-7615.
  17. ^ Kawamura, Akito (1973). "Food and feeding of Sei Whales in waters south of 40°N in the North Pacific". Scientific Reports of the Whale Research Institute. 25: 219–236.
  18. ^ Best, PB (2001). "Distribution and population separation of Bryde's whale Balaenoptera edeni off southern Africa". Marine Ecology Progress Series. 220: 277–289. doi:10.3354/meps220277. ISSN 0171-8630.
  19. ^ Bravo Rebolledo, Elisa L.; IJsseldijk, Lonneke L.; Solé, Liliane; Begeman, Lineke; de Vries, Simon; van den Boom, Louis; Camalich Carpizo, Jaime; Leopold, Mardik F. (2016-12-01). "Unorthodox Sampling of a Fin Whale's (Balaenoptera physalus) Diet Yields Several New Mesopelagic Prey Species". Aquatic Mammals. 42 (4): 417–420. doi:10.1578/am.42.4.2016.417. ISSN 0167-5427.
  20. ^ a b c Hamre, Lars Are; Karlsbakk, Egil (March 2002). "Metazoan parasites of Maurolicus muelleri (Gmelin) (Sternoptychidae) in Herdlefjorden, western Norway". Sarsia. 87 (1): 47–54. doi:10.1080/003648202753631721. ISSN 0036-4827.
  21. ^ Klimpel, Sven; Kellermanns, Esra; Palm, Harry W.; Moravec, František (2007-05-30). "Zoogeography of fish parasites of the pearlside (Maurolicus muelleri), with genetic evidence of Anisakis simplex (s.s.) from the Mid-Atlantic Ridge". Marine Biology. 152 (3): 725–732. doi:10.1007/s00227-007-0727-8. ISSN 0025-3162.
  22. ^ a b c d e f Clarke, Thomas A (1982). Distribution, Growth, and Reproduction of the Lightfish Maurolicus muelleri (Sternoptychidae) off South-East Australia (PDF) (Report). CSIRO Marine Laboratories Reports. ISBN 0-643-02764-5. Report 145.
  23. ^ a b c d Staby, A; Røstad, A; Kaartvedt, S (2011-11-15). "Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns". Marine Ecology Progress Series. 441: 241–255. doi:10.3354/meps09363. ISSN 0171-8630.
  24. ^ a b c Christiansen, Svenja; Klevjer, Thor A; Røstad, Anders; Aksnes, Dag L; Kaartvedt, Stein (2021-09-07). Proud, Roland (ed.). "Flexible behaviour in a mesopelagic fish ( Maurolicus muelleri )". ICES Journal of Marine Science. 78 (5): 1623–1635. doi:10.1093/icesjms/fsab075. ISSN 1054-3139.
  25. ^ Armstrong, M. J.; Prosch, R. M. (June 1991). "Abundance and distribution of the mesopelagic fish Maurolicus muelleri in the southern Benguela system". South African Journal of Marine Science. 10 (1): 13–28. doi:10.2989/02577619109504615. ISSN 0257-7615.
  26. ^ Kaartvedt, S; Knutsen, T; Holst, JC (1998). "Schooling of the vertically migrating mesopelagic fish Maurolicus muelleri in light summer nights". Marine Ecology Progress Series. 170: 287–290. doi:10.3354/meps170287. ISSN 0171-8630.
  27. ^ a b Prosch, R. M. (June 1991). "Reproductive biology and spawning of the myctophid Lampanyctodes hectoris and the sternoptychid Maurolicus muelleri in the southern Benguela Ecosystem". South African Journal of Marine Science. 10 (1): 241–252. doi:10.2989/02577619109504635. ISSN 0257-7615.
  28. ^ Gjøsæter, Jakob (1981). "Life history and ecology of Maurolicus muelleri (Gonostomatidae) in Norwegian waters". FiskDir. Skr. Ser. HauUnders. 17: 109–131.
  29. ^ Folkvord, Arild; Gundersen, Geir; Albretsen, Jon; Asplin, Lars; Kaartvedt, Stein; Giske, Jarl (February 2016). Marshall, C. Tara (ed.). "Impact of hatch date on early life growth and survival of Mueller's pearlside ( Maurolicus muelleri ) larvae and life-history consequences". Canadian Journal of Fisheries and Aquatic Sciences. 73 (2): 163–176. doi:10.1139/cjfas-2015-0040. hdl:1956/13128. ISSN 0706-652X.
  30. ^ Lopes, Plàcida do Carmo (1979). "Eggs and larvae of Maurolicus muelleri (Gonostomatidae) and other fish eggs and larvae from two fjords in western Norway". Sarsia. 64 (3): 199–210. doi:10.1080/00364827.1979.10411382. ISSN 0036-4827.
  31. ^ Standal, Dag; Grimaldo, Eduardo (2020-09-01). "Institutional nuts and bolts for a mesopelagic fishery in Norway". Marine Policy. 119: 104043. doi:10.1016/j.marpol.2020.104043. ISSN 0308-597X.
  32. ^ Eduardo Grimaldo; Leif Grimsmo; Paula Alvarez; Bent Herrmann; Guro Møen Tveit; Rachel Tiller; Rasa Slizyte; Naroa Aldanondo; Trude Guldberg; Bendik Toldnes; Ana Carvajal; Marte Schei; Merethe Selnes (December 2020). "Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species". ICES Journal of Marine Science. 77 (7–8): 2541–2556. doi:10.1093/icesjms/fsaa114.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Mueller's pearlside: Brief Summary

provided by wikipedia EN

Maurolicus muelleri, commonly referred to as Mueller's pearlside, Mueller's bristle-mouth fish (not to be confused with the Gonostomatidae), or the silvery lightfish (not to be confused with the Phosichthyidae) is a marine hatchetfish in the genus Maurolicus, found in deep tropical, subtropical and temperate waters of the Pacific Ocean and the Atlantic Ocean, from the surface to depths of 1,500 metres (4,900 ft). It can grow to a maximum total length of 8 centimetres (3.1 in).

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Habitat

provided by World Register of Marine Species
Known from seamounts and knolls

Reference

Stocks, K. 2009. Seamounts Online: an online information system for seamount biology. Version 2009-1. World Wide Web electronic publication.

license
cc-by-4.0
copyright
WoRMS Editorial Board
contributor
[email]