dcsimg

Lifespan, longevity, and ageing

provided by AnAge articles
Maximum longevity: 21.6 years (captivity) Observations: In the wild, few animals live more than 5-10 years. One pregnant female was about 19-23 years of age (Ronald Nowak 1999). Record longevity, however, belongs to one wild born female who still alive at about 21.6 years of age (Richard Weigl 2005).
license
cc-by-3.0
copyright
Joao Pedro de Magalhaes
editor
de Magalhaes, J. P.
partner site
AnAge articles

Behavior

provided by Animal Diversity Web

White-tailed deer have scent glands between the two parts of the hoof on all four feet, outside of each hind leg, and on the inside of each hind leg. Scent from these glands is used to communicate with other deer and secretions become especially strong during the mating season.

White-tailed deer produce several types of vocalizations such as grunts, wheezes, and bleats. These vocalizations, along with other sounds and postures, are used for communication (Smith, 1991). Injured deer utter a startlingly loud "blatt" or bawl. Whistles or snorts of disturbed white-tailed deer are the most commonly heard sounds.

Communication Channels: visual ; tactile ; acoustic ; chemical

Other Communication Modes: pheromones ; scent marks

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Whitetail deer are extremely common throughout their ranges and are the most numerous of the large North American mammals. Precise estimates of their numbers have not been made, but there are probably somewhere between 8 and 15 million on this continent. Although their populations were decimated to the point of extinction in many areas at the turn of the century (due to overhunting), they have recently reached their highest numbers due to the improvement of their habitat by the cutting of climax forests, providing them with a greater amount of brush and shrubs on which to forage.

US Federal List: no special status

CITES: no special status

State of Michigan List: no special status

IUCN Red List of Threatened Species: least concern

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Whitetail deer are destructive to crops, vegetable gardens, fruit trees, and ornamental plants where their ranges overlap with human habitation. When their numbers become too high, whitetail deer can cause serious damage to forest vegetation through overbrowsing. They are involved in accidents with cars, often resulting in serious injury to the human occupants of the vehicles.

Whitetail deer are important as vectors disease because they serve as hosts to the ticks which carry the bacteria responsible Lyme disease. This has become an increasingly common disease in certain parts of the United States, especially the northeastern states.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Whitetail deer are commonly hunted for meat and sport. Early settlers and Native Americans also utilized whitetail deer hides to make buckskin leather. Whitetail heads are also commonly mounted on the walls of lodges and other places of outdoor recreation.

Positive Impacts: food

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

White-tailed deer can greatly influence the composition of plant communities through their grazing, especially where they are abundant. In severe winters white-tailed deer can be responsible for girdling and killing large numbers of trees. White-tailed deer are also important prey animals for a number of large predators.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

Whitetail deer feed on a variety of vegetation, depending on what is available in their habitat. In eastern forests, buds and twigs of maple, sassafras, poplar, aspen and birch (to name a few) are consumed, as well as many shrubs. In desert areas, plants such as huajillo brush, yucca, prickly pear cactus, comal, ratama and various tough shrubs may be the main components of a whitetail's diet. Conifers are often utilized in winter when other foods are scarce. Whitetail deer are crepuscular, feeding mainly from before dawn until several hours after, and again from late afternoon until dusk.

Primary Diet: herbivore

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Whitetail deer inhabit most of southern Canada and all of the mainland United States except two or three states in the west. Their range reaches throughout Central America to Bolivia.

Biogeographic Regions: nearctic (Native ); neotropical (Native )

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Whitetail deer are able to survive in a variety of terrestrial habitats, from the big woods of northern Maine to the deep saw grass and hammock swamps of Florida. They also inhabit farmlands, brushy areas and such desolate areas of the west such as the cactus and thornbrush deserts of southern Texas and Mexico. Ideal whitetail deer habitat would contain dense thickets (in which to hide and move about) and edges (which furnish food).

Habitat Regions: temperate ; tropical

Terrestrial Biomes: chaparral ; forest ; rainforest ; scrub forest

Wetlands: swamp

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

Most white-tailed deer live about 2 to 3 years. Maximum life span in the wild is 20 years but few live past 10 years old.

Typical lifespan
Status: wild:
10.0 (high) years.

Average lifespan
Status: wild:
2.0 years.

Average lifespan
Status: captivity:
16.0 years.

Average lifespan
Status: captivity:
23.0 years.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Head and body length is 150 to 200 cm, tail length is 10 to 28 cm, and height at the shoulders is between 80 and 100 cm.

Odocoileus virginianus dorsal coloration differs in shading locally, seasonally, and among subspecies; however in general it is grayer in the winter and redder in the summer. White fur is located in a band behind the nose, in circles around the eyes, inside the ears, over the chin and throat, on the upper insides of the legs and beneath the tail. Whitetail deer have scent glands between the two parts of the hoof on all four feet, metatarsal glands on the outside of each hind leg, and a larger tarsal gland on the inside of each hind leg at the hock. Scent from these glands is used for intraspecies communication and secretions become especially strong during the rutting season. Males possess antlers which are shed from January to March and grow out again in April or May, losing their velvet in August or September. At birth, fawns are spotted with white in coloration and weight between 1.5 and 2.5 kg. Their coats become grayish lose their spots by their first winter. Whitetail deer have good eyesight and acute hearing, but depend mainly on their sense of smell to detect danger.

Range mass: 57.0 to 137.0 kg.

Range length: 160.0 to 220.0 cm.

Other Physical Features: endothermic ; homoiothermic; bilateral symmetry

Sexual Dimorphism: male larger; ornamentation

Average basal metabolic rate: 123.447 W.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

White-tailed deer have good eyesight and acute hearing, but depend mainly on their sense of smell to detect danger and their ability to run and bound quickly through dense vegetation to escape danger. White-tailed deer are preyed on by large predators such as humans, wolves, mountain lions, bears, jaguars, and coyotes.

Known Predators:

  • humans (Homo sapiens)
  • gray wolves (Canis lupus)
  • mountain lions (Puma concolor)
  • coyotes (Canis latrans)
  • bears (Ursidae)
  • jaguars (Panthera onca)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Mating System: polygynous

Most whitetail deer (particularly males) mate in their second year, although some females occasionally mate as young as seven months. Bucks are polygamous although they may form an attachment and stay with a single doe for several days or even weeks until she reaches oestrus. Does are seasonally polyestrous and usually come into heat in November for a short twenty-four hour period. If a doe is not mated, a second estrus occurs approximately 28 days later. Mating occurs from October to December and gestation is approximately 6 and a half months. In her first year of breeding, a female generally has one fawn, but 2 per litter (occasionally 3 or 4) are born in subsequent years. Fawns are able to walk at birth and nibble on vegetation only a few days later.

Breeding interval: White-tailed deer breed once yearly.

Breeding season: Breeding occurs from October to December, fawns are born in the spring.

Range number of offspring: 1.0 to 3.0.

Average gestation period: 6.5 months.

Range weaning age: 8.0 to 10.0 weeks.

Average age at sexual or reproductive maturity (female): 2.0 years.

Average age at sexual or reproductive maturity (male): 2.0 years.

Key Reproductive Features: iteroparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization ; viviparous

Average birth mass: 3000 g.

Average gestation period: 198 days.

Average number of offspring: 2.

Average age at sexual or reproductive maturity (male)
Sex: male:
417 days.

Average age at sexual or reproductive maturity (female)
Sex: female:
309 days.

White-tailed females are very protective of their babies. When looking for food, females leave their offspring in a hiding place for about four hours at a time. While waiting for their mother to return, fawns lay flat on the ground with their necks outstretched, well camouflaged against the forest floor. Fawns begin to follow their mother on her foraging trips once they are about 4 weeks old and are fully ruminant at two months old. White-tailed deer fawns are nursed for 8 to 10 weeks before they are weaned. Young males leave their mother after one year but young females often stay with their mother for two years.

Parental Investment: precocial ; pre-fertilization (Provisioning, Protecting: Female); pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Female); pre-independence (Protecting: Female); post-independence association with parents

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Dewey, T. and . 2003. "Odocoileus virginianus" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html
editor
Tanya Dewey, Animal Diversity Web
author
original
visit source
partner site
Animal Diversity Web

Associated Plant Communities

provided by Fire Effects Information System Animals
More info for the terms: cover, fire exclusion, fire regime, forbs, forest, frequency, fresh, hardwood, mesic, presence, shrubs, tree, woodland

"Few mammalian species occupy such a wide range of latitudes or inhabit such a diverse array of habitats as the white-tailed deer" [279]. White-tailed deer occur in habitats from north-temperate to subtropical and arid environments in North America to rainforests of Central and northern South America [131,279,381]. In the United States, they are most abundant in the East. In the West, the white-tailed deer's distribution is limited by a lack of cover, and populations are restricted to riparian areas, wooded draws, and other areas in and adjacent to hardwood cover [279,381,430]. See the Fire Regime Table for a list of plant communities in which white-tailed deer may occur and information on the FIRE REGIMES associated with those communities.

Pacific Northwest: Columbian white-tailed deer originally occupied river valleys and surrounding foothills dominated by shrubs along the Columbia River drainage of the Pacific Northwest [122]. Local populations of Columbian white-tailed deer have decreased historically as woodland habitats were lost due to fire exclusion and development [279]. Plant communities receiving the highest use by Columbian white-tailed deer on the Julia Butler Hansen Refuge for the Columbian White-tailed Deer were Sitka spruce (Picea sitchensis) parklands with a grass understory and open-canopied western redcedar-red alder (Thuja plicata-Alnus rubra)-Sitka spruce forests with a "grass-shrub" understory [400]. In the Umpqua River basin, Columbian white-tailed deer used "grass-shrub" communities, Oregon white oak (Q. garryana) and California black oak (Q. kelloggii) savannas, open- and closed-canopy oak woodlands, riparian habitats, and conifer (mostly Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa)) forests more than expected based upon their availability. Highest Columbian white-tailed deer densities in the region occurred in areas with ≥50% woody plant cover [378]. In the Blue Mountains of northeastern Oregon, white-tailed deer are primarily associated with riparian areas and croplands, but they also use adjacent slopes [122].

Southwest: White-tailed deer favor the most mesic microclimates and associated vegetation within the arid Southwest [381]. In Arizona and New Mexico, white-tailed deer populations are highest in Madrean evergreen woodlands and in riparian hardwood forests, particularly those above 3,500 feet (1,100 m). Semidesert grasslands may be important in areas adjacent to Madrean evergreen woodlands, particularly where thickets of ocotillo (Fouquieria splendens) provide escape cover. White-tailed deer also occur in interior Arizona chaparral, oak woodlands containing Arizona white oak (Q. arizonica) and Emory oak (Q. emoryi), pinyon-juniper (Pinus-Juniperus spp.) woodlands, and ponderosa pine forests along the Mongollon Rim [122,155,365]. Within the Sonoran Desert, white-tailed deer are uncommon but prefer the most mesic habitats available: grasslands, mesas, benches, grassy slopes, and ridges [41]. The presence of surface water influences white-tailed deer distribution in some parts of the Southwest (see Water). Because of their high frequency in white-tailed deer's diet, lechuguilla (Agave lechuguilla), pricklypear (Opuntia spp.), oak, and madrone (Arbutus spp.) are important in the region [122].

Rocky Mountains: In the northern Rocky Mountains, white-tailed deer are restricted largely to bottomlands with dense vegetation [69]. Broad, flat cottonwood (Populus spp.) and willow (Salix spp.) floodplains are considered the most important habitats in the region [365]. In the northern Rocky Mountains, white-tailed deer prefer hardwood-dominated habitats at low and intermediate elevations. Habitats with Douglas-fir, spruce (Picea spp.), quaking aspen (Populus tremuloides), cottonwood, redstem ceanothus (Ceanothus sanguineus), chokecherry (Prunus virginiana), willow, Saskatoon serviceberry (Amelanchier alnifolia), and hollyleaved barberry (Berberis aquifolium) are important. Habitats with grasses and forbs may be important during spring in some areas [122,365]. In British Columbia, riparian brushlands and young Douglas-fir stands were among the most important white-tailed deer habitats [461]. In the Swan Valley, Montana, wintering white-tailed deer preferred mature conifer forests adjacent to riparian zones [117]. White-tailed deer in Wyoming use open meadows, cottonwood-willow riparian areas, ponderosa pine forests, brushy areas, and croplands [302].

Great Plains and South-central US: White-tailed deer distribution in the Great Plains is limited by the availability of vegetation providing cover [381]. Wooded draws, lowlands, and floodplains are preferred habitats of white-tailed deer in the region [320,430,443]. Common trees include northern red oak (Q. rubra), white oak (Q. alba), sugar maple (Acer saccharum), American beech (Fagus grandifolia), paper birch (Betula papyrifera), boxelder (A. negundo), American elm (Ulmus americana), green ash (Fraxinus pennsylvanica), and cottonwood, with Rocky Mountain juniper (Juniperus scopulorum) and ponderosa pine in draws and uplands [320,430]. Shrublands with western snowberry (Symphoricarpos occidentalis), silver buffaloberry (Shepherdia argentea), and chokecherry provide valuable year-round cover and food [430]. White-tailed deer are common in the Midwest agricultural subregion, which covers much of what once comprised the mixed-grass and tallgrass prairie ecosystems. In this region, croplands are important white-tailed deer habitats seasonally. Permanent cover is extensively fragmented, and white-tailed deer in this region must cope with dramatic seasonal changes in available cover and food associated with the harvest of crops [430]. Miller and others [279] stated that white-tailed deer probably did not occur in upland prairies of eastern Montana until agricultural crops were established. Quaking aspen and ponderosa pine stands are important white-tailed deer habitats in the Black Hills [90].

White-tailed deer habitats in the South-central United States consist largely of woodland communities along streams and rivers and in ephemeral drainages, but white-tailed deer may forage in adjacent plains grasslands, particularly those with a scattered, clumped overstory of oaks, and in croplands [122,365]. Common tree species in wooded riparian areas include cottonwood, green ash, bur oak (Q. macrocarpa), and eastern redcedar (J. virginiana). Habitats with snowberry (Symphoricarpos spp.), rose (Rosa spp.), grape (Vitis spp.), western soapberry (Sapindus saponaria var. drummondii), oak, and agricultural crops are also important to white-tailed deer in this region [430]. White-tailed deer are common in the Tamaulipan thorn scrub vegetation of southern Texas as well as in the Gulf Coast Prairies and Marshes ecological region [122].

Great Lakes and Northeast: Most of the Great Lakes and Northeast is comprised of hardwood and conifer forests important to white-tailed deer [430]. The Great Lakes-St Lawrence region includes elements of boreal and hardwood forest, and is characterized by eastern white pine (Pinus strobus), red pine (P. resinosa), eastern hemlock (Tsuga canadensis), and yellow birch (Betula alleghaniensis). Balsam fir (Abies balsamea), white spruce (Picea glauca), black spruce (P. mariana), paper birch, and quaking aspen are important species in the northern section close to the boreal forest ecotone, whereas sugar maple, northern red oak, and basswood (Tilia americana) are more abundant in the southern section of the region. [170]. Mature northern whitecedar (Thuja occidentalis) forests are often preferred by white-tailed deer during periods of cold temperatures and deep snow. Spruce, eastern hemlock, and balsam fir forests are also used [94,279]. Conifer forests interspersed with hardwood forests located along lakes and rivers are "among the best" winter rangelands for white-tailed deer in the St Lawrence Region [170]. In Michigan, quaking aspen communities are some of the most productive types for white-tailed deer [38,50]. In many parts of the Great Lakes region, croplands are important to white-tailed deer [430]. In the Northeast, white-tailed deer are abundant in the northern hardwood forests and common in spruce-fir (Abies spp.) forest. They use mature forest communities during periods of deep snow and old fields and various other early-successional habitats as well as brackish and freshwater marshes during the rest of the year [79,265]. The boreal forest region covers the northern edge of the white-tailed deer range. The principal trees of this region are white and black spruce and balsam fir. Generally only small, scattered white-tailed deer populations occur in boreal forest [170].

Southern Appalachians and Southeast: In the southern Appalachians, oak and hickory (Carya spp.) forests are important white-tailed deer habitats. Other common tree species in white-tailed deer habitats include sweetgum (Liquidambar styraciflua), tupelo (Nyssa spp.), baldcypress (Taxodium distichum), and pine (Pinus spp.). Habitats with dogwood (Cornus spp.), eastern redbud (Cercis canadensis), serviceberry (Amelanchier spp.), sumac (Rhus spp.), strawberry bush (Euonymus americanus), elderberry (Sambucus spp.), spicebush (Lindera spp.), blueberry (Vaccinium spp.), tree sparkleberry (V. arboreum), blackhaw (Viburnum prunifolium), deciduous holly (Ilex decidua), yaupon (I. vomitoria), and oak are important. Cropland is relatively common in this region and is also important white-tailed deer habitat [430]. In the Atlantic Coastal Plain, coastal marshes, longleaf pine-slash pine (P. palustris-P. elliottii), shortleaf pine (P. echinata)-oak, loblolly pine (P. taeda)/hardwood, pitch pine-bear oak (P. rigida-Q. ilicifolia), and bottomland hardwood forests are important white-tailed deer habitats. Bottomland hardwood forests are one of the most productive types for white-tailed deer in the region [150,294]. In Florida, some of the highest white-tailed deer populations occur in sand pine (P. clausa) sandhills [230]. A study on Big Pine Key and No Name Key found that Key deer preferred upland habitats (>3.3 feet (1 m) above mean sea level), particularly rock pinelands and hardwood hammocks, and avoided lowland habitats such as button mangrove (Conocarpus erectus)-scrub and mangrove (red (Rhizophora mangle), black (Avicennia germinans), and white (Laguncularia racemosa) mangrove) swamps. Upland habitats were important sources of food and permanent fresh water sources [241]. Regardless of plant communities, only islands with permanent fresh water are used consistently by Key deer [148] (see Water).
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Biological Data

provided by Fire Effects Information System Animals
Numerous reviews describing the biology of white-tailed deer are available and cited frequently in this review. These include the following sources: [79,131,156,302,318]. Among these sources, this review relies most heavily on Biology and Management of White-tailed Deer (compiled and edited by Hewitt [156]), particularly the following chapters: [3,19,55,70,92,94,95,98,122,146,155,157,179,182,286,392,430]. This review includes information for many aspects of white-tailed deer biology but focuses on those most relevant to fire.
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Common Names

provided by Fire Effects Information System Animals
white-tailed deer

whitetailed deer

whitetail
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Courtship and mating

provided by Fire Effects Information System Animals

White-tailed deer exhibit a tending-bond mating system where bucks pursue, defend, and court individual does [94,279]. Timing of the white-tailed deer's breeding season is linked to photoperiod [94,95,98,279], with a general continuum in breeding season timing associated with latitude. In the United States, white-tailed deer in northern regions tend to breed in November, whereas the breeding season in southern regions may be as late as January or February [98]. Breeding tends to occur in a discrete, synchronous period in northern populations, usually lasting about a month. It tends to be more protracted farther south, especially in Texas, Louisiana, Mississippi, Alabama, Florida, Georgia, and South Carolina, where peak breeding ranges from summer through late winter [95,279]. For example, peak breeding of white-tailed deer in portions of South Carolina occurs in September, in Georgia it occurs in November, and in portions of Alabama and Mississippi it occurs in December and January. Florida has the greatest range in breeding dates in the United States, from March in northwestern Florida to July in southern Florida [95]. White-tailed deer near the equator breed year-round [131,279]. Age and condition of individuals and possibly adult sex ratios may affect the timing of breeding. Adult does breed early in the rut, whereas fawns (0.5 year old) and yearlings (1.5 years old) breed later [94]. See Miller and others [279] and DeYoung and Miller [94] for more information on courtship and mating.

The interval between estrous periods ranges from 21 to 30 days [279,381]. True estrus lasts about 24 to 48 hours [94,381]. As many as 7 consecutive estrous periods may occur when does repeatedly fail to conceive [279,381]. Does may mate with >1 buck during a single estrous period, so twins may have different sires [94]

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Daily activity

provided by Fire Effects Information System Animals
White-tailed deer are active throughout the day and night but are most active at dusk and dawn [79,94,255,279,381]. Activity varies with individual age and sex, season, habitat, weather, latitude, and human disturbance [255,279,381]. Male white-tailed deer move farthest during the breeding season, whereas females move least during and after fawning [94,122,255,279,392].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Diet

provided by Fire Effects Information System Animals
More info for the terms: cacti, cool-season, cover, ferns, forb, forbs, lichens, litter, mast, mesic, shrubs, succession, tree

White-tailed deer are classified as browsers because they primarily consume browse and forbs [121]. However, they are opportunistic and consume a wide variety of plant species and plant parts [131,182,279]. For example, more than 610 different plant species are consumed by white-tailed deer in Arizona (Knipe 1977 cited in [122]). They consume the stalks, flowers, fruits, and seeds of grasses and forbs. They eat the buds, fruits, seeds (particularly acorns), stems, leaves, and bark of trees and shrubs [346,381]. Diversity apparently is important in the white-tailed deer's diet [346]. Cacti and other succulents may be seasonally important in some areas [121,157,201,365,381]. White-tailed deer also eat ferns [79,244], fungi [79,157,279,346,381], and lichens [157,346]. In agricultural areas, crops are an important food source [131,279,381]. Orchards, nurseries, vineyards, and lawns are also common food sources wherever available [131,279,381]. White-tailed deer can only access forage that is <5 feet (1.5 m) tall [15]. Generally, younger, less fibrous plants and plant parts are preferred over old plants and plant parts [79,121]. White-tailed deer sometimes consume aquatic vegetation [131,177,346] and may opportunistically eat birds, fish, and insects [131].

Forbs, browse, soft mast (berries, drupes, and pomes), and hard mast (acorns, beechnuts, and hickory nuts) are the most important white-tailed deer forages throughout the much of species' range [279,365,384]. A 2011 review of white-tailed deer diets throughout the species' range concluded that white-tailed deer diets consist of 46% browse, 24% forbs, 11% mast, 8% grass, 4% agricultural crops, 2% cacti, 2% fungi, and 3% other items. The author split the species' range into 5 regions: Midwest, Northwest, Southeast, and Southwest. Spring diets in the Midwest and Northwest contained less browse and forbs and more crops and grass than in other regions. Diets were most similar among regions in summer. Fall diets varied greatly among regions, with mast particularly important in the Midwest and Southeast. Browse, crops, and grass were particularly important in the Northwest in fall, whereas lichens and fungi were important in the Northeast. Browse and forbs composed most of the diet in the Southwest. In winter, there was a strong latitudinal gradient in browse use: Browse averaged 74% to 91% of white-tailed diets in northern regions. Forbs were important during winter in the Southwest. Mast was most important in winter diets in the Midwest and Southeast, and grass was least important in the Northeast [157].

Forage availability greatly influences white-tailed deer food habits [157]. Forbs are generally more digestible and richer in nutrients than browse, and white-tailed deer strongly prefer them over browse. Abundance and biomass of forbs on the landscape depend on many biological and environmental influences, particularly season of year, amount and timing of rainfall, and physical and chemical characteristics of the soil. Intensity of livestock grazing and land management practices also influence forb production and thus white-tailed deer diets. Compared to forbs, browse plants provide more seasonally stable food supplies and are less affected by periods of low rainfall and intensity of livestock use. The amount of browse in white-tailed deer diets generally varies inversely with abundance of forbs. In habitats where forbs are abundant most of the year, white-tailed deer generally eat less browse than in habitats where forbs are rare [121]. Near the Gulf Coast of southern Texas, where forbs are available on mesic rangelands, forbs comprise 50% to 98% of seasonal diets, whereas 90 miles (150 km) inland, where rangelands are more arid, browse and succulents comprise 50% to 75% of seasonal diets [157]. Although browse may not be preferred, its abundance and year-round availability make it important [79,346]. Although browse and forbs are often the dominant forage classes in white-tailed deer diets, in some areas grasses and sedges (Carex spp.) may contribute substantially to white-tailed diets, particularly during spring green-up. New growth of cool-season grasses may be important in fall [79,121].

High-quality forages, such as crops and mast, compose large portions of white-tailed deer diets if available. Crops are "exceedingly important" to white-tailed deer during summer and fall in the Midwest and along riparian areas in northwestern portions of the species' range [157]. Because they are highly digestible and nutritious, most agricultural crops are preferred when available, regardless of the availability of naturally occurring foods [79]. Mast is often highly preferred by white-tailed deer and is often a critical source of forage; however, its availability is seasonal [121]. Common sources of mast include persimmons (Diospyros spp.), American beech, apples (Malus spp.), American pokeweed (Phytolacca americana), cherries (Prunus spp.), oaks, blackberries (Rubus spp.), blueberries, and grapes [279]. Honey mesquite pods often become an important source of food during summer droughts in the southwestern and south-central United States [121].

Among mast types, acorns are a highly preferred food [79,108,279]. According to a review, acorns can constitute >70% of the fall diet of white-tailed deer in oak woodlands [279]. In southwestern Virginia, acorns made up an average of 76% by volume of the white-tailed deer diet when acorns were abundant [150]. In many habitats, although acorns are heavily used, they are not considered a "critical" component of the white-tailed deer's diet. However, in some southeastern ranges, such as in the southern Appalachians or the southern Coastal Plain, acorns are considered critical, and white-tailed deer population dynamics can be driven by acorn production [279]. Feldhamer [108] noted that acorn availability is especially critical where the quality and quantity of spring or summer forage is inadequate for white-tailed deer to develop the energy reserves necessary for winter survival. In Land Between The Lakes National Recreation Area, Tennessee, mean body mass of hunter-harvested male and female fawns and yearlings over 13 years was positively correlated with acorn yield the previous fall. Acorn yields ranged from 0.37 to 55.07 kg/ha during this period and accounted for 42% to 56% of the variation in mean body mass in each age and sex group [109]. Male and female fawns, yearling males, and ≥3.5-year-old females in Georgia weighed more in years when mast availability was "good" than years when mast availability was "poor". Other age and sex groups showed no effect. Body mass of males was more strongly correlated with the previous year's mast index than with the current year's index, indicating a lag effect [449]. In contrast, in Craig County, Virginia, weights of 1.5-year-old bucks killed by hunters did not differ between years of acorn abundance and scarcity. This might have been because they were harvested too early in the winter for an effect to be evident [150]. Wentworth and others (1990 cited in [108]) found that adult reproductive rates in the southern Appalachians were not affected by acorn abundance, but yearling reproduction was greater when acorns were abundant. Some researchers documented either an increased percentage of yearlings in white-tailed deer populations following years with good acorn crops or a decrease in the percent of yearlings following years with poor acorn crops (e.g., [110,449]).

High-preference winter foods for white-tailed deer in the northern Great Lakes and Ontario include northern whitecedar, red maple (Acer rubrum), eastern hemlock, American mountain-ash (Sorbus americana), and alternate-leaf dogwood (Cornus alternifolia). Second-level preference species include eastern white pine, yellow birch, mountain maple (A. spicatum), serviceberry, and jack pine (Pinus banksiana). Next are aspen (Populus spp.), northern red oak, beaked hazelnut (Corylus cornuta subsp. cornuta), paper birch, balsam fir, and red pine. Speckled alder (Alnus incana subsp. rugosa), black spruce, white spruce, and tamarack (Larix laricina) are "last resort" foods [33]. Preferred foods in the Northeast include the following species and genera: maple (Acer spp.), birch (Betula spp.), trumpet creeper (Campsis radicans), sweetfern (Comptonia peregrina), dogwood, hawthorn (Crataegus spp.), ash (Fraxinus spp.), holly (Ilex spp.), pinweed (Lechea spp.), honeysuckle (Lonicera spp.), apple, bayberry (Myrica spp.), black tupelo (Nyssa sylvatica), pricklypear, black cherry (Prunus serotina), oak, sumac, blackberry, willow, sassafras (Sassafras albidum), greenbrier (Smilax spp.), goldenrod (Solidago spp.), mountain-ash (Sorbus spp.), northern whitecedar, basswood, eastern hemlock, blueberry, viburnum (Viburnum spp.), and grape [79]. A review stated that the most prevalent plants in white-tailed deer diets in the Southwest are hairy mountain-mahogany (Cercocarpus breviflorus), Wright's eriogonum (Eriogonum wrightii), falsemesquite calliandra (Calliandra eriophylla), range ratany (Krameria parvifolia), and junipers, primarily alligator juniper (J. deppeana) and oneseed juniper (J. monosperma) [365]. Red mangrove, black mangrove, Florida Keys blackbead (Pithecellobium keyense), redgal (Morinda royoc), Florida silverpalm (Coccothrinax argentata), Key thatch palm (Thrinax microcarpa), and pencilflower (Stylosanthes spp.) are some of the most heavily eaten species by Key deer (Dooley 1974 cited in [148]). In Montana and South Dakota, some preferred browse species include chokecherry, kinnikinnick (Arctostaphylos uva-ursi), serviceberry, skunkbush sumac (Rhus trilobata), common snowberry (Symphoricarpos albus), and dogwood [320].

Weather and growing conditions affect white-tailed deer forage preferences. Forbs that dominate white-tailed deer diets during spring or high rainfall years may be replaced by more heat or drought-tolerant species during summer or dry years. Browse increases in importance in white-tailed deer diets during droughts because lack of rainfall reduces forb abundance [122]. During a drought year in southeastern Arizona, white-tailed deer and mule deer diets changed from succulent deciduous forage to drought-tolerant evergreen species [10]. Ocotillo (Fouquieria splendens) did not rank high as a forage plant in southern Arizona; however, its rapid response to available moisture from summer rains produced green forage that was avidly sought by white-tailed deer when available [451]. In the Rolling Plains of Texas, browse (mast and foliage) declined from 57% of white-tailed deer diets during a drought year to 39% of diets during a year with greater rainfall; forbs increased from 18% of diets during the drought to 38% of diets during the wetter year [341]. In the Cross Timbers and Prairies region of Texas, browse in white-tailed deer diets declined from 46% during a dry summer to 29% during a wet summer, whereas forbs increased from 13% of diets during the dry summer to 43% of diets during the wet summer [96].

Deep snow makes forage less accessible to white-tailed deer. Moen and Evans (1971 cited in [444]) estimated that 12 inches (30 cm) of snow rendered 97% of potential food unavailable to white-tailed deer in New York. White-tailed deer may meet nutritional requirements during deep snow periods by foraging on materials found above the snow, such as arboreal lichens or conifer browse [122,368,409]. They also create networks of trails in snow and may dig and root to obtain food from beneath the snow. In areas with deep snow, they migrate to locations with snow conditions that permit better locomotion and easier foraging [409] (see Cover and foraging habitats).

Fire may affect white-tailed diet composition. For more information, see Indirect Fire Effects.

Diet composition varies by sex and age of individual animals, which may result from spatial segregation and use of separate habitats [121] (see Age and sex). Reviews on this topic are available: [122,157].

White-tailed deer foraging effects: White-tailed deer are sometimes called "keystone herbivores" [136,349,350,442] or "ecosystem engineers" [17,71] because of their foraging impacts under high population densities. Because white-tailed deer forage selectively, they can influence plant species composition and diversity by consuming palatable species, which may allow unpalatable species to gain dominance and eventually alter plant community dynamics and succession [70,71,144,298,349,350,354,392,430,442]. Overabundant populations commonly reduce tree diversity in boreal and temperate forests [71]. They can influence rates of nutrient cycling by altering litter quantity and quality and via urination and defecation [70,71,350,354,392]. Also, white-tailed deer may affect plant growth [71,354]. They exert cascading effects on animals by competing directly for resources with other herbivores and by modifying the composition and structure of habitats [6,17,70,71,136,329,350,392,442]. Maximum animal species diversity in a stand often appears to occur at moderate browsing levels, whereas heavy white-tailed deer browsing reduces vegetative cover and diversity in the understory, which may lead to reduced habitat availability for other animals [71]. Studies have shown that heavy white-tailed deer foraging is correlated with declines in native plant abundance and increases in nonnative plant abundance [70,105]. Reviews describing white-tailed deer foraging effects are available: [24,70,71,349,354,392]. For information about white-tailed deer effects on postfire succession, see Effects of herbivory on vegetation.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Direct Effects of Fire

provided by Fire Effects Information System Animals
More info for the terms: backfire, cover, density, forest, fuel, ground fire, habitat type, headfire, marsh, natural, peat, prescribed fire, snag, wildfire

Fire kills white-tailed deer directly (e.g., [184,193]), but fire-caused mortality rates of large mammals are generally low (<1%) [120], and direct fire-caused mortality is thought to have little effect on large mammal populations [120,247]. Vogl [436] stated that the benefits of burning in white-tailed deer habitats far outweigh and offset any direct losses. Large mammal mortality is most likely when fire fronts are wide and fast moving, fires are actively crowning, and thick ground smoke occurs [120].

Large fires may be more likely to result in injury or death of deer than small fires because large fires remove more protective cover and temporarily reduce forage [160,358]. Gabrielson [127] noted that at least 8 deer were killed by the "racing flames" during the "great fires" of September 1902 in Cowlitz and Clark counties, Washington, and eastern Clackamas and Multnomah counties, Oregon. Large, long-duration wildfires in pocosin in North Carolina resulted in high white-tailed deer mortality. An April (1985) 95,000-acre (38,300 ha) wildfire in pocosin on the Pocosin Lakes National Wildlife Refuge, North Carolina, killed 20% of the white-tailed deer population. Approximately 33% of the surviving white-tailed deer appeared to have sustained injuries from ground fire. Many injuries became infected, resulting in high secondary mortality. The authors estimated that about 20% of the survivors were severely injured, with burned feet and legs and chronic secondary infections. A helicopter survey 6 days following containment of the fire found 1.0 dead white-tailed deer/km² in an 11,201-acre (4,533 ha) area, with 4.4 live white-tailed deer/km². Mortality estimates from ground and aerial surveys soon following a May (1981) 17,801-acre (7,204 ha) wildfire in the same area ranged from 1.4 to 10.0 dead white-tailed deer/km². Of 58 dead white-tailed deer, 3% were fawns, 7% were 1-year-old males, 35% were 1-year-old females, 14% were adult males, and 41% were adult females. Both fires were rapidly moving headfires followed by severe ground fires in deep peat [304] that burned slowly and for more than 3 weeks [184]. White-tailed deer carcasses were typically found in smoldering hollows in peat. The authors stated that such high white-tailed deer mortality had not been reported in other southeastern habitats types and "most likely did not occur under natural FIRE REGIMES" (Osborne and others 1986 cited in [213]). In contrast, only 36 white-tailed deer were killed during a severe 45,000-acre (18,200 ha) May (1986) wildfire in pocosin at the Holly Shelter Game Land, North Carolina. Direct mortality was estimated at <10% of the population. The fire burned almost all aboveground vegetation and burned as deep as 3 feet (1 m) into the peat, killing roots of most plants in some areas. Unlike the other 2 fires, this fire was not of long duration and was extinguished by heavy rains in a few days. Most white-tailed deer carcasses were found in an area where a headfire met a backfire set by suppression crews [184]. In Wisconsin, during the summer wildfires of 1930 that burned >120,000 acres (49,000 ha), Kipp [193] observed >80 white-tailed deer carcasses. Of these, 18 were found in an area where the animals had been driven by changing winds from the edge of the forest fire into burning peat marshes.

Mobley and Balmer [281] suggested that prescribed fires are generally not large enough, hot enough, or fast-spreading enough to trap and kill wildlife. As of this writing (2013), no published documents reported white-tailed deer deaths resulting from prescribed fires.

Occasionally, injury suffered during a fire may result in high secondary mortality (e.g., [127,184,193,366], Leopold 1933 cited in [66]). In Wisconsin, more than 20 white-tailed deer carcasses were observed after the summer wildfires of 1930, and 60% of white-tailed deer surviving the fires had badly burned feet. White-tailed deer carcasses were found in and near the burned areas for several months following the fires. Some of the deaths were apparently due to these injuries [193]. Shantz [366] and Gabrielson [127] noted many instances where the feet of deer were burned, thus crippling the animals. Vogl [436] reported a case where a white-tailed deer buck's back was covered with large burns. However, the deer appeared healthy when it was harvested.

As with other ungulates, such as moose and elk, the number of fatalities caused by fire is likely related to season, population density, habitat type, terrain, fuel load, and prevailing winds [61,160,373]. White-tailed deer fawns are probably most vulnerable to fire-caused mortality during the hiding period, when they are relatively immobile [107,127,194]. Does in Arizona upland communities give birth in July and likely lose some newborns to late-season fires (Esque and Schwalbe unpublished data cited in [107]). Gabrielson [127] reported that after the 1902 wildfires in Washington and Oregon, a forester told him of finding a burning fawn beside a log; apparently "the fawn remained hiding even as flames approached until it was too late to escape". In Wisconsin, a ranger reported finding a carcass of a white-tailed deer fawn after a "hot" spring fire. The fawn's mother remained nearby the fawn as the fire blazed "in a futile effort to save her young". The mother was blinded and severely injured during the fire, while the fawn was "burned to a crisp" [194]. Robbins and Meyers [342] stated that it is likely that all but the youngest fawns escape most fires, although fawns separated permanently from their mothers would probably not survive. Because fawns have a long breeding season in Florida, few vulnerable fawns would be present at any one time [342]. Collins [68] commented that young-of-the-year of most mammals, including white-tailed deer and mule deer, would have been able to escape an early August mixed-severity wildfire on the Salmon National Forest, Idaho, partly because considerable escape terrain was available in the form of rock outcrops and slides.

Early researchers noted white-tailed deer's apparent lack of fear of fire (e.g., [25,127,178,199,356]). General observations suggest that white-tailed deer use areas during and soon after fire (e.g., [25,127,199,366]). White-tailed deer respond to an approaching fire by moving away or ahead of it, and by using streambeds or other wet sites as refuges [159,160,178,251,436]. In state parks in Florida, white-tailed deer "often responded to fire without panic by simply moving into a marsh as fire burned all around, or stepping through a break in the flaming front to reach blackened ground" [160]. During an early August, mixed-severity wildfire on the Salmon National Forest, Idaho, deer were occasionally seen in areas while fire was still burning. For example, a doe and fawn were seen standing beneath a burning snag [68]. In Clarke County, Alabama, white-tailed deer were observed feeding within 65 feet (20 m) of an approaching fire "with no apparent alarm", and at no time were they observed running in response to fire [178]. Several radiocollared white-tailed deer remained in grasslands with scattered Ashe juniper at the Kerr Wildlife Management Area, Texas, as the grasslands burned under prescription. In most instances the deer "showed no noticeable fear of the approaching flames" [25]. Komarek [199] observed white-tailed deer nibbling ash soon after a July prescribed fire at the Tall Timbers Research Station, Leo County, Florida, possibly as a source of calcium, potash, and trace minerals. Although direct effects of fire have been assumed to be minimal because white-tailed deer are able to move temporarily to unburned areas [373], fragmentation of rangelands from agriculture, urban development, transportation corridors, and fencing could limit the ability of white-tailed deer to move to unburned areas during and soon after large fires [232].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Dispersal

provided by Fire Effects Information System Animals
More info for the terms: cover, density, forest

White-tailed deer may disperse year-round [153] but are most likely to disperse during the fawning period or the rut [153,255,381,392]. Young males (1-1.5 years old) are most likely to disperse [94,121,255,279,381,392]. According to a review, about 50% to 80% of males disperse as yearlings [392]. Males commonly disperse away from their natal area but often settle within the region occupied by their natal population. Yearling does tend to remain relatively close to natal sites [79,94,188]. A review noted that rates of doe dispersal are typically low, ranging from 2% to 20% [94]. Annual rates for Crab Orchard National Wildlife Refuge, Illinois, averaged 4%, 7%, 10%, 13%, and 80% for fawns, adult females, adult males, yearling females, and yearling males, respectively [153]. According to a review, dispersal rates of males appear to increase as population density increases [79]. In the highly fragmented ranges of the agricultural Midwest, female fawns and yearlings disperse more frequently than females in other regions, regardless of population density [279]. Over 5 years in east-central Illinois, 50% of female and male fawns and 20% of yearling females dispersed 28 to 31 miles (45-50 km) between April and June [296]. A study in an agricultural region of central and northern Illinois reported some of the highest dispersal rates: 65% for males and 39% for females. Female fawn dispersal decreased as white-tailed deer density (yearling and adult females) and forest cover increased. Higher than expected female dispersal was attributed to habitat scarcity in spring coupled with high fawn survival [297].

Dispersal distances vary but are typically short (<6 miles (10 km)), but distances of >93 miles (150 km) have been reported [279]. Habitat features may influence dispersal distances, where bucks disperse farther in more open or fragmented habitats than in forested or dense habitats. For example, dispersal distances of males may exceed 19 to 25 miles (30-40 km) in agricultural habitats of the Midwest, where vegetative cover is fragmented and patchy [94]. In Pennsylvania, dispersal distances of yearling males were greater in habitat with less forest cover (r²=0.94, P<0.001). The authors suggested that in less forested landscapes, white-tailed deer may travel farther to find suitable habitat patches [239].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Distribution

provided by Fire Effects Information System Animals
More info for the term: woodland

The white-tailed deer is native to North America, Central America, and South America. In North America, the white-tailed deer ranges from southern Yukon and Northwest Territories, across the southern provinces of Canada, and southward throughout most of the conterminous United States. It is rare or absent in Alaska, California, Nevada, and Utah. It is found in all of Canada, except Nunavut, Newfoundland, and Labrador [122,155,279,381]. The range of the Key deer is composed of 17 islands in the lower Florida Keys that total about 38 miles² (98 km²) [95]. Columbian white-tailed deer exist in 2 geographically isolated populations: in about 460 miles² (1,200 km²) of oak (Quercus spp.) woodland in Douglas County, Oregon, and about 90 miles² (240 km²) of bottomland in and around the Julia Butler Hansen Refuge for the Columbian White-tailed Deer in southwestern Washington [122,378]. White-tailed deer have been introduced and established in many parts of the world, including New Zealand, Finland, Serbia, Croatia, and the Caribbean Islands [155]. This review focuses on white-tailed deer in the United States. NatureServe provides a distributional map of white-tailed deer.

States and provinces [289]:
United States: AL, AR, AZ, CO, CT, DC, DE, FL, GA, IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY
Canada: AB, BC, LB, MB, NB, NS, NT, ON, PE, QC, SK, YT
Mexico

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Fire Management Considerations

provided by Fire Effects Information System Animals
More info for the terms: basal area, competition, cool-season, cover, density, fire intensity, fire severity, fire use, forb, forbs, forest, fruit, fuel, hardwood, herbaceous, high-severity fire, lichen, lichens, litter, low-severity fire, mast, mesic, mosaic fire, prescribed fire, presence, series, severity, shrub, shrubs, succession, surface fire, swamp, top-kill, tree, vines, warm-season, wildfire

General recommendations:
Prescribed fire is commonly used in white-tailed deer habitats, typically to stimulate the production of more abundant, available, and nutritious forage [403]. Fire benefits white-tailed deer by increasing the quantity and improving the quality of woody and herbaceous foods, which ultimately affect a population through growth, development, reproduction, and survival. Potential negative effects of fire on white-tailed deer include reduced hard mast availability and reduced cover for escape or protection from weather [251].

Wild and prescribed fire can affect the nutrient content, palatability, and accessibility of forage for white-tailed deer [403]. Plant nutrient levels may remain unchanged, increase, or decrease after burning, depending on season, soil, weather, fire type, and other factors [30,247,251]. Postfire levels are generally higher than levels on prefire or control areas after moderate- or high-severity fires [365], but short duration, low-severity fires may not increase foliage nutrients [365,388]. Although increased plant nutrient levels may last up to 20 years after fire, according to reviews, most studies of moderate or severe fires indicate that nutrient contents revert to prefire or control levels in 2 years or less [30,89,247,365]. Vegetation >5 feet (1.5 m) tall is inaccessible to white-tailed deer (see Diet), and fire can increase white-tailed deer forage accessibility by reducing browse height [251,365].

Wild and prescribed fire can increase some important white-tailed deer forage species, especially those that can sprout after top-kill, while decreasing others [248,251,394]. For example, Canada yew (Taxus canadensis) is highly preferred browse of white-tailed deer in the North that is poorly adapted to fire (e.g., shallow roots and slow growth) [460], whereas most shrubs in Texas are sprouters [122,361] that persist and often thrive after fire. Effect of season of burning on postfire sprout production varies among woody species. Growing-season fires may damage shrubs more than cool-season fires because warm ambient temperatures result in greater fire intensity, and damage to plants may be more likely when plants are actively growing [80]. Sprouting of shrubs in longleaf pine savannas, for example, tended to be greater following dormant-season fires than growing-season fires [100]. In addition, reproductive characteristics, plant size, fuel load, and shrub location relative to other shrubs can affect shrub survival following fire [80]. For more information, see FEIS reviews of plant species of interest.

Soft and hard masts are important to white-tailed deer throughout the species' range. Wild and prescribed fire often increase soft mast by 2 to 4 postfire growing seasons [70]. However, fires that kill mature trees may reduce hard mast production for many years [251]. For more information, see Southern Appalachians. Annual growing-season fires, which can result in extensive grass cover, may not provide high-quality white-tailed deer forage. Periodic dormant-season fires, which can result in increased forbs, could provide abundant white-tailed deer forage during the growing season. However, any management practice that involves removing shrubs or overstory plants may reduce browse or mast [157]. The effects of prescribed fire vary depending on fire timing, type, and size; weather conditions before and after fire; site productivity; and other factors [157].

Fire timing: Season of burning may affect white-tailed deer forage availability [102]. A review of prescribed burning effects on white-tailed deer in Florida stated that because white-tailed deer eat a wide variety of foods, including grasses, forbs, browse, hard mast, soft mast, and mushrooms, different seasonal burning regimes could promote different components of the diet: Growing-season fires tend to promote herbs while dormant-season fires tend to promote browse [342]. Thus, planning prescribed fires in multiple seasons may benefit white-tailed deer. For more information, see Southeast forests. A review cautioned that managing for a variety of plant species—for example, by burning under prescription at different times of year—may be more important than managing for certain preferred forages. It noted that in Texas, some poor forage species such as coyotillo (Karwinskia humboldtiana) may be valuable hiding cover [121].

Fires that occur in fall or early winter may remove important cover during an entire winter, whereas fires that occur during the growing season are likely to reduce cover for a much shorter period [254]. Fires that occur during fawning may remove important fawning cover, potentially resulting in increased predation of fawns [19,59] (see Malnutrition and weather). If fire occurs during the hiding period, it could potentially kill fawns [107,127,194,342] (see Direct Fire Effects).

Fire type: Patchy burns may be best for white-tailed deer [159,217,247,467]. Discontinuous burning is most beneficial to white-tailed deer and wildlife in general because it results in cover close to feeding habitat, increased variety of forage species, and staggered maturation rates of individual stands [247]. In a review of fire effects on ungulates in the Northern Great Plains, Higgins and others [159] stated that "optimum" benefits of fire for white-tailed deer occur where fire creates a mosaic pattern of burned and unburned vegetation that provides new forage growth, seasonal habitats, and vegetation in early to late stages of succession. According to Wright [467], a patchy burn with about 20% unburned vegetation is most desirable for wildlife because it would leave adequate cover and result in abundant forage. Lay [217] stated that the pattern that produces the most diverse understory (e.g., a mixture of stand sizes, types and species, and well-distributed clearings) will most benefit white-tailed deer. He also stated that most white-tailed deer rangelands are likely improved by fire, in part because of differences in plant composition between burned and unburned areas [219]. Although a large fire could reduce the interspersion of food and cover for white-tailed deer by producing uniform vegetation, reviews stated that fires rarely burn evenly and typically produce a mosaic of vegetation beneficial for deer [30,247].

Fire size: Several small fires may be more beneficial to white-tailed deer than one large fire because of increased edge habitat. Large fires may be detrimental to white-tailed deer in the short term by causing initial food shortages and removing too much cover [30]. Regardless of habitat, because portions of large burns that are far from suitable cover may be unused, small burns are often considered better for deer [30]. Bendell [30] hypothesized that deer may benefit most from small fires because they result in more edge and greater interspersion of habitats than one large fire. Other researchers agreed that the pattern that produces the most habitat diversity will be the most beneficial to white-tailed deer [79,121,164,369]. Scifres and Hamilton [361] stated that the goal of white-tailed deer Habitat management should be to create a vegetation mosaic of adequate structure (height, stem density) and species diversity to retain critical screening cover while increasing forage. They recommend that when planning prescribed fires, managers consider: 1) placement of burned areas relative to the core of white-tailed deer activity, 2) placement of burned areas relative to other burns and unburned areas, and 3) the ratio of burned to unburned area [361]. Brown [42] considered small burned areas, especially those on winter rangelands, vulnerable to damage by deer and other ungulates because browsing may be concentrated in small areas. He suggested either burning multiple small areas within a landscape or burning a single, large area with a mosaic fire to disperse animals [42]. For more information, see Effects of herbivory on vegetation.

Management recommendations for white-tailed deer for specific geographic regions often include a maximum opening size or minimum distance to cover (e.g., [178,187,361]). For example, 2 radiocollared white-tailed deer in Clarke County, Alabama, had home ranges of 301 acres (122 ha) and 321 acres (130 ha). The authors suggested that small prescribed burns (<74 acres (30 ha)) would be best for white-tailed deer in this region because "sizable" portions of the home range of a given white-tailed deer would be unaffected by a given fire [178]. In southern Texas shrublands, Scifres and Hamilton [361] suggested creating 5-acre (2 ha) patches. They assumed that white-tailed deer home ranges were approximately 1.0 mile² (2.6 km²). They suggested that alternating burned and unburned strips is less desirable than burning patches because patches provide more edge habitat than strips. For more information, see Size and shape of burned areas.

Other general considerations: Because travel patterns of white-tailed deer prior to fire may affect postfire use, Pengelly [319] suggested it is important that Habitat management for white-tailed deer be based on the particular movement patterns and needs of the individuals making up that population. Prescribed fires on steep slopes at high elevations are unlikely to benefit white-tailed deer on northern Rocky Mountain winter rangelands because they do not use these areas in winter, while prescribed fires on shallow slopes at low elevations may be beneficial [319]. Telfer [406] cautioned that cover should be left in yarding areas because of herd fidelity to these locations.

White-tailed deer may affect postfire succession. Thus, white-tailed deer population densities are often considered in burning plans. At the Kerr Wildlife Management Area in Texas, Armstrong [12] stated that prior to prescribed burning in areas with high white-tailed deer densities, the white-tailed population should be reduced because vegetation on recent burns is vulnerable to overgrazing. Springer [385] recommended reducing white-tailed deer populations after burning to improve forage and deer body condition. Krefting [203] stated that "burning seems to be particularly beneficial in areas that have not been subjected to excessive white-tailed deer populations of long standing". For more information, see Effects of herbivory on vegetation.

White-tailed deer may not be able to take advantage of postfire successional communities because of high predation risk in these areas. See White-tailed deer, predator, and fire interactions.

Fire may influence interspecific interactions. For example, resource competition with bighorn sheep and mule deer may increase in the absence of fire (see White-tailed deer, other ungulate, and fire interactions). Asherin [14] suggested using several small prescribed fires scattered across winter rangelands to reduce interspecific interactions and disperse browsing pressure across burned and adjacent unburned areas.

The presence of cattle and other livestock may reduce the benefits of prescribed fire to white-tailed deer. At the Kerr Wildlife Management Area in Texas, Armstrong [12] stated that on burns, livestock should be managed using a rotational grazing system to prevent overgrazing of white-tailed deer foods. Furthermore, burned areas should be rested from livestock grazing for at least one growing season after fire, depending on fire severity and postfire precipitation [121,341]. In southern and western Texas, Bryant and Demarais [45] cautioned that if a recently burned area is grazed, rotational grazing should be used. Otherwise, livestock may concentrate on burned areas. Grazing may need to be deferred during at least a portion of the growing season in areas to be burned, to ensure fuels are sufficient to carry the fire [341]. See Livestock presence in burned areas for more information.

In northern regions, snow depth, duration, and hardness are likely to influence white-tailed deer use of burned areas [247], while in arid and semiarid regions precipitation may affect white-tailed deer use of burned areas [275]. For more information see Weather and use of burned areas.

Prescribed fire may reduce parasites afflicting white-tailed deer and reduce the prevalence of diseases, but the benefits are likely to be short term (see Diseases and parasites).

Differential habitat use by male and female white-tailed deer (see Age and sex) may warrant different uses of fire in their habitat [192,393]. For more information, see Sex differences in burn use.

Prescribed burning and its associated human activities may reduce white-tailed deer populations in the short term by increasing their vulnerability to hunting. The fall after the Moose Creek Fire on the Salmon National Forest, Idaho, hunting pressure on deer using the burned area was high, despite road closures [68]. Sampson [358] cautioned that the attraction of deer to small burned areas may lead to excessive hunting and require restricted hunting seasons after fire to maintain populations.

Proximity of burns to water may affect their use, particularly in the Southwest. In Mexican pinyon stands in the Madrean evergreen woodlands of southeastern Arizona, white-tailed deer pellet groups accumulated twice as fast on an area burned by a severe June wildfire 6.5 years prior that was near (980 feet (300 m)) permanent water than on a burned area that was far (3,940 feet (1,200 m)) from permanent water (Southwest woodlands) [23].

Fire affects the spread of nonnative invasive plants, which may be beneficial or detrimental to white-tailed deer. For more information on white-tailed deer use of nonnative invasive plants, see Nonnative invasive plants. See also FEIS reviews of nonnative invasive plants of interest.

Recommendations specific to each region: Boreal forest
Telfer [407] considered preservation of wintering yards critical in the boreal forest region, where climate tends to be marginal for survival of white-tailed deer. He suggested that diverse habitat—where a variety of age and composition classes occur interspersed in small stands—would be optimal for white-tailed deer in this region.

Pacific Northwest
Degradation of riparian areas is the major factor that reduced populations of Columbian white-tailed deer historically [122]. Fulbright [122] suggested planting native trees and shrubs such as cottonwood, spruce, alder (Alnus spp.), salal, ninebark (Physocarpus spp.), dogwood, and elderberry in riparian areas where woody plants are absent to provide browse and cover. He also suggested protecting riparian areas with remaining woody plants [122].

In Douglas-fir and grand fir types of northern Idaho, Pengelly [319] concluded that slash burning often favors early establishment of seral shrubs, many of which are preferred white-tailed deer forage species, and that broadcast burning of logging debris would increase preferred forage more than pile burning. He cautioned that creating large openings in stands may increase snow depth, making forage inaccessible to white-tailed deer in winter [319]. In ponderosa pine forests, decreasing Douglas-fir in overstories, increasing spacing between trees, and reducing conifers in the understory via fire or other means potentially reduces white-tailed deer habitat by reducing arboreal lichen litter fall and thermal cover important in winter. Fulbright [122] stated that managing forests to maintain high rates of arboreal lichen litter fall is likely to benefit white-tailed deer populations in the Pacific Northwest because white-tailed deer often consume lichens in winter.

Southwest
Mesquite: Mesquite shrublands are an important habitat for white-tailed deer in the Southwest, and treatments that reduce large areas of mesquite may reduce fruit and browse production and cover for white-tailed deer. In the Texas Rio Grande Plain, white-tailed deer preferred untreated areas to areas that were rootplowed and seeded with nonnative blue panicgrass (Panicum antidotale), especially under drought conditions, apparently because preferred food and cover were more abundant [84]. While large clearings via fire or other means may be detrimental, particularly during drought years, small openings in a mosaic pattern may create forage, especially in dense, extensive stands [365]. In general, lack of sufficient rain after a burn may lead to minimal regrowth of vegetation and thus little advantage to white-tailed deer [275]. For more considerations about precipitation, see recommendations for the South-central US.

Gambel oak: Gambel oak is an important white-tailed deer food in the Southwest. Its mast and browse are used extensively [365]. Burning or clearcutting patches in Gambel oak habitat may produce abundant browse because of its sprouting ability, but this would reduce mast. For this reason, selective cutting, in which the best acorn-producing trees are left, was recommended to ensure both browse and mast production in a single stand [365]. Anderson (1969 cited in [58]) cautioned against using prescribed fire in Gambel oak communities as a general policy because of the importance of Gambel oak acorns and browse to mule deer. Kruse [207] suggested using prescribed fire in Gambel oak woodlands on poor-quality sites to enhance brushy growth but avoiding prescribed fire use on better-quality sites with mature oaks. For more information, see Southwest shrublands. For a comprehensive review of Gambel oak management with fire and other methods see Onkonburi [303] and the FEIS review of Gambel oak.

Rocky Mountains
In the Rocky Mountains, prescribed fire can benefit white-tailed deer by increasing forb production on summer and transitional rangelands, removing litter, and stimulating the sprouting of browse species such as true mountain-mahogany, chokecherry, serviceberry, snowberry, and quaking aspen on winter rangelands. Olson [302] provided the following guidelines for burning under prescription on white-tailed deer rangelands in Wyoming:
  • 1. Conduct prescribed fires only in years with average or above-average precipitation. Adequate soil moisture is essential for plant growth following fire.
  • 2. Conduct prescribed fires in late summer or early fall in 50- to 100-acre (20-40 ha) patches to favor grass and forb growth. Conduct prescribed fires in spring to favor growth of sprouting shrubs.
  • 3. Exclude livestock for at least 2 postfire growing seasons to allow for plant reestablishment.
  • 4. Avoid reburning grass and/or forb communities for at least 5 to 7 years and shrublands for at least 10 to 12 years, depending on soils and weather [302].
White-tailed deer in the Rocky Mountains require conifer forests for cover in winter. Fire that reduces too much winter cover may be detrimental. In the Priest River drainage of northern Idaho, white-tailed deer preferred old-growth western hemlock/queencup beadlily (Clintonia uniflora) and western redcedar/wild ginger (Asarum caudatum) stands to adjacent habitats where snow was >16 inches (40 cm) deep. Despite their depauperate understories, the dense canopies cover and shallow snow made those stands more attractive than the adjacent sites. When snow was shallow, wintering white-tailed deer selected lodgepole pine and Douglas-fir pole stands that provided more preferred forage species. The authors suggested that in regions with deep snow, managers retain old-growth forest—or mature 2nd-growth forest stands with similar structural attributes—for white-tailed deer [314]. Because of the importance of cover in winter in the Douglas-fir zone of northern Idaho, Pengelly [319] recommended only small clearcuts followed by burning.

Northern Great Plains
Bur oak: Distribution of bur oak (Quercus macrocarpa) in the Black Hills and Bear Lodge Mountains of South Dakota and Wyoming coincides with primary white-tailed deer winter rangeland. Burning or clearcutting bur oak stands typically produces abundant bur oak sprouts. Although bur oak is palatable to white-tailed deer, burning or clearcutting may be a poor practice in these habitats because bur oak browse is of poor nutritional quality and production of bur oak's highly-nutritious acorns would be reduced [364]. Severson and Kranz [364] recommended selective cutting of bur oak to provide a more productive forage complex on deer winter rangelands. In mixed pine-oak stands, selective removal of ponderosa pine trees may enhance oak and shrub production that benefits white-tailed deer [368]. See FEIS review of bur oak for more information on fire effects and management recommendations.

Quaking aspen: In the Black Hills, Sheppard and Battaglia [368] suggested that providing a variety of seral quaking aspen stands will maximize cover and forage diversity for white-tailed deer. Fencing or other means of excluding white-tailed deer may be needed to allow quaking aspen sprouts to establish after treatments [368]. For further recommendations for quaking aspen forests, see Great Lakes.

Ponderosa pine: In the Black Hills, Sheppard and Battaglia [368] suggested that forage production for white-tailed deer can be increased through prescribed burning of stands, thinning of trees, and reduction of pine litter. Burning ponderosa pine stands with preferred white-tailed deer browse species such as chokecherry, serviceberry, and quaking aspen in the understory can be beneficial because these understory species sprout after fire, and young sprouts are usually more nutritious than unburned mature plants [368].

Great Lakes
In the extensive forests of the northern Great Lakes region, the "greatest number of (white-tailed deer) will be produced by keeping the habitat in the early stages of plant succession" such as by burning under prescription [424]. Byelich and others [50] recommend for Michigan that 25% of an upland forest type be 1 to 10 years of age and interspersed with other age classes. They also recommend that 35% of upland areas be maintained as aspen stands and 15% as forest openings. In lowland coniferous habitats, they recommended 35% be maintained as openings or in early-seral stages [50]. Jenkins [181] recommended using prescribed fire to maintain open areas in forested regions of the Great Lakes. He suggested that such areas be burned every 5 to 10 years, either in early spring or in late fall. He recommended burning areas with aspen, cherry, serviceberry, young jack pine, and maple to produce shrubby cover and open the canopy. Burning bear oak was not recommended because it takes 15 to 20 years or more to reach mast-producing age [181]. In Wisconsin, McCaffery and Creed (1969 cited in [133]) recommended openings of 5 acres (2 ha) or less to improve white-tailed deer habitat.

Quaking aspen: Quaking aspen is heavily browsed by white-tailed deer in the Great lakes [38]. In Minnesota forests with aspen, numerous small and well-distributed areas of various age classes are most likely to benefit white-tailed deer (Rutske 1969 cited in [133]), though most use of quaking aspen by white-tailed deer occurs during the first 3 to 5 years after a stand is cut or burned [38]. However, fires at 2- to 3-year intervals should be avoided because the quaking aspens may fail to sprout [38]. See Timmermann [421] for a review of white-tailed deer habitat guidelines for quaking aspen communities. See Gullion [139] for recommendations on the size and distribution of cuts, rotation age, and reentry periods for quaking aspen stands.

Northern whitecedar: Northern whitecedar is common in white-tailed deer yards, but it is difficult to regenerate after burning and clearcutting because of heavy white-tailed deer browsing [163]. Verme and Johnston [435] found that in the absence of white-tailed deer browsing in the Petrel Grade yard near Shingleton, Michigan, broadcast burning slash in strip and small-block clearcuts in northern whitecedar forests prepared a seedbed conducive to northern whitecedar regeneration. To regenerate northern whitecedar, the authors recommended broadcast burning following clearcutting when 1) there was little advance reproduction; 2) thick slash deposits occur; 3) a large amount of deciduous "brush" is present; and/or 4) the site is likely to convert naturally to other conifers such as balsam fir. They cautioned, however, that in drought years or in areas with high white-tailed deer populations, northern whitecedar seedling mortality could be high: "It is imperative that few or no (white-tailed) deer use the area until the saplings have grown beyond their reach, in 20-40 years depending upon site quality" [435]. Thus, they concluded that northern whitecedar yard rehabilitation should only be attempted where either: 1) white-tailed deer density could be closely controlled through antlerless harvest; 2) the existing herd could be drawn away from regenerating areas through annual logging of northern whitecedar in other areas; or 3) a large (40-158 acre (16-64 ha)) area could be completely logged in 5 to 10 years, leaving no shelter to attract white-tailed deer during winter [435]. Davis and others [83] found that although high numbers of northern whitecedar seedlings were recruited after low-severity surface fire in northern whitecedar plots from which white-tailed deer were excluded, plots without white-tailed deer exclosures had no northern whitecedar seedlings after 10 years. He recommended clearcutting small patches located adjacent or close to each other so that 40 to 158 acres (16-64 ha) are completely cut in 5 to 10 years. This method assumed that white-tailed deer would avoid the center of large clearcuts due to lack of cover in these open patches, "thus thwarting browsing" [83]. However, Telfer [406] cautioned against removing too much cover in any white-tailed deer yard because high fidelity to wintering areas could cause high deer mortality (see Travel patterns). Because northern whitecedar seedlings grow slowly, a review suggested that managers desiring to regenerate northern whitecedar be prepared for extended time periods before northern whitecedar saplings grow above white-tailed deer browsing height [163]. See Hofmeyer and others [163] for a review of northern whitecedar ecology and management. For further recommendations about yards, see Northeast.

Northeast
Management of white-tailed deer yards primarily involves locating and evaluating them, preserving shelter within them, and providing food sources within and adjacent to them. Burning under prescription or cutting to control stand density, species composition, and age class distribution along with planting conifers are the main management tools [408]. Diefenbach and Shea [95] stated that in the northern range of white-tailed deer, the most important Habitat management tool is protection and maintenance of yards. Other researchers also advocated protecting and maintaining yards [79,430]. Management guidelines suggest maintaining about 50% to 60% dense conifer cover in yards, with the remaining portion a mixture of openings and early-successional forests that provide browse. These early-successional forests could be created by burning and/or clearcutting [95,157,408]. Miller and others [279] stated that in white-tailed deer yards, burned and/or logged areas should be small (5-10 acres (2-4 ha)) and well dispersed. In New Hampshire, Williamson and Langley [457] gave the following recommendations for managing spruce-fir yards: 1) maintain cover within most of the yard; 2) encourage spruce and fir regeneration in the yard and in adjacent stands; and 3) where possible, manage adjacent hardwood stands for browse production. For a review of silvicultural recommendations for yard management in spruce-fir and northern whitecedar forests, see Telfer [408].

South-central US
Shrublands: Shrubs provide cover and food (browse and mast) for white-tailed deer. However, too much shrub cover can hinder white-tailed deer movements, reduce herbaceous forage, and potentially increase predation mortality. Thus, shrub removal in some parts of the south-central United States may benefit white-tailed deer, although removing too many shrubs may be detrimental [341]. According to Richardson [341], white-tailed deer generally prefer a mosaic of shrubs and trees interspersed within open areas at an approximate 3:1 ratio of shrublands to openings. Benefits of prescribed fire to white-tailed deer in South-central US shrublands include: 1) removing old growth and litter build-up from bunchgrasses that are used as fawning cover; 2) increasing palatability of forage; 3) increasing plant nutrients for 3 to 4 months; and 3) suppressing "undesirable" woody plants such as mesquite, Pinchot juniper (Juniperus pinchotii), and shinnery oak (Quercus havardii) [341]. In shrublands in southern Texas, white-tailed deer generally benefit from prescribed fire because it increases forage availability [361]. A review provided the following guidelines for planning a prescribed fire in arid and semiarid regions of Texas and Oklahoma to benefit white-tailed deer [121]:
  • Warm-season (summer) prescribed fire might be selected in preference to cool-season (winter) prescribed fire if the objective is to increase woody plant kill and open dense shrublands. In contrast, early-winter prescribed fire might be selected to increase the standing crop of forbs.
  • High-severity fire usually reduces shrubs more than low-severity fire and may be used as a follow-up treatment to mechanical or chemical treatments.
  • Winter prescribed fire may be used to create a mosaic of burned and unburned areas to enhance vegetation diversity.
  • If the objective is to create feeding areas for white-tailed deer, burned patches ranging from 20 to 40 acres (8-16 ha) might be interspersed across the landscape with perhaps 1 burned patch/km².
  • Prescribed burns could be conducted at different times of the year to promote greater patchiness and vegetation diversity. For example, if a management area is 4 mile² (10 km²) and 10 patches are to be burned, 33% could be burned during summer, 33% in early fall, and the remainder in early winter.
  • Burned areas should be rested from livestock grazing for at least one growing season after fire, depending on precipitation following the fire and fire severity.
In the Texas Rolling Plains, late winter fire tends to favor perennial, warm-season grasses, whereas early winter fire tends to promote the production of cool-season annuals and perennial forbs, such as legumes, that are highly preferred by white-tailed deer. Thus, late winter prescribed fires are generally recommended for white-tailed deer management in the Texas Rolling Plains [341]. According to Bryant and Demarais [45], the best time to burn for white-tailed deer in Texas is December, because December prescribed fires tend to result in the greatest amount of forbs. However, the authors cautioned that during winters of "good" winter forb production, when forbs may have already germinated by December, December burning may damage or kill them [45]. At the Kerr Wildlife Management Area, burning prior to mid-January—a period when many cool-season forbs begin to germinate and form rosettes—was recommended [12]. Scifres and Hamilton [361] stated that burning in early winter is likely to promote forbs, especially if late winter rainfall is adequate. However, late winter prescribed fires may also result in a flush of forb growth. Regardless of timing, they suggested that burning be conducted on sites with a "propensity" for forb production such as mesic sites [361].

In 2008, Richardson and others [341] stated that summer prescribed fire is seldom used in the Texas Rolling Plains because of inconsistent rainfall in summer and fall. High temperatures generated by a summer fire can damage root systems of grasses, especially if they are already stressed from drought and/or heavy grazing. However, native grasses and forbs can respond quickly to rainfall following summer fires [341]. In semiarid rangeland in Uvalde County, Texas, 6 and 10 months after three 100-acre (40 ha) late-September prescribed fires, low use of burned areas by white-tailed deer was attributed to drought, which limited vegetation growth on burned areas. The authors stated that use of prescribed fire for the improvement of white-tailed deer rangelands can be a valuable asset, but only when environmental conditions are suitable [275].

Various sizes for burned areas have been recommended for white-tailed deer management in Texas shrublands. In southern and western Texas, Bryant and Demarais [45] recommended burned areas be <150 acres (60 ha) and scattered throughout an area, suggesting one 150-acre burned area per 600 acres (240 ha). The authors also provide guidelines for open:cover ratios, maximum opening width, ideal opening width, and opening pattern [45]. Holechek [164] recommended small openings (5-40 acres (2-16 ha)) in dense shrublands. He cautioned that too frequent (<20 years) use of fire in semiarid rangelands may reduce browse plant numbers and thus deplete white-tailed deer range [12]. According to Richardson and others [341], the most beneficial burning programs in the Texas Rolling Plains for white-tailed deer were those that incorporated a multiyear rotation so that 10% to 20% of an area was burned each year, rather than an entire area. This schedule allowed at least 5 to 10 years between fires for any given area and provided for a diverse pattern of food and cover at various stages of growth. The authors stated that highly erodible areas should be protected from fire [341].

Sparse fuels in arid and semiarid regions may require livestock grazing deferment during at least a portion of the previous growing season in areas to be burned. In addition, it will likely be necessary to defer grazing immediately after a prescribed fire to promote plant growth and rangeland recovery [341]. Several researchers cautioned that if a burned area is grazed by livestock, rotational grazing should be used. Otherwise livestock may concentrate on burned areas and potentially damage postfire vegetation [12,45]. Armstrong [12] stated that prior to burning shrublands in the Edwards Plateau, white-tailed deer populations should be "heavily" reduced when the objective of burning is to stimulate white-tailed deer food production and vegetation. Ruthven and others [355] speculated that slow recovery of spiny hackberry and decline of Texas lignum-vitae following fire resulted from browsing by white-tailed deer and other herbivores. They suggested that it may benefit white-tailed deer to limit the use of prescribed fire in areas dominated by highly preferred species that decline following fire and target areas dominated by vulnerable, less desirable species (e.g., twisted acacia and lantana (Lantana camara)) and desirable fire-tolerant species (e.g., Texas hogplum (Colubrina texensis)) [355].

Removal of shrubs over large areas may be detrimental to white-tailed deer by removing too much hiding and thermal cover. In addition, many shrub species are important forages during the dormant season and during extended dry periods [45,164,341]. Large-scale (>640 acres (260 ha)) clearing of woody plants by mechanical methods such as root plowing and chaining generally reduces white-tailed deer population densities [122,164]. Some researchers stated that nonsprouting species, such as Ashe juniper, be protected from disturbance because many do not recover quickly after fire and that some mature sprouting species be protected from fire to produce hard and soft mast important to white-tailed deer [45,121]. Fulbright [122] suggested that areas in western Texas containing Mexican blue oak (Quercus oblongifolia) and juniper be protected from cutting to maintain thermal cover for white-tailed deer. Scifres and Hamilton [361] stated that most rangeland fires do not reduce white-tailed deer cover in proportion to the area burned because most fires are patchy due to sparse or poorly distributed fuels. Thus, cover from unburned stems and from standing dead stems remains after most fires. In addition, most southern Texas shrubs sprout after fire and recover to prefire values quickly after fire [122,361]. Thus, white-tailed deer cover in South-central US shrublands is normally reduced for no longer than a growing season. Still, researchers caution that managers be aware of white-tailed deer cover requirements and ascertain that adequate cover is retained across the landscape after prescribed fire [361]. Several researchers stated that a mosaic of shrubs and openings is generally best for white-tailed deer [12,122,164] (see Fire size).

Oak and pine-oak: To increase growth and availability of important white-tailed deer foods, Masters and others [260] recommended a prescribed burning rotation of 2 to 4 years on harvested sites in post oak-shortleaf pine-blackjack oak stands on the Pushmataha Wildlife Management Area, Oklahoma, to increase growth and availability of important white-tailed deer foods [260]. Yantis [468] suggested that post oak woodlands be burned between early December and early February once every 4 years or more to benefit white-tailed deer. Burning post oak woodlands too often may decrease mast production, however. They also suggested that a variety of oaks be retained in the overstory [468].

Southern Appalachians and Southeast
White-tailed deer Habitat management in the southeastern United States is primarily concerned with providing diverse browse and forage species, and secondarily with providing cover for escape or protection from severe weather [251]. Benefits of prescribed fire in southeastern forests include: 1) reduced "undesirable" understory hardwoods (e.g., sweetgum, red maple, southern bayberry (Myrica caroliniensis)); 2) reduced height of palatable species; 3) improved nutrient quality of browse; 4) increased herbaceous foods under semiopen overstory conditions; and 5) increased understory fruit production under sparse overstories. Negative effects commonly noted by researchers include reduction in browse and vines for a year or longer, reduced soft mast for approximately 3 or 4 years, and reduced acorn abundance for >25 years [213,369].

In the southern Appalachians and the Ouachita and Ozark Mountains and some coastal islands, white-tailed deer productivity depends on acorn production; thus, retention of stands with high mast production is important [279]. Acorn yield is highly variable from year to year and is related to oak species; age, basal area, and crown size of individual trees; tree stand density; and weather [135,333]. Substantial mast yield is rare in oak trees <25 years old [333]. Best acorn yields occur from large-diameter trees with well-developed crowns. Late spring frosts may reduce acorn yields [333]. Managers may help promote a steady supply of acorns by maintaining a diversity of species of red and white oak sections of different age classes within an area [108,333]. For example, a last spring freeze in March 1955 in east Texas and Louisiana caused nearly complete mast failures in 1955 for species in the white oak section (post oak, white oak, and swamp chestnut oaks (Quercus michauxii)), which flower and fruit in 1 year. Species in the red oak section had a good acorn crop that year but a poor crop the next year, because these species require 2 years to fruit [333]. "Hot" surface fires in forests with oaks can consume acorns on the forest floor. However, "light" surface fires may expose recently fallen acorns which may be little damaged [149]. Ivey and Causey [178] reported that 2 weeks after burning, white-tailed deer preferred the hardwood/pine habitat to the pine habitat because hardwood mast had been exposed by the fire. The conflicting requirement of accessible browse versus hard mast production suggests that managing browse production areas apart from major acorn-producing stands would benefit white-tailed deer [213]. Stransky and Halls (1967 cited in [369]) stated that when mast-producing hardwoods are a major component of upland forests, prescribed fires should not be used until hardwoods are at least pole size, if at all. Because white-tailed deer browsing can severely reduce oak regeneration, fencing or other means of reducing browsing may be necessary if fire is used in these habitats [389] (see Effects of herbivory on vegetation).

Some researchers recommended using prescribed fire to increase soft mast production in southeastern forests for white-tailed deer. In Table Mountain pine (Pinus pungens)-pitch pine-hardwood/mountain-laurel (Kalmia latifolia) stands in western North Carolina, Randles [331] recommended maintaining a "patchwork" of areas with low-severity fire to increase cover of blueberry and other mast-producing shrubs favorable to white-tailed deer and other wildlife. He also recommended burning some areas with high-severity fire to increase grass production and pine regeneration. He recommended some areas be left unburned as cover [331]. According to a review, mast production for most shrubs and small trees in the Southeast peaks 2 to 6 years after burning [149]. For example, to maintain fruit production for white-tailed deer, Fults [126] recommended burning saw-palmetto understories of longleaf pine-slash pine forests every 3 to 5 years.

In general, annual burning is considered detrimental to white-tailed deer in southeastern forests because of reduced cover, browse, and mast [149]. Annual summer burning may eliminate browse species and annual winter burning limits mast production [251]. Burning every 2 to 3 years generally produces an herbaceous community with scattered shrubs, and burning every 3 to 4 years is likely to produce a mixed-grass and forb community with a substantial shrub component, which would allow soft mast production from blackberries and other species and provide winter cover [151]. Thus, Harlow [151] and Lewis [230] recommended burning every 3 to 4 years. Van Lear and Waldrop [428] stated that use of low-severity fires every 2 to 6 years may help provide browse for white-tailed deer in southeastern pine stands. Other researchers recommended using prescribed fire every 2 to 3 years in slash pine forests to promote shrub and hardwood sprouting ([254], Hurst 1989 cited in [238]). Landers [213] stated that because white-tailed deer browse plants "surpass their prime" about 5 growing seasons after fire, white-tailed deer rangeland would be maintained in "optimum" condition with a 5-year cycle that burns about 20% of an area each year in small parcels. Shrauder and Miller [369] recommended burning every 3 to 5 years to maintain or increase legumes and keep browse plants low and accessible to white-tailed deer in 40- to 60-year-old longleaf pine-slash pine forests. They noted, however, that food benefits for white-tailed deer resulting from fire can last up to 10 years, depending on site characteristics [369]. Without fire for long periods, a dense midstory is likely to develop out of the reach of white-tailed deer [251,369]. In 2003, Maas and others [251] hypothesized that the nutritional benefits of burning for white-tailed deer and other wildlife may be diminished by repeated burning, noting that the effects of repeated fires and various burning regimes need further evaluation.

Different seasonal burning regimes promote different components of the white-tailed deer's diet. Growing-season fires tend to promote herbaceous plants, while dormant-season fires tend to promote browse production [342]. Because browse is often considered the "more important" component, prescribed burning guidelines for managing white-tailed deer habitat in southeastern forests usually recommend dormant-season burning (e.g., [151,231,254,369]). Harper [151] advocated burning late in the dormant season rather than early to manage early-successional habitat for wildlife in the Southeast. Although burning early in the dormant season can increase cool-season grasses, many cool-season grasses in the Southeast are nonnative (e.g., tall fescue (Schedonorus arundinaceus), orchardgrass (Dactylis glomerata), brome (Bromus spp.), and common velvet grass (Holcus lanatus)) and displace desirable native grasses and forbs. Burning early in the dormant season also reduces cover at a time when it may already be limited. Burning late in the dormant season (late March-early April) is likely to increase warm-season grasses and help reduce cool-season grasses that have already started growing. Burning in the late dormant season or early growing season (through mid-April) may also allow white-tailed deer to use cover throughout winter [151]. Another benefit of late dormant-season or early growing-season fires to white-tailed deer is that recovery of herbaceous vegetation occurs more rapidly during the early growing season than during the dormant season. Hence, fires conducted later in the dormant season may promote fast recovery of vegetation [254]. If the objective is to reduce woody plants in dense stands, then burning during the late growing season (September) may be most effective because burning at this time top-kills woody stems before carbohydrates are transported from the leaves to the root system in preparation for senescence. Therefore, root systems are depleted of much of the energy needed to sprout [151].

The importance of forbs to white-tailed deer has prompted some researchers in the Southeast to suggest possible benefits of growing-season fires. Landers [213] proposed that a patchy growing-season fire and the resulting succulent growth of herbs may better meet the nutritional requirements of pregnant does and fawns than dormant-season fires. Stransky and Harlow [394] concluded that infrequent summer fires can increase the abundance and kinds of herbs beneficial to white-tailed deer but that annual summer fires may eliminate browse plants [342]. Shrauder and Miller [369] stated that in 40- to 60-year-old longleaf pine-slash pine stands with dense hardwood understories, a series of annual summer fires ("reclamation fires") may be needed to reduce undesirable species and increase desirable foods such as greenbrier, panicgrass, legumes, and ragweed (Ambrosia spp.). However, they noted that "hot" summer fires may also reduce desirable species, especially fruiting species. "Once the desired understory hardwood thinning on the white-tailed deer range has been obtained, frequent, hot summer fires should be discontinued, lest the range become predominantly mixed grasses and low herbaceous species" less suitable for white-tailed deer. At that time, the authors suggested switching to burning in winter every 3 to 5 years to maintain or increase legumes and keep browse plants accessible to white-tailed deer [369]. Several researchers recommended alternating between growing-season fires and dormant-season fires to enhance white-tailed deer habitat [251,342]. Ultimately, any burning regime should strive to maintain hardwoods in the understory and ensure a diversity of plant species that includes hardwood browse and forbs [251].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Fire Regime Table

provided by Fire Effects Information System Animals
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Fire Regimes

provided by Fire Effects Information System Animals
More info for the terms: fire regime, forest, hardwood, mixed-severity fire, stand-replacement fire, surface fire

Historically, white-tailed deer occurred in most habitats of the continental United States except some desert ecosystems of the Southwest (see General Distribution). Thus, they are probably adapted to a wide range of FIRE REGIMES. White-tailed deer occur in habitats with historically short (e.g., longleaf pine/bluestem and southern tallgrass prairie) to long (e.g., bottomland hardwood forest and eastern white pine-northern hardwood) fire-return intervals, and in areas with surface FIRE REGIMES (e.g., Appalachian shortleaf pine, oak-hickory savanna, and pine rocklands), mixed-severity FIRE REGIMES (e.g., Douglas-fir-western hemlock (dry mesic) and Southeast Gulf Coastal Plain Blackland prairie and woodland), and stand-replacement FIRE REGIMES (e.g., northern hardwoods-spruce, palmetto prairie, and sand pine scrub). The Fire Regime Table summarizes characteristics of FIRE REGIMES for vegetation communities in which white-tailed deer may occur. See Threats for information about how changing FIRE REGIMES affected white-tailed deer populations historically. Find further fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find FIRE REGIMES".
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Home range

provided by Fire Effects Information System Animals
More info for the terms: cover, density, forest, mast, mesic, parturition, tree

Adult white-tailed deer establish and traditionally use seasonal or year-round home ranges. According to reviews, mean annual home range sizes for migratory and nonmigratory white-tailed deer vary from 106 to 7,504 acres (43-3,037 ha) [94,279,392]. Home range sizes are influenced by individual sex and age, season, latitude, population density, habitat characteristics, and weather, among other factors [121,255,279,381]. Males tend to have larger home ranges than females [79,94,121,122,255,279,381,392]. Typically, the annual home range size of adult females is about 50% of that of adult males [279,381]. Adult female ranges are smallest around parturition [94,122,255,392]. Home range sizes of mothers and their fawns may increase with fawn age [121]. Adult male ranges are largest during the rut [94,122,255,392]. Yearlings often move farther and more frequently than other age classes [94,122,255,381].

At northern latitudes, white-tailed deer tend to have smaller home ranges during winter than summer due to cold temperatures and deep snow [94,255,392]. In New York, mean winter home ranges (334 acres (135 ha)) were smaller than summer home ranges (556 acres (225 ha)), partly because white-tailed deer congregated in yards during winter [419]. Travel within yards often is confined to small areas and frequently used trails [279]. In transitional forest in southeastern Quebec, where deep snow is common in winter, white-tailed deer occupied very large summer ranges (6,017 acres (2,435 ha)), whereas winter ranges were only 319 acres (129 ha) [227]. In northern regions, white-tailed deer often abandon historical wintering yards for nearby residential areas, where small home ranges result from localized concentrations of resources [392]. Reviews stated that white-tailed deer in northern latitudes have larger and less stable home ranges than those in southern latitudes [255,381].

In agricultural regions, winter ranges may be larger than summer ranges due to seasonal availability of crops. A study in agro-forested regions of Illinois, Michigan, Wisconsin, and Nebraska found that white-tailed deer tended to have larger home ranges during the nongrowing period of agricultural crops than during the growing period. In Nebraska in particular, average white-tailed deer home range size decreased from 677 acres (274 ha) during the nongrowing period to 252 acres (102 ha) during the growing period [446]. In agricultural areas of southwestern Minnesota, mean home range size of winter ranges (1,285 acres (520 ha)) was over twice that of summer ranges (568 acres (230 ha)). The authors suggested that in agricultural regions, summer ranges may be smaller than winter ranges because of abundant cover and nutritious forage throughout the landscape [39]. In other regions, white-tailed deer ranges also vary in response to the availability of seasonal forages. For example, in a mature oak-hickory/dogwood-northern spicebush (Lindera benzoin)) forests in Front Royal, Virginia, females increased their home ranges in fall to incorporate acorn-producing areas during September and October of "good" mast years (P<0.01), but no increase was detected during a poor mast year [269].

White-tailed deer in arid and semiarid regions generally have large home ranges because of widely distributed resources [392]. Home ranges in an area of the western South Texas Plains that received 20 inches (510 mm) of average annual rainfall were twice the size of those in an area in the Gulf Coast Prairies and Marshes region that received 37 inches (930 mm) of average rainfall (Inglis and others 1986 cited in [122]). In arid regions, home ranges tend to expand under mesic conditions and shrink during the dry season because animals remain close to water. In northeastern Mexico, mean home range size of female white-tailed deer during a year of abundant rainfall was larger than that in years of average rainfall (P=0.024), but in males it was similar. The plant community was a xerophilous shrubsteppe composed of tobosa (Pleuraphis mutica), pricklypear, tarbush (Flourensia cernua), honey mesquite, acacia (Acacia spp.), and Texas barometer bush (Leucophyllum frutescens). The authors suggested that when resource availability was high, females spent more time searching for and selecting food that was high in nutrients to support the costs of reproduction [29]. Because of its influence on forage and cover, livestock grazing may affect the use of white-tailed deer home ranges.

A review stated that white-tailed deer in relatively open habitats generally have larger home ranges than those in more densely vegetated areas [79,255,381]. In Florida, white-tailed deer home ranges in open portions of a bombing range were larger than those in wooded areas (Marchinton and Jeter 1967 cited in [255]). Home range size may also be larger in areas where habitats are less diverse [255,381]. Stewart and others [392] hypothesized that repeated disturbances, such as fire, that result in landscape mosaics of different successional stages could improve habitat for white-tailed deer and thereby reduce home range sizes [121,122]. The small home ranges of white-tailed deer on the George Reserve in Michigan (a 1,157-acre (464 ha), predator-free enclosure) were attributed to the high interspersion of habitat types on the reserve [27]. Geist [131] hypothesized that in areas with varied vegetation and terrain and abundant obstacles (e.g., downed wood and boulders), white-tailed deer establish small home ranges, but in areas where there is low habitat diversity and few obstacles, they have large home ranges or do not establish home ranges [131]. On Michigan's Upper Peninsula, white-tailed deer movements in winter were smaller in areas where the terrain was hilly to rugged and supported a wide variety of forests with a mixture of tree species than in areas where the topography was flat to rolling and forests were monotypic [434].

According to reviews, white-tailed deer home range size tends to decrease with increased population density [79,255]. For example, increases in home range size were observed in Florida after a population die-off (Bridges 1968, Smith 1970 cited in [79]). However, in southeastern Quebec, home range sizes were similar in a high-density population and in a low-density population despite greater forage abundance in the area with the high-density population [227].

Although many individuals make occasional excursions outside of seasonal home ranges, migratory adults of both sexes display site fidelity among years. Fidelity to summer home ranges tends to be stronger than fidelity to winter home ranges [94]. Does may also display fidelity to fawning areas. During the rut, adults of both sexes may move outside of their seasonal ranges [94,279]. A review noted instances in which white-tailed deer apparently starved to death rather than leave poor-quality range, even though food was available and accessible in adjacent areas [255]. Fidelity to home ranges can be so great that during a fire, white-tailed deer may not leave their home ranges even as they burn, and if they do leave, they typically return to their home ranges soon after fire. Shantz [366] noted that white-tailed deer and mule deer returned to their home ranges so soon after fire that they burned their feet. For more information, see Travel patterns.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Inderect Effects of Fire: Other factors: Livestock presence in burned areas

provided by Fire Effects Information System Animals
More info for the terms: competition, forbs

Because burns attract livestock [218,330,413], fire could increase the potential for white-tailed deer-livestock interactions, particularly on relatively small burns. Meek and others [275] suggested that if cattle gathered on small burns, they could possibly displace white-tailed deer from prime feeding areas because white-tailed deer tend to avoid concentrations of cattle. However, the authors suggested that this was unlikely on large burned areas [275].

According to a review, competition between white-tailed deer and cattle on burned areas is likely to be most intense during the time when postfire vegetation is most succulent and accessible [361]. On longleaf pine-bluestem rangelands in central Louisiana, dietary overlap between cattle and tame white-tailed deer was greater on 2- and 3-year-old burns than on 1-year-old burns during all seasons except summer, when it was negligible [412]. White-tailed deer diets from 1-year-old burned sites contained less browse and more forbs than those from 2- and 3-year-old burned sites [411]. For more information, see Livestock grazing.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Inderect Effects of Fire: Other factors: Physical barriers

provided by Fire Effects Information System Animals
More info for the terms: cover, fern, forest, wildfire

Postfire accumulations of deadfall might discourage use of burned habitats by white-tailed deer, mule deer, and other ungulates by creating impassable areas. Burning may also remove such obstructions in some habitats and allow white-tailed deer and other wildlife to move about and access forage more easily [247,319,324]. Many researchers noted that white-tailed deer cannot feed easily on young plants growing in dense postfire woody debris [235] or logging slash (e.g., [81,85,420]). For example, most of the large pitch pine seedlings that escaped browsing by white-tailed deer during the 2nd postfire winter in the New Jersey Pine Barrens had been protected by dead fronds of western bracken fern or by slash that accumulated following a July wildfire that burned about 3 acres (7 ha) [235]. In contrast, a study on the effects of woody debris on white-tailed deer herbivory in windthrow gaps in a Pennsylvania forest found that the amount and arrangement of woody debris in slash piles did not affect white-tailed deer browsing of plants growing in logging slash. However, logging slash cover was generally <50% [205].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Inderect Effects of Fire: Other factors: Size and shape of burned areas

provided by Fire Effects Information System Animals
More info for the term: cover

Several small fires may be more beneficial to white-tailed deer than one large fire because of increased edge habitat. Large fires may be detrimental to white-tailed deer in the short term by causing initial food shortages and removing cover [30,319]. Kipp [193] noted that the large summer wildfires of 1930 in Wisconsin "caused dangerous concentrations of game" in winter, noting that in the mild winter following the fire, 93 white-tailed deer were observed in a 3-mile² (8 km²) area adjacent to a burned area on the eastern edge of Wood County.

The size and distribution of burns are important to white-tailed deer. In Mexican pinyon stands in Madrean oak-conifer communities of southeastern Arizona, both browse use and the rate of deposition of white-tailed deer pellet groups in burned stands 6.5 years after fire decreased significantly within 1,391 feet (424 m) of habitat edges (P<0.05) [23]. See Southwest woodlands for more information on this study. Size and shape of clearcuts are also important to white-tailed deer (see Size and shape of openings).

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Inderect Effects of Fire: Other factors: Travel patterns

provided by Fire Effects Information System Animals
More info for the terms: cover, forest, hardwood, litter, mast, prescribed fire, severity

White-tailed deer movements after fire may be somewhat consistent with prefire movement patterns. For example, white-tailed deer may move out of their home ranges while the ranges burn but return soon after [178,465]. White-tailed deer in central Pennsylvania did not completely leave their home ranges after fire in mixed-oak forests. Two to 10 years after burning they tended to feed more in burned than unburned portions of their home ranges [465]. Following a January prescribed fire in "improved" pastures at the Kerr Wildlife Management Area, white-tailed deer in a 1,065-acre (2,631 ha) enclosure temporarily shifted their home ranges to unburned areas, but then returned when vegetation greened up and generally expanded their use of the burned area due to increased availability of forage [25].

Fire severity may influence white-tailed deer movements during and soon after fire. Two weeks after a prescribed fire in Clarke County, Alabama, 2 radiocollared white-tailed deer showed a strong preference for a burned hardwood/pine forest over a burned pine forest. The hardwood/pine forest, representing 8% to 10% of each home range, had burned incompletely in a mosaic pattern, whereas the pine forest burned almost completely. Use of unburned bottomland sites was similar before and after fire. Visual observations suggested they selected the burned hardwood/pine forest because the fire removed litter and exposed hardwood mast. The deer did not appear to shift their home ranges, which were 69% and 70% burned [178].

The timing of a white-tailed deer's use of a burned area may be influenced by its seasonal movements. Irwin [177] suggested that white-tailed deer populations may not respond immediately to the creation of favorable habitats because yearling females tend to remain with their mothers and yearling males may not disperse until fall. See Movements and home range for more information. Telfer [406] hypothesized that fire or other disturbance that removes cover in a yard may eliminate a local white-tailed deer population because fidelity to yards may cause white-tailed deer to use the yard despite lack of cover, which could lead to high overwinter mortality.

Sex differences in burn use: Habitat use differs according to the sex and age of individuals (Age and sex). Thus, use of burned areas is also likely influenced by these factors. During winter in the central Black Hills, burned ponderosa pine habitats (mostly >40 years old) were selected by both sexes, but male use of burned ponderosa pine forest was nearly 3 times that of does (P< 0.05) [90] (see Black Hills ponderosa pine for more information on this study). On burned and herbicide-treated Cross Timbers and Prairie rangeland in Oklahoma, females preferred burned areas in winter but avoided them in spring and summer, whereas males avoided burned areas in summer and fall. Both sexes used these areas according to availability in other seasons (see South-central US forests) [228].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Inderect Effects of Fire: Other factors: Weather and use of burned areas

provided by Fire Effects Information System Animals
More info for the terms: cover, forb, forest, tree

In northern regions, snow depth, duration, and hardness influence white-tailed deer use of burned areas [247] (see Cover and foraging habitats). Generally, less snow reaches the ground in unburned forest because of interception by the canopy. Where melting occurs in tree crowns, dripping water further reduces the snow depth. Since temperatures fluctuate less in a forest and winds are reduced, any crust that forms on the snow tends to remain. Snow may persist longer in a forest than on an open burned area because the forest shields the snow from sunlight and insulates the ground. When trees are removed by burning or logging, deeper snow, alternating crusting and thawing, and shorter duration of snow cover may result. Blackened soil on burns may accelerate snowmelt. Deer generally leave a burned area when the snow is soft and deep and live in the surrounding forest where the snow is relatively hard and shallow, even when abundant food occurs on the burned area [30]. However, early snowmelt and green-up on burned areas in spring may benefit deer [30,200].

In arid and semiarid regions, precipitation may affect white-tailed deer use of burned areas. In semiarid rangeland in Uvalde County, Texas, 6 and 10 months after three 100-acre (40 ha) areas were burned under prescription in late September, male and female white-tailed deer did not show a preference for burned areas, possibly because drought had limited vegetation growth on burns. During the 1st postfire summer, grass and forb production decreased and bare ground cover increased in both burned and unburned areas. Male and female white-tailed deer used the burns more than expected only during postfire months 1 and 2 (P≤0.001), after rainfall had triggered a brief flush of grass [275].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Indirect Effects of Fire

provided by Fire Effects Information System Animals
More info for the terms: association, cover, fire frequency, frequency, presence, succession

Patton and Gordon [311] described white-tailed deer as a fire-dependent species because of its association with fire-dependent and fire-adapted plant communities and because white-tailed deer populations often decrease when fire frequency in these plant communities decreases. A researcher concluded that white-tailed deer in Michigan are "dependent" upon conditions in "transitory" habitats (Graham 1954 cited in [319]), including those resulting from fire. However, white-tailed deer are generalists and can use a wide variety of habitats to obtain the necessary resources to survive and reproduce [95]. According to a 2006 review, "no study has linked any white-tailed deer population parameter to fire in a conclusive manner". These authors also noted that given white-tailed deer's overabundance in many areas of the East, ample nutrition is available to support large and healthy white-tailed deer populations in the absence of fire [190].

In general, postfire vegetation changes are considered beneficial to white-tailed deer [30,115,234]. The literature indicates that fire sets back plant development and succession, often increasing white-tailed deer forage quality and/or quantity in the short term. Fire also tends to increase habitat patchiness, providing white-tailed deer with abundant edge habitat and diverse vegetation [30,115,234]. However, because white-tailed deer depend on vegetation for forage, snow interception cover, hiding cover, and thermal protection (see Cover and foraging habitats), fire is likely to be detrimental to white-tailed deer in the short term if it removes too much vegetation. White-tailed deer appear most likely to benefit from patchy fires resulting in early-successional habitats that provide forage while leaving interspersed patches of later-successional forests and shrublands. They are least likely to benefit from fires resulting in large expanses of homogeneous vegetation [164,251,319,436]. White-tailed deer use of burned areas is influenced by the habitat and its season of use, postfire white-tailed deer browsing pressure, weather, size and shape of burned areas, prefire travel patterns, and the presence of barriers to movement, among other factors.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Indirect Effects of Fire: Diseases and parasites

provided by Fire Effects Information System Animals
Numerous bacterial diseases and parasites infest white-tailed deer and may cause mortality. Occasional epizootics in wild populations have been responsible for high mortality in some populations [263,264]. White-tailed deer may be more vulnerable to the detrimental effects of diseases and parasites when malnourished [79,279]. White-tailed deer also harbor diseases, such as meningeal worm (Parelaphostrongylus tenuis), that may be fatal to other ruminants [131]. Fire may indirectly affect the prevalence of diseases and parasites in white-tailed deer (see Fire effects on white-tailed deer diseases and parasites). For a comprehensive review of diseases and parasites that infest white-tailed deer, see Campbell and VerCauteren [55]. See also the following sources: [263,264].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Indirect Effects of Fire: Indirect fire effects by region

provided by Fire Effects Information System Animals
More info for the terms: bog, cacti, cactus, codominant, cohort, cool-season, cover, crown fire, density, fern, ferns, fire exclusion, fire frequency, fire management, fire regime, fire severity, forb, forbs, forest, frequency, fruit, fuel, graminoid, grassland, ground fire, hardwood, herb, herbaceous, high-severity fire, liana, lichens, litter, mast, moderate-severity fire, natural, prescribed fire, presence, scarification, seed, selection, series, severity, shrub, shrubland, shrubs, species richness, stand-replacement fire, stand-replacing fire, succession, surface fire, swamp, top-kill, tree, vine, vines, warm-season, wildfire, woodland

Boreal forest and aspen parkland
Boreal forest: According to a review, deer in boreal forests, including white-tailed deer, are usually associated with early-successional stages of burns. Fire stimulates rapid growth of deciduous shrubs, which increases the food supply for deer. As trees regenerate and their crowns close, the food supply is reduced, resulting in lower deer populations [352]. Stand-replacing fire in boreal forest can greatly increase the production of woody browse for moose [248] and likely for white-tailed deer. Telfer [407] considered boreal forest stands 10 to 25 years after disturbance the most favorable summer habitat for white-tailed deer. The forage benefits of burning to moose, and possibly white-tailed deer, may peak 20 to 25 years after stand-replacing fire and last less than 50 years [248]. (See the FEIS review of moose for more information on fire effects on browse in boreal forests.) However, stand-replacing fires reduce cover and lichens that white-tailed deer may use as forage in winter [248,407]. Lichens may be reduced for up to 50 years after fire in boreal forest. Lichens decline in old stands (≥200 years), indicating that infrequent fires of moderate to high severity may be important for maintaining lichens in the long term [248]. Telfer [407] considered preservation of wintering yards critical in the boreal forest, where climate tends to be marginal for survival of white-tailed deer, and suggested that diverse habitat—where a variety of age and composition classes occur interspersed in small stands—would be optimal for white-tailed deer.

White-tailed deer and moose occur together in boreal forests and may consume many of the same browse species, but fire may affect the 2 species differently. Postfire browse is likely to grow out of reach and become inaccessible to white-tailed deer before becoming inaccessible to moose, and forbs in postfire successional communities tend to be more important to white-tailed deer than to moose [316]. On the Little Sioux Burn, resulting from a 14,600-acre (5,920 ha) May wildfire in balsam fir-paper birch forests of northeastern Minnesota, forbs were important to white-tailed deer, whereas browse comprised almost all of the moose diet during the 2nd postfire summer. White-tailed deer fed mostly on plants 12 to 30 inches (30-76 cm) tall, whereas moose fed mostly on plants 48 to 72 inches (122-183 cm) tall [316]. Irwin [177] thought that the Little Sioux Burn would benefit moose longer than white-tailed deer because the flush of forbs lasted only 2 years after fire, whereas the abundant growth of shrubs and saplings was expected to persist much longer. White-tailed deer appeared less able to use large postfire successional shrubfields as late into the fall as moose because of deep snow and appeared to require substantially greater amounts of cover within their wintering habitats than did moose [175]. For more information on white-tailed deer use of the Little Sioux Burn, see Great Lakes forests.

Historical increases in white-tailed deer populations in British Columbia were attributed to logging and extensive fires at low elevations in the mid-1930s that increased deciduous growth and thus white-tailed deer forage quantity and quality [461]. In some areas fire exclusion has resulted in large stands of even-aged conifer forests that are generally unproductive for white-tailed deer. For example, the potential big game winter range in southeastern British Columbia was reduced by 58% during 40 years of fire exclusion (Langin and Demarchi 1977 cited in [461]). In areas with extensive, contiguous tracts of mature forest, small forest openings created by fire, logging, or other disturbances benefit white-tailed deer [461]. However, large (several km²) clearings in quaking aspen or mixed forests are considered "disastrous" for white-tailed deer in this region [461].

Stand-replacing fire in boreal forest often increases the nutritional content of woody browse for up to 3 postfire growing seasons [248]. White-tailed deer browse species may be more nutritious in early than late succession [352].

Aspen parkland: In western Canada the quaking aspen parklands and boreal forests with abundant quaking aspen provide "prime" white-tailed deer habitat [421,461]. A review stated that using prescribed fire in quaking aspen parklands may benefit white-tailed deer and mule deer by: 1) top-killing woody plants that can sprout after fire, 2) providing a seedbed for establishment of forage species, and 3) increasing the nutrient level and digestibility of browse and herbs the first 2 years after burning [16]. Fire reduces the spread of quaking aspen and common snowberry into grasslands, which may be detrimental to white-tailed deer, but it allows quaking aspen to expand into conifer forests, which is likely beneficial [461]. For more information about white-tailed deer use of aspen communities, see Great Lakes forests.

Pacific Northwest
In presettlement times, fires set by American Indians maintained many of the oak woodlands preferred by Columbian white-tailed deer. Fire exclusion and agricultural and residential development during the 1900s reduced available habitats [380,410]. Some evidence indicates that fire in oak woodlands may maintain palatable forage for Columbian white-tailed deer [128].

Southwest Southwest grasslands
Fires may improve the palatability of plants to white-tailed deer in southwestern grasslands. Old growth of tobosa (Pleuraphis mutica), big sacaton (Sporobolus wrightii), and Johnson grass (Sorghum halepense) is relatively coarse and unpalatable to white-tailed deer, mule deer, and other ungulates, but their postfire new growth is succulent and readily eaten [438]. For more information, see FEIS reviews of species of interest.

White-tailed deer are infrequent visitors to desert grasslands but may use adjacent wooded areas [365]. Fires at the grassland-woodland ecotone may remove woody vegetation without increasing ground cover [248], which may be detrimental to white-tailed deer.

Southwest shrublands
Succulents: Fires may improve the palatability of succulents. Fires burn off the spines from cacti (cholla (Cylindropuntia spp.), pricklypear (Opuntia spp.), and barrel cactus (Ferocactus spp.)), making cacti more palatable and/or available as forage [145,226,248,256]. In grazed southwestern shrubsteppe near Tucson, Arizona, deer were attracted "almost immediately" to an area that was burned under prescription in November, partly because of the attractiveness of pricklypear. Deer and other animals consumed nearly all pricklypears from which spines were burned "within a few weeks" [256]. In thorn scrub in the Texas savanna, white-tailed deer ate the scorched pads of Engelmann's pricklypear (O. engelmannii) soon after a fire that removed the thorns [232].

Mesquite: Mesquite (Prosopis spp.) shrublands are an important habitat for white-tailed deer in the Southwest, and fires that reduce large areas of mesquite may reduce fruit and browse production and cover. However, mosaic fires in dense mesquite stands may increase white-tailed deer forage [365].

Arizona chaparral: White-tailed deer and mule deer are common in Arizona chaparral [158,365]. Because most shrubs dominant in this habitat sprout and/or germinate from seeds soon after fire, fire in this habitat may increase forage [51,158]. Forbs and grasses develop rapidly after fire in Arizona chaparral and are generally abundant for 3 or 4 postfire years, followed by an abrupt drop to prefire levels in 2 to 3 more years, with forbs dropping out more rapidly than grasses. The decrease in herbs is associated with an increase in shrubs. Shrubs generally recover rapidly and dominate the site in about 5 years, regaining prefire values approximately 11 years after fire [365]. In Arizona chaparral in the Mingus Mountain area, forb production peaked at about 281 pounds/acre in the 3rd postfire growing season after an 18,000-acre (7,300 ha) June wildfire, while grasses peaked at 213 pounds/acre in the 5th postfire growing season. Shrub cover and biomass were still increasing 6 years after the fire, when the study ended [309]. On the Three Bar Wildlife Area, Arizona, forb and grass production was about 217 to 325 pounds/acre in the 5th and 6th postfire growing seasons and 109 to 110 pounds/acre in the 7th and 10th postfire growing seasons [158]. In Arizona chaparral that was seeded with nonnative weeping lovegrass (Eragrostis curvula) following a severe prescribed fire, shrub growth in the burned area was fastest the first 2 years after fire and by postfire year 5, shrub density was equal to that on the unburned control [51].

Burning may increase the nutritional content of mule deer browse, and likely white-tailed deer browse, in Arizona chaparral. Protein content of mule deer browse in recently burned areas in 3 regions of Arizona was generally higher than that in unburned areas but declined over time. Protein content of plants on a 9-month-old and a 3-year-old burned site was similar to that on adjacent, unburned sites, indicating that the effects of burning on plant nutritive quality were short lived. Browse use by mule deer was much greater on burned than unburned sites [402]. See the FEIS review of mule deer for more information.

Gambel oak: Gambel oak provides shelter, forage, and mast for white-tailed deer and other wildlife [65,112]. In the northern portion of Gambel oak range, mature Gambel oak stands often have little forage within reach of deer, whereas young stands of Gambel oak may be "nearly impenetrable" to deer [65]. Gambel oak sprouts after fire, and fire in Gambel oak communities may result in abundant, succulent browse for mule deer [208,210] and likely white-tailed deer. On the Uinta National Forest, Utah, examination of Gambel oak stands that had been burned 3 and 15 years prior to the study indicated that burned stands recovered to unburned control heights in 6 to 35 years, with stands at low elevations recovering faster than stands at high elevations (r=0.99, P<0.01) [210]. See the FEIS reviews of Gambel oak and mule deer for more information.

Southwest woodlands
Madrean encinal oak and Madrean oak-conifer: White-tailed deer may be attracted to burned Madrean oak-conifer communities because of abundant browse there. In a Mexican pinyon-oak woodland in southeastern Arizona, white-tailed deer deposited 7.2 times more fecal pellets in summer and fall in burned than in unburned stands 6.5 years after a wildfire. The fire was "intense" and burned 18,000 acres (7,285 ha) in the Whetstone Mountains in June. White-tailed deer were apparently attracted to the relatively more abundant browse in burned areas. Browsing was 2.5 times greater on a burned stand—where browse cover was 20 times greater—than on unburned stands [23]. In contrast, white-tailed deer fecal counts were similar before and 1 year after prescribed fires in encinal oak savannas of the Southwestern Borderlands of Arizona and New Mexico [111]. Warm-season (May) and cool-season (November-April) prescribed fires were conducted in 12 watersheds (range: 20-60 acres (8-24 ha) for a total of 451 acres (183 ha)) on the eastern side of the Peloncillo Mountains in southwestern New Mexico [112]. Fecal pellet counts [111] and browse utilization [112] were similar among burned sites. The authors stated that the lack of a difference between burned and unburned areas was "not surprising given that all fires were of low severity" and the fact that the forest overstory structure and production of herbs and shrubs were similar before and after the fires [111].

In burned Madrean oak-conifer communities, white-tailed deer may concentrate their use near water. For example, in Mexican pinyon-oak woodlands of southeastern Arizona, white-tailed deer pellet groups accumulated twice as fast on an area burned by a severe June wildfire that was near (980 feet (300 m)) permanent water than on a burned area that was far (3,940 feet (1,200 m)) from permanent water [23].

Pinyon and juniper: See South-central US woodlands.

Southwest forests
Ponderosa pine: Fire in ponderosa pine stands may benefit white-tailed deer by increasing forage nutritional quality [363,365]. Fire generally increases nutrient availability and concentrations in ponderosa pine forests for at least the 1st postfire growing season [363]. A study in Arizona ponderosa pine found that in the 1st growing season after fire, crude protein, phosphorus, and in vitro digestible dry matter were higher in ungulate forage from areas burned in a severe May wildfire than in adjacent unburned controls. Increases in phosphorus and digestible dry matter lasted to the 2nd postfire year, but increases in protein did not. By the end of the 2nd growing season, however, there were no differences in nutritional content of ungulate forage between burned and unburned areas [315].

White-tailed deer use of ponderosa pine stands may increase after fire in response to increased forage production and edge. Deer use of a ponderosa pine forest near Flagstaff, Arizona, that had been burned in a high-severity May wildfire increased for the first 2 years after fire. Use became "inconsistent" during the 3rd postfire year, possibly due to reinstated cattle grazing on the burned area [206]. In a recently logged ponderosa pine forest on the Coconino National Forest, Arizona, that burned in a May wildfire, deer pellet densities were higher in a moderate-severity burned area during postfire summers 1 to 3 than in an unburned control. However, pellet group densities were higher in the control than in a high-severity burned area during postfire summers 1 and 2. During postfire summer 3, pellet group densities were higher in the high-severity burned area than in the control (Table 1). The result was attributed to the production of palatable herbaceous species on burned areas. Herbaceous plant production was similar on all sites during the 1st postfire summer (range: 452-582 pounds/acre). During the 3rd postfire summer, however, production averaged 1,651 pounds/acre on the high-severity burned area, 1,275 pounds/acre on the moderate-severity burned area, and only 559 pounds/acre on the unburned control [54].

Table 1. Mean deer pellet groups/acre in a logged and burned ponderosa pine forest on the Coconino National Forest, Arizona, 1 to 3 summers after wildfire [54] Summers since fire Moderate-severity fire High-severity fire Unburned control 1 1,001 257 672 2 398 191 267 3 363 262 116

Although total biomass of grasses and forbs often increases in ponderosa pine forest after fire, the quantity of useable deer forage may actually be less on burned areas if species composition shifts to relatively unpalatable species [248]. Prescribed understory burning in ponderosa pine stands near Flagstaff, Arizona, failed to improve herbaceous forage production for deer. Although herbaceous plant production increased dramatically during the 1st postfire year, nonnative common mullein (Verbascum thapsus), an unpalatable species, dominated the understory [113]. For more information about white-tailed deer use of ponderosa pine habitats, see Black Hills ponderosa pine. See also FEIS reviews of Arizona pine and interior ponderosa pine.

Rocky Mountains
Lyon [246] provided a generalized description of white-tailed deer and mule deer response to postfire succession in forests in the northern Rocky Mountains: Immediately following a severe fire, the landscape may appear barren and provide little forage for deer. As early as the 1st growing season after fire, some woody seedlings may appear, and plants not killed by fire may sprout. In the first few postfire years, forbs and grasses dominate the area, and shrub cover increases. As shrub cover increases, forbs and grasses decrease. If the shrubs are palatable to deer, they can provide abundant forage. Shrub dominance may continue for 10 to 100 years, but shrubs are eventually displaced by trees. In mature forests, understory vegetation is typically sparse and provides little forage for deer [246]. Plant succession on large, severely burned areas may be slow compared with that on small burns because of low plant survival in burned areas and remoteness of seed sources [246,290]. Reviews stated that the positive effects of fire on deer forage generally last <30 years [248,319], although white-tailed deer use burns of a variety of ages. In grand fir and western redcedar forests in Idaho, trees established and shrubs grew out of reach of white-tailed deer about 25 years after fire. Although young burns (<25 years old) had the greatest browse cover among 2- to >150-year-old burned areas (both wild and prescribed fires), white-tailed pellet group counts were highest on >60-year-old burns with high tree and shrub cover [134].

White-tailed deer used postfire shrubfields only rarely in Glacier National Park, appearing to prefer forested habitats [257]. In enclosures in the Hatter Creek drainage in northern Idaho, white-tailed deer pellet group counts were significantly higher on burned than adjacent unburned sites (PTable 2). The enclosures were within a Douglas-fir/mallow ninebark (Physocarpus malvaceus) winter rangeland that had been spring- or fall-burned under prescription 6 to 12 months prior. Before the prescribed fires, no "recent" fires had been recorded [15].

Table 2. White-tailed deer pellet group densities 6 and 12 months after spring and fall prescribed fires in Douglas-fir/mallow ninebark habitat in northern Idaho [15] Time since fire Pellet groups/acre Burned area Unburned control 6 months after a spring prescribed fire* 345 65 12 months after a fall prescribed fire* 438 100 *Sites sampled in October. Sites were not cleared of pellets prior to sampling.

Snow depth affects white-tailed deer use of postfire successional communities. In Idaho, white-tailed deer foraged primarily in unburned habitats because of deep snow. In the Selway-Bitterroot Wilderness, the Snake Creek and Fritz Creek mixed-severity, August wildfires burned 2,700 acres (1,100 ha) of white-tailed deer and mule deer winter rangelands. Based on proportion of use versus availability during the 3rd postfire winter, which was mild, white-tailed deer preferred unburned Douglas-fir/mallow ninebark habitat from January to March, except in February. Then, they preferred unburned bluebunch wheatgrass/bluegrass (Pseudoroegneria spicata/Poa spp.) habitat, which was the only habitat free of snow at that time. During the other winter months, snow was shallower in the Douglas-fir/mallow ninebark and other forested habitats than in the bluebunch wheatgrass/bluegrass habitat. White-tailed deer used unburned ponderosa pine/bluebunch wheatgrass and burned Douglas-fir/mallow ninebark habitats in proportion to their availability. Use of these habitats might have been due to their close proximity to the unburned Douglas-fir/mallow ninebark habitat. White-tailed deer preferred sites that had the shortest average distance to cover. The average distance to cover in unburned Douglas-fir/ninebark habitat was only 5 feet (1.5 m) [187].

Fire that removes too much snow-interception and hiding cover may be detrimental to white-tailed deer in areas with deep snow. On the North Fork of the Flathead River in Montana, white-tailed deer yard during deep snow periods. The winter after the 1910 wildfire that consumed >50% of the vegetation in the North Fork Yard, 70% of the white-tailed deer died of starvation [224]. The winter and spring after the August Moose Creek Fire, deer pellet group counts were "negligible". In summer, pellet group counts were substantially reduced compared with prefire counts. Prefire cover in and adjacent to the burned area was limited due to previous logging and the natural sparseness of the forest. The fire removed much of the remaining cover, and only one "sizeable" patch of cover remained. The author noted that despite road closures, hunting pressure on deer using the burn during the fall immediately after the fire was high. The fire was of mixed severity, in a mosaic of curlleaf mountain-mahogany (Cercocarpus ledifolius)/bluebunch wheatgrass, bluebunch wheatgrass-needle-and-thread grass (Hesperostipa comata), spiny grease bush (Glossopetalon spinescens), mountain big sagebrush (Artemisia tridentata subsp. vaseyana), ponderosa pine, and Douglas-fir communities on the Salmon National Forest, Idaho [68].

Although fire in an area with limited cover may be detrimental, small burns in areas of abundant cover may benefit white-tailed deer by increasing understory forage [319]. Peek [317] stated that when mature forests are burned or cut, white-tailed deer may shift to adjacent areas during the severest times of winter; otherwise, they prefer the seral growth on the burned or cut areas, which is likely to provide excellent forage.

Fire in Rocky Mountain forests may increase forage quantity, quality, and palatability. Pengelly [319] showed that burning of slash yielded an initial decrease and later a large increase in the amount of palatable big game forage in Douglas-fir and grand fir habitats in northern Idaho. Although the ratio of good:poor browse 1 year after wildfire in logged grand fir stands was similar to unburned controls, species composition was very different [319]. This suggested diet quality for white-tailed deer might be improved by increasing species richness across the landscape. In western redcedar forests in northern Idaho, shrub biomass production was nearly 60 times higher on a 30-year-old burn than on a 100-year-old stand (Table 3) [176]. In the Selway-Bitterroot Wilderness, Idaho, following the Snake Creek and Fritz Creek mixed-severity wildfires in August, relatively unpalatable species such as mallow ninebark were eaten more frequently on burned sites than on unburned sites, suggesting that burning increased their palatability [187]. In Hatter Creek drainage in northern Idaho, 6 to 12 months after spring and fall prescribed fires on winter rangelands in Douglas-fir/mallow ninebark habitat, plant species such as thimbleberry (Rubus parviflorus), mallow ninebark, oceanspray (Holodiscus discolor), Lewis' mockorange (Philadelphus lewisii), and western bracken fern (Pteridium aquilinum), which are normally avoided by white-tailed deer, were readily eaten during the 1st postfire growing season [15]. Gordon [133] speculated that slashing (complete overstory removal) and early-spring (prior to plant growth) prescribed fire on 40 acres (16 ha) of winter rangelands in the Absaroka Range in Montana was beneficial to white-tailed deer because it increased the availability of quaking aspen browse. The rangelands were comprised of mature quaking aspen-Engelmann spruce (Picea engelmannii) forest, Douglas-fir/mallow ninebark forest, and hawthorn shrublands. Two years after the fire, density of quaking aspen and willows had increased due to sprouting. Prior to treatment, quaking aspen was too tall for white-tailed deer and moose to reach; after treatment, it was low and could be utilized [133]. For more information on white-tailed deer use of aspen forests, see Great Lakes forests.

Table 3. Shrub biomass production in different-aged forests within the western redcedar-western hemlock ecosystem of northern Idaho [176] Site description Mean biomass production
(kg/ha) 30-year-old burn in western redcedar/Oregon boxwood (Paxistima myrsinites) habitat 19,475 100-year-old undisturbed western redcedar-western hemlock habitat 331

Postlogging site preparation practices in Rocky Mountain forests often include prescribed fire. Burning slash often favors the establishment of seral shrubs, many of which are preferred white-tailed deer browse species. Limited evidence suggested that removal of slash by broadcast burning rather than pile burning resulted in "heavier initial stands of preferred white-tailed deer forage" [319].

Northern Great Plains Northern Great Plains grasslands
In Northern Great Plains grasslands white-tailed deer often use recently burned areas more than unburned areas. For example, the number of white-tailed deer fawns was greater on burned than unburned grasslands the 2nd summer following a late May prescribed fire in east-central North Dakota on the Woodworth Study Area in the midgrass prairie vegetation zone. No fawns were found on an unburned 124-acre (50 ha) area, compared to 4 fawns each during the 2nd growing season on nearby burned areas of 135 acres (55 ha) and 121 acres (49 ha) [195]. At the Crescent Lake National Wildlife Refuge in the Nebraska Sandhills, white-tailed deer were found closer to burned areas than to random points. Six areas, from 20 to 700 acres (8-283 ha), were burned under prescription in April. All of the burns were in native sandreed (Calamovilfa spp.)-bluestem grasslands. Three burns were in grasslands that were either subirrigated or seasonally flooded. Although concealment cover was reduced in May and June following the fire, it returned to prefire levels by July. Results indicated that prescribed burning did not negatively affect white-tailed deer [223]. In contrast, in another study in Nebraska Sandhills prairie, white-tailed deer used burned areas about 8% of the time during the year of the fire and about 5% the following year, suggesting that use declined. However, no data on control or prefire use were provided [462].

Spring prescribed burning at the ecotone of prairie and quaking aspen parkland may reduce woody plant establishment in prairie habitat [401], which may be detrimental to white-tailed deer by removing cover. Spring burning may benefit white-tailed deer, however, by "rejuvenating" certain prairie species such as purple prairie clover (Dalea purpurea) and native warm-season grasses such as big bluestem (Andropogon gerardii) [401].

Fire often increases the percentage of protein and minerals in prairie grasses and shrubs important to white-tailed deer, although effects vary with season of burning [248]. However, repeated annual prescribed fires in April had no effect on white-tailed deer browsing rates of Jersey tea (Ceanothus herbaceus) in tallgrass prairie at the Konza Prairie Research Natural Area, Kansas. The authors concluded that because white-tailed deer browse Jersey tea most in fall and winter, any differences in plant quality on burned areas might have been diminished by the time of use [418]. The effects of fire on grassland nutrients may interact with the effects of grazing. Cattle-grazed patches in a tallgrass prairie in eastern Kansas contained less biomass than ungrazed patches and therefore lost less nitrogen to volatilization by fire. The authors suggested that grazing may control whether burning results in net increases or decreases in nitrogen on a site. Grazing also increases heterogeneity in grasslands, contributing to patchy fuels and thus variation in fire behavior and severity. Patches that are intensely grazed fail to burn as a result of insufficient fuel, while accumulated fuels in ungrazed patches increase fire severity [161].

Figure 3. White-tailed deer feeding in native prairie after the Headquarters West prescribed fire in Wind Cave National Park, South Dakota. Photo courtesy of Charlie Barker, Wind Cave National Park.

Northern Great Plains woodlands and forests
Black Hills ponderosa pine: Wintering white-tailed deer may avoid recently burned ponderosa pine habitats. For example, in ponderosa pine forests in the southern Black Hills, male and female white-tailed deer selected unburned habitat and avoided burned areas the 1st winter after the 2000 Jasper Fire, a 83,500-acre (334,800 ha), mixed-severity August through September wildfire. The fire created a mosaic of burned and unburned patches that increased diversity and quality of forage considered favorable to white-tailed deer. However, in winter, males and females selected unburned ponderosa pine habitats with >40% canopy cover and a grass-forb understory and avoided burned ponderosa pine and ponderosa pine/curlleaf mountain-mahogany/Rocky Mountain juniper habitats. When winter locations of female white-tailed deer in burned and unburned areas were pooled, the author found most foraging locations were in unburned areas (80.8%), 8.6% were in severely surface-burned areas, 7.5% were in lightly burned areas, and 3.2% were in areas burned in a crown fire. Most bedding locations were also in unburned areas (86.5%), whereas only 6.2% were in severely surface-burned areas, 4.5% were in lightly burned areas, and 2.8% were burned in a crown fire. He suggested that selection for unburned habitat was related to the relative lack of cover and forage in burned areas compared with unburned areas. He stated that because the fire occurred at the end of the growing season and white-tailed deer were monitored only during the 1st winter and spring after the fire, "it was likely too soon for any beneficial effects on available habitats to be realized" [102].

In the short term, fire may reduce fawning habitat in Black Hills ponderosa pine forests. High fawn mortality rates during the 1st postfire summer after the 2000 Jasper Fire were attributed to the loss of fawning habitat (Schmitz personal communication cited in [102]).

Fire in Black Hills ponderosa pine habitats may increase nutritional quality of white-tailed deer forage, which may result in better white-tailed deer body condition in the first few postfire years. Following the 2000 Jasper Fire, nitrogen isotopes in the livers of white-tailed deer were higher on burned than unburned habitat during the 2nd and 3rd postfire winters and summers, suggesting that white-tailed deer consumed more nutritious forage on burned habitat during both seasons [445].

Although lack of winter and fawning cover during the 1st postfire year may be detrimental to white-tailed deer, fire may be beneficial in the long term. In the Black Hills, male and female white-tailed deer selected burned habitats on winter rangelands but not summer rangelands, a result attributed to the scarcity of burned habitats on summer rangelands [90].

Lack of fire in ponderosa pine habitats for long periods may be detrimental to white-tailed deer. Several researchers hypothesized that lack of fire and resultant maturing and closing-in of ponderosa pine communities resulted in white-tailed deer population declines in the Black Hills [90,370].

Jack pine: After a May wildfire in a jack pine plantation on the Nebraska National Forest, white-tailed deer used unburned areas 80% of the time and rarely used burned areas [462]. For more information about white-tailed deer use of jack pine forests, see Great Lakes forests.

Riparian areas: In many parts of the Great Plains, white-tailed deer's distribution is limited by a lack of cover, so populations are restricted to riparian areas, wooded draws, and others areas in and adjacent to hardwood cover [279,381,430]. Historically, white-tailed deer occurred in riparian bottomlands in the Great Plains, which burned less frequently than the surrounding landscape [159].

Great Lakes
Great Lakes grasslands
In Wisconsin, small marshes often provide the only winter cover available to white-tailed deer in agricultural landscapes; thus, fire in these habitats in the fall and winter could be detrimental in the short term [436].

Great Lakes forests
Laurentian forest: In the Laurentian mixed-forest region of the Great Lakes and Northeast—a transitional zone between boreal and deciduous forests—quaking aspen and paper birch are 2 of the most important white-tailed deer browse species. Quaking aspen forests in particular are considered "the region's leading white-tailed deer-producing forest type" (Byelich and others 1972 cited in [33]). Both quaking aspen and paper birch usually sprout after fire. According to reviews, paper birch reaches peak browse production 10 to 16 years after stand-replacing fire, whereas quaking aspen production may remain greater than that of unburned stands for >25 years [139,249]. Leaves of young quaking aspen and bigtooth aspen, especially those from sprouts <1 year old, are a preferred white-tailed deer food. Aspen forest understories often have abundant white-tailed deer forage species, including maple, birch, willow, serviceberry, hazelnut (Corylus spp.), cherry, honeysuckle (Lonicera spp.), bush-honeysuckle (Diervilla lonicera), rose, bigleaf aster (Eurybia macrophylla), and strawberry (Fragaria spp.) [139,175,346].

The effects of prescribed fire on quaking aspen stands and fire's resulting effect on white-tailed deer partly depends upon the amount of postfire sprouting. Young quaking aspen trees are more likely to sprout than old trees [365]. See the FEIS review of quaking aspen for more detailed information. Sprout densities typically peak in the 1st and 2nd postfire years, followed by a gradual decline [365]. White-tailed deer browse is typically abundant for 5 to 8 years following fire, after which the leafy crowns typically grow out of reach. Deer and other browsing animals may concentrate in small burned areas or clearcuts to the point where quaking aspen browse is eliminated [312,365] (see Effects of herbivory on vegetation). Thinning quaking aspen stands, rather than burning or clearcutting, may promote herbaceous understory production rather than quaking aspen sprouting [365]. Mature quaking aspen stands may provide better cover for white-tailed deer and mule deer than clearcut stands [421]. See the review by Timmermann [421] on managing quaking aspen for white-tailed deer, mule deer, and other ungulates.

Because fire in Laurentian forests may increase white-tailed deer forage, white-tailed deer use of burned stands often increases after fire. White-tailed deer were using the Little Sioux Burn, which resulted from a 14,600-acre (5,920 ha) May wildfire in logged and unlogged forests of jack pine, quaking aspen, and/or paper birch in northern Minnesota, the 1st month following the fire [316]. Two years after the fire, white-tailed deer used burned quaking aspen-paper birch stands most frequently. These stands had the greatest biomass density following the fire, with abundant quaking aspen and bigtooth aspen sprouts. Burned stands of balsam fir-paper birch, where sprouts of white birch, pin cherry, and beaked hazelnut proliferated, were the 2nd most frequently used stands. White-tailed deer used stands that were logged prior to the fire more frequently than expected, based upon their availability, during all periods of the study except May and November. The study was conducted from April through November. Important herbaceous foods for white-tailed deer, such as grasses, white clover (Trifolium repens), Canada goldenrod (Solidago canadensis), jewelweed (Impatiens capensis), and fireweed (Chamerion angustifolium), were most abundant in these areas. Results indicated that white-tailed deer selected burned areas because of increased forage availability [175]. In Wisconsin, white-tailed deer summer track density was 2.4 times greater on roads in a burned area than on roads in an unburned control area. The burned area was "brush prairie savanna" with abundant sprouting oaks, while the unburned control was a northern pin oak (Quercus ellipsoidalis)-bur oak-jack pine forest. The 20,000-acre (8,100 ha) Grantsburg-Webster Wildfire had occurred 8 years prior, in May. White-tailed deer appeared to be attracted to the burned area because of earlier spring growth and more available and palatable browse [437]. On the Beltrami Island State Forest in northwestern Minnesota, a quaking aspen stand was burned under prescription in early May 4 times during 8 years (1968, 1971, 1973, and 1975). By the 4th fire, the stand had converted to an open shrubland of chokecherry, pin cherry (Prunus pensylvanica), willow, redosier dogwood (Cornus sericea), and dense quaking aspen sprouts. White-tailed deer densities (according to pellet group counts) were declining on the burned area and on an unburned control area for 4 years prior to burning. The study area was first burned in 1968. That year, white-tailed deer densities continued to decline on the burn and the control. In 1969, however, density in the burned area increased to 8 white-tailed deer/km², while white-tailed deer density continued to decline in the control area, reaching a low of 0.8 white-tailed deer/km². White-tailed deer density in the burn peaked at 18 white-tailed/km² in 1972, 1 year after the 2nd burn, and then declined gradually to 5.0 white-tailed deer/km² in 1978, 3 years after the 4th burn. White-tailed deer density fluctuated in the unburned control area during the study but was always less than that on the burned area. The increase in white-tailed deer density after the 1st and 2nd fires was attributed to increased habitat quality, while the subsequent decrease was attributed to reduced winter habitat (i.e., increased openness, lack of conifer cover, and snow drifts) [31,32]. Four and 5 years after the 4th burn, densities fluctuated but averaged 8 white-tailed deer/km² in the burned area and 5 white-tailed deer/km² in the unburned control [32].

Increased forage following fire may result in increased white-tailed deer populations. In the Kenora District of western Ontario, fires burned an average of 10,000 acres (4,000 ha) annually in the 1930s but only 1,000 acres (400 ha) annually in the 1940s. According to Cringan [74], a white-tailed deer population "erupted" following the fires of the 1930s because the fires resulted in large areas of "choice" feeding habitat, and unburned conifer swamps scattered throughout the burns provided shelter. The population reached peak densities between 1945 and 1950, then "crashed" as forests succeeded [74]. Similarly, around 1900, the white-tailed deer population in Voyageurs National Park in northern Minnesota was about 220 individuals. The population was low because of uncontrolled hunting in the area. From 1910 to 1950, it increased to approximately 3,500 individuals due to logging and fires that opened the forest and resulted in shrub-herb communities and pine (eastern white, red, and jack pine), quaking aspen, and/or paper birch communities. Populations of other ungulates and most carnivores decreased during this time. From 1951 to 1985, the white-tailed deer population declined, but white-tailed deer remained "abundant" or "common". By 1975, the population had declined to 2,600 individuals because of forest succession. By 1983 to 1985, it had declined to approximately 800 individuals because of the combination of succession, increased gray wolf predation, and periodic severe winters [67].

White-tailed deer populations may not increase after fire if cover is insufficient. The 1976 Seney National Wildlife Refuge wildfire increased edge habitats favorable to white-tailed deer. The fire lasted from late July to late September, burning over 64,000 acres (26,000 ha) of mixed hardwood-conifer forest, conifer forest, tamarack-red maple bog, and shrubby bog habitats. The fire "burned patchily and with varying degrees of intensity". However, the refuge had little winter habitat. White-tailed deer populations showed little change during the first 3 postfire years, after which the study ended [9]. White-tailed deer used the Little Sioux Fire area during the 1st and 2nd postfire summers but used the periphery of the burn (i.e., 0.25 mile (0.4 km) from the burn perimeter) and unburned forest during the 1st and 2nd postfire winters (P<0.10). This shift to dense cover in fall and winter was attributed to deep snow in the burned area, which had little forest cover to intercept snow [175].

Increases in some nutrients have been reported after fire in Laurentian Forest, which presumably would benefit white-tailed deer. Levels of potassium, calcium, and magnesium in 18 trees, shrubs, and herbs generally increased during the first 5 years after the Little Sioux Fire and generally exceeded levels on unburned sites. Phosphorus levels on burned sites also exceeded those on unburned sites for the 2nd and 3rd postfire years, and then generally decreased. Nitrogen levels were consistently higher on burned than unburned sites but declined during the first 5 growing seasons after fire [299]. In a 30-year-old quaking aspen stand in southern Ontario, levels of nitrogen, phosphorus, potassium, calcium, and magnesium in quaking aspen leaves were 24% to 42% higher the 1st growing season after "light" April and May surface fires than in an unburned area. Accumulation of nutrients in the trunk, lateral branches, and twigs was generally not different between burned and unburned areas, although the level of potassium in twigs was lower in burned than unburned stands [180].

For information on white-tailed deer use of oak and hickory forests of the southern Great Lakes region, see Southern Appalachians. For information on white-tailed deer use of northern whitecedar, balsam fir, spruce, and other conifer forests, see Northeast forests.

Northeast
Northeast grasslands
Old fields: White-tailed deer commonly use old fields and other forest openings in the Northeast [79,265], and fire in these fields may increase their use. In old fields on the Green Mountain National Forest, Vermont, and in openings maintained along transmission lines in Rochester, New Hampshire, burning at different seasons produced different vegetation responses. White-tailed deer grazed mostly on herbs in burned and unburned openings, and browse was "only taken incidentally or casually". Their use of all burned areas increased during the 1st postfire growing season. Mid-April prescribed fires resulted in the greatest increase in flowering forbs, abundant fruits and sprouts, and a moderate increase in grasses compared with unburned controls. Late May and early June prescribed fires reduced young (<1.0 inch (2.5 cm) diameter and <3.3 feet (1.5 m) tall) trees the most and resulted in the greatest increase in grasses. Fires in all months (April, May, June, August, and October) reduced the frequency of ferns, mosses, shrubs, and bare ground compared with unburned controls. Browse use indicated that white-tailed deer preferred sprouts on May and June burns. Browse preferences of white-tailed deer changed between the 1st and 2nd growing season after burning on these sites. They browsed black cherry, chokecherry, pin cherry, and sugar maple—which are generally not preferred browse—more the 1st postfire growing season than the 2nd postfire growing season [304], suggesting that palatability may have declined. The authors recommended burning every 5 years to maintain openings and prevent tree encroachment. They also recommended creating new openings while letting other openings succeed to paper birch, quaking aspen, and eastern white pine [304].

Northeast shrublands
Hawthorn: Hawthorn is considered an important food for white-tailed deer (see Diet). In McKean County, Pennsylvania, an April, low-severity prescribed fire resulted in 60% top-kill of hawthorn in a riparian zone with dense, 5- to 8-foot (1.5-2.4 m) tall hawthorn and a sparse understory. All top-killed hawthorns sprouted within 9 months of the fire. Based upon a single burn, the author recommended burning hawthorn for white-tailed deer forage and cover every 7 years [49]. For more information on this study, see the Research Project Summary by Smith [375].

Northeast woodlands
Pine Barrens: In the New Jersey Pine Barrens, fire may help maintain white-tailed deer browse in the understory, but burning too frequently may eliminate some important browse species such as bear oak [278]. Shrub and herbaceous cover in New Jersey Pine Barrens was similar in unburned stand and stands where the understory was burned under prescription at 10- and 15-year intervals. As intervals between burns decreased from 5 years to 1 year, however, shrub cover decreased [48]. Burning too frequently may also reduce or eliminate bear oak and other shrubs from the forest understory [278]. Pitch pine seedlings and young sprouts on burned Pine Barrens may be heavily browsed by white-tailed deer in winter [235]. For more information, see Effects of herbivory on vegetation.

Northeast forests
Coastal communities: Severe fire may be detrimental to white-tailed deer in many northeastern coastal communities where coarse, sandy soils typically occur. In these areas, litter and humus layers are reduced by fire and nutrients are quickly leached away, often resulting in slow postfire regeneration consisting primarily of poor-quality white-tailed deer foods [79].

Hardwood forests: Many northeastern hardwood species sprout in the 1st growing season after fire, providing abundant forage for white-tailed deer. However, the benefits may be short term. In Montgomery County, Virginia, in 30- to 100-year-old yellow-poplar (Liriodendron tulipifera)-white oak-northern red oak forests, a May prescribed fire resulted in 2.8 times as much browse the following September (38.9 pounds/acre) as on an unburned control (13.95 pounds/acre, P=0.001) [285]. In oak-hickory-eastern white pine forest in southeastern New Hampshire, white-tailed deer browse use was greater on prescribed burned areas and on areas both thinned and burned under prescription than on untreated areas and those that were thinned only. In most cases, white-tailed deer browsed the treated areas more heavily in summer than winter (Table 4). Browse utilization was greatest in areas with the most open canopies. Because use was less on plots burned 2 growing seasons previously than on plots burned 1 growing season previously, the authors concluded that burning should be done in 1- to 2-year intervals [323]. In a bear oak community in central Pennsylvania, white-tailed deer summer and winter use of bear oak after April prescribed surface fires was greatest on the most recently burned plots and tended to decrease with time since fire. For example, during one summer, browsing on bear oak amounted to 43% of shoots on plots burned the previous spring compared with 26% on plots burned 3 growing seasons previously and 23% on unburned control plots. During another summer, use of shoots on plots burned the previous spring was 57%, whereas use on plots burned 2 or more growing seasons previously and on control plots was ≤25%. Because the average height of bear oak browse was about 5 feet (1.5 m) the 4th growing season after fire, the authors suggested burning every 5 years to maximize white-tailed deer browse [142].

Table 4. Browse utilization by white-tailed deer on 8 forest plots on East Foss Farm, Durham, New Hampshire, for the summer of 1976 and winter of 1977 [323] Treatment Growing seasons since fire Stems utilized in summer (%) Stems utilized in winter (%) Untreated control not applicable 1.4 1.4 Prescribed fire in spring of 1973 and 1975* 2 0.7 0 Thinned in 1973 and burned in spring of 1973 and 1975 2 2.9 2.7 Thinned in 1973 only not applicable 2.3 5.3 2 annual spring burns in 1975 and 1976** 1 25.5 4.5 Mixed hardwood stand clearcut in 1975 and slash burned in spring 1976** 1 23.1 13.5 Eastern white pine stand clearcut in 1975 and slash burned in spring 1976** 1 8.9 14.9 *Dense overstory and a closed canopy after treatments. **Open or no canopy after treatments.

Studies from the Northeast report increased nutrient content of white-tailed deer foods after fire. For example, nutrient contents of bear oak, blueberry, and huckleberry (Gaylussacia spp.) in a bear oak community in central Pennsylvania were examined following low-severity, April prescribed surface fires that top-killed all plants. These species comprised about 90% of the total woody forage available to white-tailed deer. For 4 years, levels of crude protein, calcium, and magnesium in composite samples of foliage and shoots were greater in burned plots than in unburned controls plots [142].

The effect of fire on nutritional quality of white-tailed deer browse may vary with fire severity. A study was conducted at the Patuxent Research Refuge, Maryland, to determine chemical composition and nutritive value of 4 species of plants commonly used as browse by white-tailed deer. The study followed a low-severity spring prescribed fire (1947) and a high-severity wildfire (1949). Data were collected the 1st and 2nd growing seasons after the prescribed fire and the 1st and 3rd growing seasons after the wildfire. Total solids, ash, ether extract, crude fiber and nitrogen-free extract contents of red maple, flowering dogwood (Cornus florida), white oak, and common greenbrier (Smilax rotundifolia) during the 1st postfire growing season were similar between burned and unburned sites. Protein contents of common greenbrier, red maple, and flowering dogwood foliage were higher in the burned area the 1st postfire growing season after the prescribed fire than in the unburned controls, but no effects of burning were apparent in the 2nd postfire growing season. In contrast, protein contents of all 4 species were higher in the burned area the 1st growing season following the wildfire than in the unburned controls, and effects were still apparent in common greenbrier, red maple, and flowering dogwood at the end of the 3rd postfire growing season [91].

For information on quaking aspen forests and mixed forests in the Laurentian Forest zone, see Great Lakes forests. For information on oak and mixed-oak forests, see Southern Appalachians.

Conifer forests: Conifer forests are important for cover in the Northeast and Great Lakes regions. Mature northern whitecedar forests are the preferred forest type for yards in the Northeast and Great lakes regions because they provide cover as well as nutritious browse [94,279]. Atlantic white-cedar forests are also important [234]. Many northern whitecedar and Atlantic white-cedar communities originated from seed sources after fire, but both species are susceptible to injury by fire and are easily killed. See FEIS reviews of northern whitecedar and Atlantic white-cedar for more information. Postfire growth of both species may be hindered by heavy white-tailed deer browsing [233,234] (see Effects of herbivory on vegetation). Mature spruce, eastern hemlock, and balsam fir forests are also used as yards in the Northeast and Great Lakes regions [94,279].

Mature forests provide important cover in winter, while young conifer forests may provide nutritious white-tailed deer forage. On the Moosehorn National Wildlife Refuge in eastern Maine, digestible energy of white-tailed and moose forage available on 15- to 17-year-old plots in balsam fir forest burned in a wildfire was substantially lower than that on 3- to 4-year-old plots in balsam fir forest that were defoliated by eastern spruce budworm, logged, and then burned under prescription [73].

South-central US
South-central US grasslands
Burning of pastures in the south-central United States often increases white-tailed deer use. Within the same month of a prescribed winter fire in nonnative guineagrass (Urochloa maxima) pastures in Willacy County, Texas, white-tailed deer presence was greater in unburned pastures (19 white-tailed deer/3-mile transect) than burned pastures (5 white-tailed deer/3-mile transect, P=0.033). During the next 4 months, white-tailed deer presence in unburned pastures gradually decreased until just 2 white-tailed deer were observed on the transect. The opposite trend was observed in the burned pastures. White-tailed deer use decreased soon after burning, probably because of decreased food resources. One month after burning, white-tailed deer numbers gradually increased in burned areas and decreased in unburned areas, likely due to increased native plant species richness and nutritious regrowth of shrubs in the burned areas. By 4 months after fire, presence increased to 14 white-tailed deer/3-mile transect [330].

South-central US shrublands
Fire's effects on forage and cover plants for white-tailed deer in arid and semiarid shrublands of the south-central United States depends on the species. For example, fire may kill nonsprouting species such as Ashe juniper, whereas shrubs such as honey mesquite may sprout soon after fire [121]. Thus, fire may alter the composition of white-tailed deer forage, which may be beneficial or detrimental to white-tailed deer.

Conflicting results make it difficult to predict the effects of different seasons and frequencies of fire on composition of browse species after fire [121]. Woody plant species composition was unaffected by prescribed burning in a honey mesquite-acacia savanna in the western South Texas Plains, regardless of season (dormant or growing) or frequency of burning (annually or biennial burns during 4 years) [305]. In contrast, Ruthven and others [355] detected declines in abundance of several woody plants following winter and winter-summer prescribed fires in a honey mesquite-spiny hackberry (Celtis ehrenbergiana) woodland. Their study on the Chaparral Wildlife Management Area looked at sites that received 2 dormant-season (November-March) prescribed fires (winter burns); sites that received a combination of 1 dormant-season prescribed fire and 1 growing-season (August) prescribed fire (winter-summer burns); and unburned control sites. In the late spring and early summer (about 17 months after the last winter fire and about 22 months after the last summer fire), total woody plant cover and density were greatest on unburned controls (P<0.001 for both variables). Cover of honey mesquite, twisted acacia (Acacia schaffneri), Texas persimmon (Diospyros texana), lotebush (Ziziphus obtusifolia), and Christmas cactus (Opuntia leptocaulis) was highest on unburned controls. Density of Berlandier wolfberry (Lycium berlandieri), lotebush, desert yaupon (Schaefferia cuneifolia), spiny hackberry, and Christmas cactus was highest on unburned controls. Because woody plants declined after fire, the authors suggested that burning was detrimental to white-tailed deer [355]. A March prescribed fire in an Oklahoma Indiangrass (Sorghastrum nutans) tallgrass prairie with encroaching shrubs appeared to be more severe than a July prescribed fire and thus appeared to be more detrimental to woody plants likely to be used by white-tailed deer. However, both March and July fires reduced woody species. Two woody species (smooth sumac (Rhus glabra) and common persimmon (Diospyros virginiana)) had greater densities 12 to 16 months after March and July fires than before the fires, while the density of 9 species (poison-ivy (Toxicodendron spp.), roughleaf dogwood (Cornus drummondii), black willow (Salix nigra), green ash, winged elm (Ulmus alata), eastern cottonwood (Populus deltoides), eastern redcedar (Juniperus virginiana), black hickory (Carya texana), and post oak) was less after the fires than before. Responses of 2 woody species (Chickasaw plum (Prunus angustifolia) and flameleaf sumac (Rhus copallina)) depended upon season of burning [2]. In honey mesquite-acacia chaparral in the Texas Gulf Prairies and Marshes region, a September prescribed fire damaged woody plants more than December fires did. Some sites were pretreated by shredding, chopping, scalping, root plowing, and/or raking and others were not [36]. One year following a September prescribed fire in mesquite-acacia-bristlegrass (Setaria spp.) shrubland, average shrub cover on all burned plots (12%) was less than that on unburned controls (39%). Some plots were shredded, chopped, or scalped before burning. Frequency of occurrence of lotebush, Berlandier wolfberry, creeping mesquite (Prosopis reptans var. cinerascens), brasil (Condalia obovata), and Texas persimmon was significantly less on burned plots than controls (P<0.05 for all variables) [35].

Forb and grass production are influenced by season of burning. Some researchers reported greatest forb production following early winter fires. In honey mesquite-acacia chaparral in the Texas Gulf Prairies and Marshes region, plots burned under prescription in September had the most grass the following August, whereas December-burned plots had the most forbs. Some sites were pretreated before burning [36]. At the Rob and Bessie Welder Wildlife Foundation Refuge in southern Texas, honey mesquite-mixed grass and bunchgrass-annual forb communities were burned under prescription in mid-December, immediately after the first frost. This resulted in the highest yield of forbs and lowest yield of grasses when compared with mid- and late-winter fires. Late-winter prescribed burns resulted in the lowest yield of forbs and highest yield of grasses. Twenty-two percent of all forb species increased in frequency on burned areas compared with controls, regardless of the timing of burning [147]. Springer [385] concluded that fall burns seemed better suited for white-tailed deer production, noting that herbage production tended to increase more on fall-burned sites than spring-burned sites 1 and 2 years after prescribed fires in "thicketized" live oak savanna on the Texas Coastal Plain. Increased herbage production on fall-burned areas the 1st and 2nd postfire years was primarily due to increased forbs. See the South-central US subsection of Fire Management Considerations for recommendations concerning season of burning in the south-central United States.

Postfire precipitation may affect white-tailed deer use of burned areas. In honey mesquite-spiny hackberry savanna at the Chaparral Wildlife Management Area, Texas, white-tailed deer crossings/km, an index of white-tailed deer movement into and out of treated clearings, did not differ between pretreatment levels and levels of either twice-aerated plots or plots that were aerated and burned under prescription. The authors suggested that the lack of a treatment effect was likely due to below-average rainfall and higher than average temperatures the summer following treatments that resulted in similarly poor plant growth and survival on all plots. Forage biomass, forage nutritional value, tannin content, and cover were similar between treatments. Thus, "there was no reason for white-tailed deer to exhibit preference for either treatment" [345]. Following a March wildfire on the Chaparral Wildlife Management Area, white-tailed deer shifted their diet to accommodate changes in forage availability. The wildfire burned 67,000-acres (27,000 ha) and >90% of the 15,199-acre (6,151 ha) Chaparral Wildlife Management Area. The fire was moderate or high severity over 85% of the area, and "light" severity over 7%; 9% of the area was unburned. White-tailed deer could not move off of the area because of fencing. For 1, 2, and 3 months following the wildfire, female white-tailed deer were harvested in the burned area, and body condition, pregnancy status, and rumen contents were sampled. Despite drier than average conditions prior to the fire and reduced forage abundance immediately after the fire, white-tailed body condition measurements did not change during the first 3 postfire months. This suggested that individuals acquired sufficient nutrients to meet requirements. Fetal development rates also appeared normal. Soon after the fire, white-tailed deer ate Engelmann's pricklypear pads. They consumed emergent grasses and forbs as they became available. Later in spring, they used forbs and browse. About 2 to 3 months after the fire, they shifted to honey mesquite pods and fruits of Texas persimmon and Engelmann's pricklypear. White-tailed deer are "highly adaptable" to changes in habitat, and ample precipitation (4.5 inches (114 mm)) from late April to May probably allowed good postfire vegetation recovery. The authors speculated that had drought conditions persisted through the 1st postfire summer, the wildfire might have been detrimental to white-tailed deer body condition [232].

Increased forage quantity and quality on burned areas may improve white-tailed deer body condition and fawn production. The first year after burning 5,000 acres (2,000 ha) of "thicketized" live oak in the Texas Coastal Plain, "large numbers" of white-tailed deer used the burned areas soon after growth began. Dressed carcass weights of male and female white-tailed deer 1 year after the fire were similar between burned and unburned areas, and there was no significant difference in either mean kidney fat or bone marrow fat content between animals harvested from burned and unburned areas. Thus, general nutritional condition of white-tailed deer was similar between burned and unburned areas. The only difference in body condition or growth attributable to burning was antler size. When antler sizes of 2- and 3-year-old white-tailed deer bucks were examined, antlers of 2-year-olds were longer and wider on burned than unburned areas during the 1st postfire year. Although nutritional condition was similar between burned and unburned areas, white-tailed deer fawn production on the burned area during the 1st postfire year appeared to be greater on the burned area (0.33 fawn/doe) than the unburned area (0.20 fawn/doe). Ovulation rates and fetal counts in utero, however, were not different between burned and unburned areas during the 1st postfire winter [385].

Fire in South-central United States shrublands may reduce important hiding cover. The 1st year after burning "thicketized" live oak savanna in the Texas Coastal Plain, cover was generally reduced compared to prefire levels, although the burn was patchy in some locations. "White-tailed deer in the burned areas seemed much more nervous and sensitive to disturbance by humans and flight would often take them 1.6 km to adequate unburned cover" [385]. The authors speculated that reduced cover in burned areas may have made fawns more vulnerable to coyote and bobcat predation, noting an increase in the amount of coyote and bobcat scats with white-tailed deer fawn hair. The author suggested that care should be taken to not remove too much cover during prescribed fires [385].

The form of woody plants may be changed by burning. For example, on land that has never been disturbed, a large proportion of honey mesquite stems may occur as single-stemmed trees or as shrubs with few stems originating at ground level. Postfire sprouting may result in multiple-stemmed shrubby growth by the end of the 1st growing season. The growth form is usually maintained for the life of the plant. Thus, hiding cover on burned areas may be greater 18 to 24 months after fire than before fire [361].

South-central US woodlands
Pinyon-oak-juniper: White-tailed deer use of burned areas may increase in burned pinyon-oak-juniper woodlands soon after fire. In the Chisos Mountains of southwestern Texas in Mexican pinyon-oak-juniper woodland, Mexican pinyon-juniper grassland, oak shrubland, and finestem needlegrass (Nassella tenuissima) meadows, a March (1980), mixed-severity wildfire occurred after 7 months of drought. White-tailed deer pellet group densities were lowest on the burn soon after the fire, then peaked in March, 12 months after the fire, likely due to increased forage availability and palatability. Soon after the fire, white-tailed deer fed on burned cacti and fallen trees. When rainfall increased in the summer, they fed on herbs. Twenty months after the fire, pellet group densities declined to about 25% of the postfire maximum as forage production "stabilized". On average, pellet group densities 1 to 2 years after the fire were over twice that 6 to 8 years before the fire (P=0.02) [226]. For information on white-tailed deer use of Mexican pinyon-oak woodlands, see Southwest woodlands.

Forbs may be reduced in mechanically treated and burned Ashe juniper communities immediately after treatment. This reduction is usually followed by increased forb production as warm-season forbs germinate [12]. On the YO Ranch in Kerr County, Texas, forb biomass was 5 to 6 times greater in spring and summer 22 months after double-chaining and slash pile burning that removed 80% of trees than on adjacent untreated control stands. The study was conducted during a drought year when livestock grazing was deferred, in Ashe juniper-Texas live oak-sandpaper oak (Quercus virginiana var. fusiformis-Q. vaseyana) woodlands. Important white-tailed deer forages that increased were oaks—primarily sandpaper oak, plantain (Plantago spp.)—and Pennsylvania pellitory (Parietaria pensylvanica) [347].

Although white-tailed deer may increase use of mechanically treated and burned Ashe juniper communities because of increased forage, removal of too much woody cover in these communities may be detrimental. Rollins and others [348] looked at white-tailed deer response to chaining and slash pine burning treatments in Ashe juniper-Texas live oak-sandpaper oak woodlands on the Kerr Wildlife Management Area, Texas, that reduced trees to various densities. Where 80% of trees were removed, white-tailed deer counts declined soon after treatments relative to pretreatment counts. In addition, white-tailed deer used openings on the treated sites less than an untreated site with more cover. In contrast, white-tailed deer counts increased following 50% and 70% removal of trees and continued to increase relative to pretreatment counts over the 2-year study. Mean white-tailed deer densities at these sites equaled or surpassed that of the untreated site. In these areas, open patches were used as much as patches providing cover, indicating that white-tailed deer were well-distributed throughout the treated sites. The author noted, however, that treated sites averaged about 309 acres (125 ha) and cautioned that white-tailed deer's response to larger treatments (for example, covering >2,500 acres (1,000 ha)) may be different. The author also commented that the untreated site maintained a relatively dense white-tailed deer population in good physical condition [348].

The size of the burned area may influence its use. At the Kerr Wildlife Management Area, 4 "improved" pastures with scattered Ashe junipers were burned under prescription in January and February. The pasture with the largest area burned (188 acres (76 ha)) and the greatest mortality of Ashe juniper (49%) also had the highest white-tailed deer density (0.38 white-tailed deer/ha) and the highest mean percent browse utilization (3.7%) the 2nd postfire year. These results were attributed to the generally more diverse habitat, higher mortality of Ashe juniper, large area burned, and extensive sprouting of desirable browse species (e.g., flameleaf sumac, Texas live oak, and netleaf hackberry (Celtis reticulata)). However, mean percent browse utilization was higher on all burns than controls (0.5%). White-tailed deer were thought to be using the burned areas to feed in and the unburned areas for cover. The authors noted no detrimental effects on white-tailed deer or their habitats by the prescribed fires [168]. For more information about white-tailed deer use of burns in the Kerr Wildlife Management Area, see Travel patterns.

A 1991 history of grazing on the Kerr Wildlife Management Area reported that during the early 1930s and 1940s, the area was under a continuous grazing regime, and livestock stocking rates were very heavy. Heavy grazing and fire exclusion led to a dramatic shift in the vegetation, from tallgrass prairie to shortgrass prairie with dense stands of Ashe juniper. With the shift in vegetation, white-tailed deer numbers increased substantially. While white-tailed deer appeared to benefit from the establishment of Ashe juniper in prairie habitats, a "very hot" wildfire in the 1970s that killed many Ashe juniper trees also appeared to benefit them by increasing plant diversity and increasing browse, particularly oaks [116].

Post oak: In post oak (Quercus stellata) woodlands in Texas, fire may reduce the height of vegetation, making it more available to white-tailed deer. In addition, fire may increase mast production of mature post oak trees by thinning stands, which provides individual trees more space, water, nutrients, and sunlight. However, burning post oak woodlands too often may decrease mast production [468].

South-central US forests
Oak, pine-oak, and pine: In the Cross Timbers region of Oklahoma, white-tailed deer may prefer burned areas during the growing season but avoid them in winter due to lack of cover. Leslie and others [228] tracked seasonal habitat use by radiocollared male and female white-tailed deer on upland and bottomland forests. Females selected burned areas in spring, summer, and fall, but males selected them only in summer. Herbicides were sometimes used in combination with burning. Plots were burned under prescription annually (3 times in a row) in spring, and white-tailed deer use of plots was examined 2 to 3 years after the last annual burn and 5 to 6 years after herbicide treatment. The authors suggested that females may have benefitted from nutritional gains obtained by consuming plants growing on treated areas during late gestation (spring), lactation (summer), and prior to breeding (fall). Similarly, male deer on treated areas could have benefitted during antler growth in summer and prior to rut. However, treated areas likely lacked winter cover for both sexes [228]. Previous work in this study area suggested that although herbicide treatments alone improved white-tailed deer browse (e.g., blackberry, coralberry (Symphoricarpos orbiculatus), roughleaf dogwood, elm (Ulmus spp.), greenbrier, hackberry (Celtis spp.), and smooth sumac) quality up to 6 years after treatment, herbicide treatment in combination with prescribed burning did not improve browse quality 2 and 3 years after treatment. The authors suggested that any effects of burning might have been too short lived (<2 years) to produce a detectable difference [383]. White-tailed deer doe carcass weights were 4 pounds (2 kg) heavier on treated than untreated areas (P<0.05). However, no differences between treated and untreated areas were detected in any morphological or reproductive parameter examined. Concentrations of total nitrogen, soluble nitrogen, and acid detergent fiber in postmortem feces of animals indicated better diet quality on treated than untreated areas in fall and winter but no such differences in spring, when white-tailed deer shifted from eating mainly browse to eating mainly forbs. The authors suggested that the diverse habitats created by treatments in the study area increased the nutritional quality of year-round white-tailed deer diets and thus improved white-tailed deer body condition [382].

Prescribed burning in mixed oak-pine forests may increase white-tailed deer forage, but white-tailed deer may select areas with abundant cover over areas with abundant food. Eight types of treatments were applied to post oak-shortleaf pine-blackjack oak forest stands on the Pushmataha Wildlife Management Area, Oklahoma, in low-fertility soils of the Ouachita Mountains [261]:
  • "rough reduction" winter prescribed fire at 4-year intervals to reduce fuel loads
  • selective logging of overstory trees plus annual winter prescribed burning
  • selective logging of overstory trees plus thinning of understory hardwoods
  • selective logging of overstory trees, thinning of understory hardwoods, plus winter prescribed burning at 1-, 2-, 3-, or 4-year intervals
  • selective logging of overstory trees, thinning understory hardwoods, and winter prescribed burning at 3-year intervals
  • selective logging of overstory trees, thinning understory hardwoods, and winter prescribed burning at 2-year intervals
  • selective logging of overstory trees, thinning understory hardwoods, and winter prescribed burning annually
  • clearcutting and site preparation treatments: shearing, raking, windrowing of logging debris, a summer prescribed fire, and planting of "genetically improved" loblolly pine seedlings
Treatments were compared with untreated controls. In general, understory winter burning in thinned stands at 1- or 2-year intervals favored grasses and legumes, particularly during the 1st growing season, while understory winter burning at 3- or 4-year intervals favored a mixture of herbs and shrubs. Overall standing crop of white-tailed deer forage was up to 27 times greater on logged, thinned, and burned sites than controls (4,234 kg/ha vs. 156 kg/ha; P=0.0001). Rough reduction fires increased overall forage standing crop 2.4 times compared to untreated controls (405 kg/ha vs. 171 kg/ha). However, the difference was not significant. The authors recommended prescribed burning at 2- to 4-year intervals on harvested sites to increase growth and availability of important white-tailed deer foods [260]. A subsequent study examined the use of the treated sites by white-tailed deer. Pellet group counts for white-tailed deer did not differ among treatments in either 1988 (4 years after the first treatment) or 1994 (10 years after the first treatment) due to high variability among areas (P=0.11). An outbreak of epizootic hemorrhagic disease in 1993 complicated interpretation of results [261].

Some white-tailed deer forage species increase after fire while others decrease or are unaffected. February prescribed burning combined with various herbicides affected standing biomass of species groups differently in oak-hickory stands at the Cookson Hills Wildlife Management Area in northeastern Oklahoma. Legume, vine, woody, and total understory standing biomass was similar on burned and unburned stands. However, forb and graminoid biomass was greater on burned than unburned stands [415]. In loblolly-shortleaf pine stands and in slash pine plantations of eastern Texas, prescribed fires did not affect overall white-tailed deer browse quantity but did reduce mast. The stand understories were 9 to 12 feet (2.7-3.7 m) tall before the fires and 2 to 6 feet (0.6-1.8 m) tall after. There had been no fire for at least 20 years. Prescribed burns occurred either in spring, late summer, or winter. Initially, overall forage quantity was reduced for 2 years after the fires compared to unburned controls, but browse production was similar to unburned controls by the 3rd postfire year. Herbaceous forage increased for at least 3 years after fire. Yaupon, which white-tailed deer use as forage, decreased after fire but other forages (e.g., American beautyberry (Callicarpa americana), viburnum, herbs) increased. The total number of understory plants with fruit on burned plots was 72% less than on unburned plots by the 2nd postfire year. Although the number of dogwood plants with fruit increased 83%, the number of yaupon, American holly (Ilex opaca), sweetleaf (Symplocos tinctoria), and viburnum plants with fruits decreased (P<0.05 for all variables). Fire's net effect on vegetation during the 3 years of the study was considered an improvement [217]. For more information about southern pine forests, see Southeast forests.

Southern Appalachians
Hardwood forests in the Southern Appalachians and elsewhere are important sources of mast. Hard mast is an important food for white-tailed deer throughout its range, including the Southern Appalachians (see Diet). Oaks are fire-adapted: large oaks that provide acorns have thick bark that helps them survive frequent surface fires, and small-diameter oaks sprout after most fires, providing browse. Soft mast is an important component of white-tailed deer diets seasonally (see Diet). Soft mast production generally peaks 2 to 4 years after burning for most of the approximately 20 species in the Southeast that produce soft mast [248]. Blueberries and blueberry browse may be preferred white-tailed deer forage [70]. A stand-replacement fire in pine and hardwood stands in Virginia greatly increased the production of blueberries the 2nd growing season after burning. Production declined by postfire year 5 but remained higher than that on unburned plots (Coggins and Engle 1971 cited in [248]). Blueberry frequency is influenced by season and frequency of burning. Annual and biennial summer fires for 30 years in loblolly pine forests on the Coastal Plain of South Carolina reduced the numbers of blueberry plants, whereas annual winter burning did not [441].

The biomass of understory herbs and shrubs usually increases after fire in oak forests [248]. Two and 3 growing seasons after late winter-early spring prescribed fires in oak forests in West Virginia, frequency of herbaceous vegetation was greater on plots that had been thinned and then burned under prescription than on an untreated control (P<0.05). The order of treatments may be important: The frequency of herbaceous vegetation was not significantly different between plots that had been burned first, then thinned, and control plots [308]. In upland oak-mixed hardwood forest on the William B. Bankhead National Forest, Alabama, the amount of browse available to white-tailed deer was greater on 2- and 4-year-old logged and burned stands than on a 9-year-old logged but unburned stand. Stands were burned under prescription in fall or spring. Herb cover was 48% on the 2-year-old logged and burned stand and 10% on the 9-year-old logged stand [169]. In closed-canopy upland oak-hickory forests in Chuck Swan State Forest and Wildlife Management Area, Tennessee, repeated low-severity prescribed fires at 2- to 4-year intervals increased forage biomass, and canopy reduction (either shelterwood or retention cut) followed by repeated low-severity prescribed fires produced even greater total forage biomass. The 1st growing season after treatments—the worst drought year on record—the carrying capacity for white-tailed deer was similar across treatments, but the 2nd growing season after treatments—a year of average rainfall—carrying capacity was higher in treated than untreated controls (Table 5). The authors attributed differences between carrying capacities to drought-induced stress on plants [216].

Table 5. Available forage biomass (kg/ha) and nutritional carrying capacity (white-tailed deer days/ha) of selected forage species following silvicultural treatments at Chuck Swan Forest and Wildlife Management Area, Tennessee. In 2007, the study area experienced the worst drought on record [216]. Treatment July-September 2007 July-October 2008 Forage biomass* Carrying capacity Forage biomass* Carrying capacity Untreated control 150 de** 18 e 103 e 67 d Prescribed fire*** 212 cd 30 e 337 c 217 c Shelterwood cut**** 274 c 20 e 259 cd 151 c Shelterwood**** cut followed by prescribed fire*** 496 bc 20 e 651 ab 452 ab Retention cut***** followed by prescribed fire*** 591 b 79 e 844 a 591 a *Included 22 plant species identified in the literature and during the study as white-tailed deer forage species. **Means with the same letters in a column are not significantly different at P<0.05. ***All prescribed fires were conducted in April. ****Shelterwood cuts included a series of cuts where some trees were left in the overstory to shelter developing understory regeneration. All overstory trees were cut 6 to 8 years after initial harvest. *****Retention cuts involved removing "undesirable" tree species. Undesirable tree species included red maple, sugar maple, sourwood (Oxydendrum arboreum), and yellow-poplar, while desirable trees included white oak, northern red oak, and American beech for hard mast production and black tupelo (Nyssa sylvatica) and black cherry for soft mast production.

Shaw and others [367] recommended thinning or clearcutting to increase sunlight to the forest floor before burning. They detected a significant decrease in nutritional carrying capacity for white-tailed deer the 1st growing season (July and August) following an April low-severity prescribed fire in a closed-canopy white oak-yellow-poplar stand on the Tennessee Coastal Plain (P=0.02). Simultaneously, there was a significant increase in nutritional carrying capacity in a closed-canopy shortleaf pine-oak stand on the Cumberland Plateau (P=0.04; Table 6) [367].

Table 6. Nutritional carrying capacity (white-tailed deer days/acre) of selected forage species in Tennessee [367] Treatment Carrying capacity shortleaf pine-oak white oak-yellow-poplar Untreated control 2.8 6.9 1 year after prescribed fire 4.6 2.1

Thinning and burning may increase mast production and generally increases forage. Thinning oak stands in central Massachusetts maintained acorn production despite fewer acorn producing trees. During 3 years, mean number of sound acorns ranged from 30,000 to 155,000 acorns/ha for unthinned stands and from 58,000 to 220,000 acorns/ha for thinned stands. Codominant and dominant oak trees were retained during thinning, and there were "immediate" increases in herbage, browse, and cover in the understory relative to unthinned controls [154]. In shortleaf pine-oak forest in the Ouachita Mountains in west-central Arkansas, forage production for white-tailed deer was greater 1 to 3 growing seasons after thinning alone or thinning and burning treatments compared with untreated controls. The 1st treatment consisted of thinning midstory hardwood trees and some codominant pine and hardwood trees. The 2nd treatment included thinning and 1 to 4 dormant-season prescribed burns at 3-year intervals. The most important forage categories for white-tailed deer were preferred woody browse, forbs, and panicgrass (Panicum spp.). The fires increased forb and legume production but initially caused declines in panicgrass standing crop, low-preference woody species standing crop, and total woody species standing crop. Although grass standing crop more than doubled in treated stands, the primary grass species, longleaf woodoats (Chasmanthium sessiliflorum), and several bluestems were rarely used in any season by white-tailed deer. Plant groups contributing to white-tailed deer forage (panicgrass, sedge, forb, legume, and preferred woody species) were increased by thinning 6-fold and by thinning and prescribed fire >7-fold over control stands (434-520 kg/ha in treated stands vs. 69 kg/ha in control stands). Although understory hardwoods were removed during thinning treatments, they were generally <8 inches (20 cm) DBH, and oaks below this diameter contribute little mast production for white-tailed deer. Thus, the authors concluded that increases in forage production through thinning and prescribed fire more than offset the loss of limited mast production by midstory hardwoods, at least in the short term. Further, they stated that forage production is more dependable than mast production. However, they acknowledged that midstory thinning of hardwoods may limit potential future mast production [262]. For more information on this and other studies in shortleaf pine habitats, see Southeast forests.

Fire may temporarily increase forage nutritional quality in oak stands. During the 1st growing season after an April, low-severity prescribed surface fire in a 30-year-old mixed-oak forest in central Wisconsin, the concentration of nitrogen, phosphorus, and potassium in the leaves of red maple, black cherry, northern pin oak (Quercus ellipsoidalis), and Allegheny blackberry (Rubus allegheniensis) generally increased. The level of increase in most plants decreased as the growing season progressed [332].

White-tailed deer often prefer young burns. In upland, closed-canopy oak-hickory forests in Missouri, spring prescribed burns ranged from 150 to 598 acres (61-242 ha). White-tailed deer pellet groups were counted at 0 years (burned in the same year as the study), 2 years, 4 to 5 years, and >15 years since fire. Pellet group abundance differed among burn ages (P<0.05) and seemed to decrease with increasing age [5]. For more information on this study, see Fire effects on white-tailed deer diseases and parasites.

Because white-tailed deer often concentrate in burned communities with oaks, heavy white-tailed deer browsing is often associated with a lack of oak regeneration after fires. On south slopes of 2- to 10-year-old burned areas in mixed-oak forest in central Pennsylvania, white-tailed deer browse production peaked 2 years after fire at 160 pounds/acre and declined by about half every 2 years afterward. The decline was attributed to heavy browsing by white-tailed deer and small mammals that concentrated in the burned areas [465]. For more information, see Effects of herbivory on vegetation.

For information on white-tailed deer use of conifer forests in the Southern Appalachians, see Southeast forests.

Southeast
Southeast grasslands
In Shark Slough in Everglades National Park, Florida, white-tailed deer were more numerous in sawgrass (Cladium jamaicense) stands 2 to 3 months after prescribed fires in January and February, when new sawgrass shoots appeared on the burned area, than before the fires [197].

Southeast shrublands
Pocosin: White-tailed deer may leave burned areas immediately after fire but return soon after. Immediately after a severe, large (45,000-acre (18,200 ha)) wildfire in 1986 in pocosin on the Coastal Plain of North Carolina, white-tailed deer track counts were substantially less than before the fire. Direct mortality was "low" (<10%). The authors suggested that white-tailed deer dispersed from the area during the fire and gradually reoccupied the burned area over the next 6 to15 months. By the 2nd postfire year, track counts had returned to the levels of 1985 [184].

White-tailed deer body condition may improve after fire in pocosin. Johnson and others [184] documented subtle, short-term improvements in white-tailed deer body mass and condition in pocosin habitat after the 45,000-acre wildfire on the Coastal Plain of North Carolina. Limited evidence suggested that body mass and body condition of harvested white-tailed deer increased following the fire, especially in young males. Mean condition indices increased from 1.0 the 2 years prior to the fire to 2.8 the 1st postfire year, then declined to 1.7 the 2nd and 3rd postfire years. The authors attributed the initial increase to the increased use of agricultural crops in surrounding areas and supplemental feed supplied for white-tailed deer after the fire, but they did not discount the possibility that increased quality of vegetation in the burned area may have contributed. White-tailed deer diets in burned and unburned areas were similar, except fruits were absent during the 1st postfire fall and peaked at 40% of the aggregate volume during the 3rd postfire fall, when the study ended. Laurelleaf greenbrier (Smilax laurifolia) berries were the predominant fruit consumed. Crude protein content of important white-tailed deer browse species was higher in samples from burned areas than unburned areas the 1st postfire winter for all species, but it was higher only for holly in summer. Differences were still evident in the 2nd postfire winter and 2nd postfire summer only for swamp cyrilla (Cyrilla racemiflora). Phosphorus levels were higher in burned than unburned areas for all browse examined through the 2nd growing season. A similar trend was apparent for calcium. Digestible dry matter of swamp cyrilla, the only species tested, was higher in burned than unburned areas of the pocosin 4 months after the fire (45% in burned areas vs. 38% in unburned areas) but did not differ between burned and unburned areas 9 months after the fire (45% for both areas) [184]. In contrast, after a 94,654-acre (38,305 ha) wildfire in pocosin in the Pocosin Lakes National Wildlife Refuge, North Carolina, relative densities, harvest totals, percent fawns in the harvest, and selected physical characteristics of white-tailed deer following the fire were not different from before fire even though 20% of the white-tailed deer population was killed by the fire and 20% of the survivors were severely injured (see Direct Fire Effects). However, cohort analysis revealed a 16% decline in the number of animals from the 1st postfire fawn class when compared with classes from the previous 5 years [184,304]. The impact of the fire on white-tailed deer habitat varied in relation to soil characteristics and the severity of the ground fire. Where the fire burned deeply, many of the broad-leaved evergreen shrubs were killed, and many of these sites appeared to be revegetating with grasses and sedges, resulting in an overall loss of soft mast. However, the authors speculated that these losses may be offset temporarily by improvements in fruit and browse quality in areas not burned as deeply [304].

Southeast woodlands
Pine rocklands: Prescribed fire is frequently used in pine rocklands as management for Key deer (e.g., [56,57]). Deterioration of habitat quality due to fire exclusion is thought to be a factor in Key deer population declines [57]. Plants in pine rocklands are well-adapted to and require fire for continued existence (i.e., to prevent establishment of and shading by hardwoods) [56]. Succession of pine rocklands to hardwood hammock communities in the absence of fire occurs in 2 to 3 decades on the mainland of southern Florida but may take twice as long on the drier Keys. Taylor (1980 cited in [56]) stated that historical fire intervals may have averaged only about 8 years in southern Florida pine rocklands. See the Fire Regime Table for information on historical FIRE REGIMES associated with pine rocklands.

Key deer browse nutritional content may increase, decrease, or be unchanged by burning of pine rocklands. At the National Key Deer Wildlife Refuge on Big Pine Key, a study examined the nutritive content of Key deer browse on 3 burned sites: 2 burned in August prescribed fires and 1 burned in a July wildfire. All fires were of high severity, with scorch on South Florida slash pines (Pinus elliottii var. densa) >10 feet (3 m) high. Key deer use of several common plants (redgal, Florida Keys blackbead (Pithecellobium keyense), Everglades greenbrier (Smilax coriacea), South Florida slash pine (<6.6 feet (2 m)), and Long Key locustberry (Byrsonima lucida)) were noted during the 1st postfire year. Crude protein of redgal was generally higher in burned than unburned plots in March, May, July, and November of the 1st postfire year, whereas crude protein of Florida Keys blackbead was similar in burned and unburned plots throughout the 4 sampling periods. The authors concluded that while fire probably provides a short-term, within-year increase in nutritive value of some Key deer browse, arresting succession of pine rocklands to hardwood hammocks may be the greatest benefit of burning to Key deer because it favors herbaceous plants important in the Key deer's diet. The authors concluded that a fire periodicity of 5 to 10 years should accomplish that but maintaining diverse stand ages was also important [56].

A Key deer in an area burned under prescription the previous day on the National Key Deer Refuge on Big Pine Key in Florida. Photo courtesy of Josh O'Connor, US Fish and Wildlife Service.

Southeast forests
White-tailed deer frequent shortleaf, longleaf, loblolly, and slash pine forests of the Southeast and elsewhere. These forests often have understories with hardwood browse and forbs. Prescribed fire in southeastern pine forests can benefit white-tailed deer and other wildlife by increasing sprouting browse; providing seedbeds for legumes and herbs; stimulating germination of seed by increasing light on the forest floor; improving understory cover; increasing nutrient contents of browse; and enhancing palatability of forage. However, most of these effects typically last only 1 to 3 years. Furthermore, very frequent prescribed fire can be detrimental to white-tailed deer and other wildlife in southeastern pine forests by simplifying forest structure. Repeated annual summer burning may reduce understory hardwoods, thus eliminating understory mast-producing plants and allowing sites to be dominated by fire-tolerant forbs and grasses [52,185,276,394].

Many, but not all, studies in southeastern forests have reported an increase in browse and forage production after prescribed burning. Furthermore, browse is often more accessible to white-tailed deer because its height is reduced [52,251]. However, fire generally needs to be repeated to maintain high yields of white-tailed deer forage [251]. Maas and others summarize fire effects on many white-tailed deer forage plants in southeastern forests [251]. Forb production in burned southeastern pine forests generally peaks in 2 or 3 years following fire, while browse production peaks in 5 years. Burning every 3 to 4 years is generally recommended for white-tailed deer [276]. In shortleaf pine-white oak-chestnut oak stands in Catoosa Wildlife Management Area, Tennessee, white-tailed deer browse biomass 4 months after fire was less on an area burned under prescription than on an unburned control area. However, browse biomass was 3.5 and 5.4 times greater on burned areas 16 months and 28 months after prescribed fire, respectively, than on the control area (Table 7). The authors concluded that burning increased browse for white-tailed deer by stimulating sprouting from understory plants, but not until the 2nd postfire growing season [97]. Total white-tailed deer forage in August of the 1st postfire growing season was greater on burned plots and burned and thinned plots than on untreated plots in 8- to 9-year-old loblolly pine plantation in Kemper County, Mississippi (P<0.05; Table 8). Plots were burned in February and thinned in March. Total white-tailed deer forage was also greater on burned and thinned plots than on control plots in August of the 1st postfire growing season. In February, however, total white-tailed deer forage was not different among the plots. The authors suggested burning plantations every 2 years to increase and maintain white-tailed deer forage [171]. Burning and thinning 13-year-old loblolly pine plantations in Kemper County, Mississippi, increased total white-tailed deer forage from the prefire average of 26 kg/ha to 326 kg/ha in August, at the end of the 1st growing season after treatment, and to 429 kg/ha in August at the end of the 2nd growing season. Most white-tailed deer forage in the treated areas was forbs, vines, and lianas. The authors recommended burning every 3rd year to maintain abundant white-tailed deer forage [172].

Table 7. Effects of 3 low-severity March prescribed fires on white-tailed deer browse in shortleaf pine-white oak-chestnut oak forests in Catoosa Wildlife Management Area, Tennessee [97] Time since fire Browse biomass (pounds/acre) 4 months 127.6 16 months

598.4

28 months 930.6 Unburned control 173.1
Table 8. Mean oven-dry weight (kg/ha) of grasses, forbs, vines, and woody plants on burned, burned and thinned, and control plots in an 8- to 9-year old loblolly pine plantation in Kemper County, Mississippi [171] Time since fire Month sampled Treatment Control Burned Burned and thinned 6 months after fire August 649 a* 610 a 128 b 18 months after fire 314 ab 498 a 154 b Combined 481.5 a 553.8 a 140.8 b 1 year after fire February 75.4 a 60.2 a 45.8 a 2 years after fire 37.7 a 45.9 a 6.5 a Combined 56.6 a 53.0 a 26.1 b *Different letters in the same row indicate that means are significantly different at P<0.05.

Not all studies found increased white-tailed deer herbaceous forage after fire. In clearcut longleaf pine sites on the Southlands Experiment Forest in Georgia, mean frequencies of herbaceous food plants (legumes, composites, and grasses) on plots that were clearcut and then May slash-burned were not significantly different from untreated clearcut plots 1 to 3 years after treatments. Mean frequencies of herbaceous food plants on clearcut-and-slash-burned plots and those on plots that were clearcut, slash-burned, then burned under prescription 8 months after slash burning, were also not significantly different. Herbaceous food plants on clearcut-and-slash-burned plots were sampled 16 months after treatments and plots that were clearcut, slash-burned, then burned under prescription were sampled 8 months after treatments [47].

The season and frequency of burning greatly affects vegetation response on southeastern pine forests. According to a review, the "vigor" of sprouts is generally greater following dormant-season than growing-season burns in southeastern pine forests [428]. Understory hardwoods can be eliminated by repeated annual summer burning. According to a review, 3 to 10 annual summer burns will eliminate 80% of the hardwood rootstocks, depending on species. Annual winter burning, even if done for decades, will not kill hardwood rootstocks. Occasional burning in southeastern pine forests often increases the density of hardwood stems in the understory because multiple sprouts replace single top-killed stems. Hardwood species composition is unlikely to be changed by burning rotations of 4 to 6 years because no hardwood species are eliminated and most sprout [428]. Twenty years of low-severity annual June burning in loblolly pine forests at the Santee Fire Plots in South Carolina nearly eliminated understory woody plants, which were replaced by grasses and forbs. Sixteen years of biennial June burning reduced understory hardwood stem (<4.9 inches (12.5 cm) DBH) density but did not eliminate hardwoods from the understory. Periodic summer and December burning resulted in similar woody plant stem densities. Periodic burning was conducted at 3- to 7-year-intervals, when 25% of the understory hardwood stems reached 1 inch (2.5 cm) DBH. Stems >4.9 inches DBH were unaffected by all burning treatments [231,440]. For more information about the timing and frequency of burning in southeastern pine forests, see Fire Management Considerations.

While most burning may lead to a reduction in browse and an increase in forbs and grasses, infrequent burning would likely allow a dense midstory to develop out of the reach of white-tailed deer and would ultimately reduce plant growth underneath [251]. Cain and others [52] suggested that without periodic fire or other techniques for controlling the height of understory woody plants in uneven-aged pine stands, white-tailed deer habitat quality would likely diminish. In shortleaf pine habitats, white-tailed deer occur in all stages of succession either in the absence of fire or with frequent surface fire (1- to 5-year intervals). However, their densities tend to be highest in habitats with relatively frequent fire. At about 8 to 10 years after fire, sapling stems become dense, canopies begin to close, and herbaceous vegetation declines. Unless prescribed fire is used on a least a 3-year late-dormant season cycle, white-tailed deer use declines by postfire year 10. Prescribed fire reduces sapling density and maintains the herbaceous understory. In mid- and late-successional stands, white-tailed deer numbers continue to decline as midstory hardwoods develop and the herb layer declines from litter buildup and shading [259].

Although most burning regimes in southeastern pine forests increase sprouting, they may have variable effects on fruit production. Fruit production of gallberry (Ilex glabra), huckleberry, and blueberry was reduced the 1st year after prescribed burning in 16- to 30-year-old slash pine plantations in Georgia, but it increased markedly by the 3rd postfire year. Total fruit production was greatest in 4-year-old stands, and the number of species fruiting was greatest in 6- to 10-year-old stands [185]. Fruit production of woody shrubs was similar on cut and burned (91 kg/ha) and unburned control (89 kg/ha) loblolly pine-shortleaf pine-hardwood forest plantations in eastern Texas 3 years after burning [395]. Legumes often increase in abundance and seed production following fire [428]. Saw-palmetto is an important understory plant in pine flatwoods. White-tailed deer use it for escape cover [404] and sometimes eat the fruits, particularly during drought years [126]. According to a review, saw-palmetto fruit production may be reduced by half the 1st year after a fire but peaks at 5 postfire years. The authors suggested that prescribed burning for white-tailed deer in pine flatwoods every 3 to 5 years [126]. Caution is warranted in regard to fire frequency. A review by Maehr and Larkin [252] suggested that winter prescribed fires at <3-year intervals in southern Florida flatwoods may disrupt the life cycles of native plants and animals that require >3 years to recover from fire [251]. For more information on fruit production following fire, see Southern Appalachians. See also FEIS reviews of species of interest.

Based on a review of 16 studies of fire effects in Southeastern forests, Stransky and Harlow [394] proposed several generalizations about the effects of fire on plant nutrition. They concluded that winter burns in the Southeast increased forage crude protein and phosphorus content of grasses, forbs, and browse; increased palatability of forage; increased number of woody plant stems; increased cover of grasses, forbs, and legumes; and reduced soft mast production. Most of these effects lasted 3 years or less. Infrequent growing-season burns had similar effects, except that woody stems were reduced. However, frequent growing-season burns would eventually eliminate woody stems and lead to domination by grasses and fire-adapted forbs [394]. While this review provides some useful generalizations, fire's effects on forest understories are quite variable and often short-lived. Two months after winter prescribed burning in longleaf pine-pineland threeawn (Aristida stricta) savanna in North Carolina, plants contained more nitrogen, phosphorus, potassium, calcium, and magnesium than on unburned areas. However, these differences disappeared within months after burning [62]. Forage quality was similar in burned and unburned loblolly pine stands on the Francis Marion National Forest, South Carolina. After a single January prescribed fire, nutrient concentrations were higher on burned plots in the 1st postfire growing season but not in the 2nd or 3rd [464]. A study in Florida sandridge habitat found no substantial differences in plant nutrient levels from 3 to 54 years since fire [1]. Chemical analyses of red maple, sourwood, and sassafras (moderately browsed white-tailed deer forage in the area) following a prescribed fire in shortleaf pine-white oak-chestnut oak stands in Catoosa Wildlife Management Area, Tennessee, showed no significant effects of burning on nutritional quality 3, 6, and 10 months after fire [97].

Carrying capacity for white-tailed deer often increases in burned habitats in southeastern pine forests. Thirteen- to 22-year-old loblolly pine plantations in the Upper Coastal Plain and Lower Coastal Plain of Mississippi were thinned, treated with herbicide, and then burned under prescription 1 to 6 winters later. One and 2 years after burning, plantations were sampled in July for production of white-tailed deer. Prior to treatments, Upper Coastal Plain sites had baseline carrying capacities nearly 8 times greater than Lower Coastal Plain sites. White-tailed deer foraging habitat was improved by treatments in both regions by postfire year 2. Treatments reduced midstory hardwood cover from 25% to 1% in the Upper Coastal Plain and from 59% to 4% in the Lower Coastal Plain (Sladek 2006 cited in [280]), increasing sunlight at ground level. Two years after treatments, white-tailed deer carrying capacity was 3 times greater than controls in the Upper Coastal Plain and 19 times greater than controls in the Lower Coastal Plain, largely due to increased forb species richness, cover, and/or biomass [280]. In 18- to 22-year-old pine plantations in Kemper County, Mississippi, prescribed winter burning during 2000, 2003, and 2006 produced no consistent increases in white-tailed deer forage over 9 years (2000-2008). However, carrying capacity was significantly higher in burned than unburned control plots in years 8 (178 white-tailed deer-days/ha in burned vs. 74 white-tailed deer-days/ha in control plots) and 9 (148 white-tailed deer-days/ha in burned vs. 60 white-tailed deer-days/ha in control plots) [174].

White-tailed deer often use recently burned sites. Four male white-tailed deer in a 58-acre (23 ha) pen in a longleaf pine forest in eastern Texas used an area that was burned under prescription in March twice as much as an adjacent unburned area during the 1st and 2nd postfire years. Use of the burned area increased 60% compared to before treatment. Prior to the fire there were 264 to 272 pounds/acre of browse, and during the first 2 postfire years there were 264 to 332 pounds/acre of browse. Both burned and unburned areas had been logged and burned about 25 years prior to the study [219]. For information on related studies, see South-central US forests. On the Florida Panther National Wildlife Refuge, white-tailed deer apparently were attracted to improved forage in recently burned areas. They were marginally more abundant in a South Florida slash pine flatwood burned under prescription 24 months earlier than in a similar area burned under prescription 48 months earlier (P=0.12). Both fires were in January. The 48-month-old site was burned again, and white-tailed deer abundance was determined <6 months later. White-tailed deer used the <6-month-old burned site more than previously (P=0.02) and at levels similar to their use of the now 30-month-old burned site [254].

Intensive site preparation practices that use prescribed fire are common in southeastern pine plantations. Often prescribed fire is combined with mechanical treatments such as shearing, chopping, raking, and disking (e.g., [46,237]). According to Newsom [294], intensively managed pine plantations in the Coastal Plain generally produce lower yields of white-tailed deer food than mixed pine/hardwood forests. For example, in a 6-year-old loblolly pine plantation on the lower Piedmont of Georgia on the Hitchiti Experimental Forest, plots were sheared and raked into windrows, windrows were burned, and the ash and debris were scattered over the plots and disked into the soil. The June following treatments, grass and forb biomass was greater on treated than untreated control sites; however, liana biomass was less on treatments than controls. Because lianas such Japanese honeysuckle (Lonicera japonica) and greenbrier are highly preferred by white-tailed deer and grasses and forbs are less important, the treatments were considered detrimental to white-tailed deer [237]. Harris and others [152] compared residual effects of 3 site preparations in 9-year-old slash pine stands on the Florida Coastal Plain. The "low-intensity" treatment consisted of clearcutting and broadcast burning. The "medium-intensity" treatment consisted of clearcutting, broadcast burning, and blade and harrow scarification, while the "high-intensity" treatment added bedding to the medium-intensity treatment. White-tailed deer seemed to prefer the low-intensity treatments over the medium- and high-intensity treatments. Grasses and forbs were most abundant following the low-intensity treatment [152]. For more information about the role of prescribed fire in intensive site preparation, see Buckner [46].

For information on hardwood forests of the Southeast, see Southern Appalachians. For more information about southern pine forests, see South-central US forests. Reviews are available about the use of prescribed fire in southeastern pine forests (e.g., [40,238,251]). See also FEIS reviews of species of interest.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Indirect Effects of Fire: Other factors

provided by Fire Effects Information System Animals
More info for the terms: competition, cover, fire exclusion, forb, forest, habitat type, liana, natural, parturition, shrubs, tree, vine

Interspecific interactions: White-tailed deer habitat use may be indirectly affected by that of other wildlife. For example, food habits of white-tailed deer and mule deer occasionally overlap [255,365]. With land use changes in the 1900s and early 2000s, white-tailed deer expanded into western regions, increasing interactions with other cervids including mule deer, moose (Alces americanus), and elk (Cervus elaphus) (see Threats). The increased interspecific interactions can lead to a greater risk of disease transmission, competition for resources, and in the case of mule deer, hybridization. According to a review, increased competition for resources between white-tailed deer and mule deer may have contributed in the decline of mule deer populations in the mid- to late 1900s in some regions [430]. Anthony and Smith [11] suggested that factors responsible for increased competition for resources between white-tailed deer and mule deer in southern Arizona were vegetation changes, overgrazing by livestock, and/or range fire exclusion during the early 1900s. For a review of interrelationships between white-tailed deer and other wildlife, see these reviews: [122,182,255,365,381]. See also White-tailed deer, other ungulate, and fire interactions. White-tailed deer habitat use may also be affected by that of livestock. For more information, see Livestock grazing.

Coarse woody debris: White-tailed deer may avoid areas with abundant coarse woody debris. See Logging slash and Physical barriers for more information.

Water: In most of the species' range, water requirements do not usually limit white-tailed deer distribution and abundance, but in arid regions the local distribution of white-tailed deer is influenced by the location of water [121,122,255,341,351,365]. For example, in Arizona, white-tailed deer selected areas <2,600 feet (800 m) from artificial and natural water sources, avoiding areas >3,900 feet (1,200 m) away (Ockenfels and others 1991 cited in [122]). In Texas, 79% of adult male white-tailed deer locations were within 3,300 feet (1,000 m) of a permanent water source, and 89% were within 4,900 feet (1,500 km) of a permanent water source during all seasons [448]. In Arizona, when water becomes scarce in June, white-tailed deer (especially pregnant does) move closer to permanent water but disperse when summer rains start [255]. Availability of drinking water did not appear to be a primary limiting factor for Key deer on Big Pine Key, but it may have limited year-round utilization of the outer Keys [148]. White-tailed deer are reluctant to use a water source lacking adjacent cover [8]. Water requirements for white-tailed deer vary with weather, physiological state and activity of individuals, and moisture content of forage [341]. Water developments appear to have benefited many deer populations in the arid Southwest [365] (see Water management). For reviews of white-tailed deer use of water in the Southwest, see Severson and Medina [365] and Rosenstock and others [351].

Fawning areas: During and soon after parturition, female white-tailed deer prefer areas with concealment cover [279]. Habitats with dense tall shrubs and/or saplings, regardless of habitat type, provide suitable concealment cover for fawns [368]. For example, in the Black Hills, sites chosen by fawns in ponderosa pine forest typically had more vertical and horizontal cover than those found on randomly selected sites [426]. Fulbright and Ortega-S. [121] stated that optimum cover for fawn bed sites in the southwestern and south-central United States consists of an overstory canopy of woody plants with an understory of mid- to tall grasses [121]. In Iowa, fawns chose bed sites with more woody plant cover and less medium- to short-growing forb cover, vine cover, and liana cover than in surrounding areas, with fawns selecting sunny slopes on relatively cool days and shady slopes on relatively warm days [166]. Depressions in pine flatwoods with saw-palmetto (Serenoa repens) provide shelter for fawns in Florida [148].

According to a review, "ideal" fawning cover in Wyoming consists of areas with shrubs or small trees 2 to 6 feet (0.6-1.8 m) tall, an overstory tree canopy cover of approximately 50%, slopes <15%, adequate succulent vegetation (especially in June), and available water within 600 feet (180 m) [302]. In southwestern Oregon, Columbian white-tailed deer fawns did not select or avoid certain habitats, but 74% of concentrated use areas of fawns was within 660 feet (200 m) of streams [338].

Poor concealment cover in fawning areas may result in high fawn mortality [121]. In areas where concealment cover is limited, such as in portions of the Midwest, parturient females may travel long distances to locate suitable fawning habitat [94,279,297], but in areas with abundant cover, such as in the Southeast, cover for fawning is seldom deficient unless disturbances such as fire or clearcuts are very large [143]. Livestock grazing may reduce important concealment cover [379].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Life History: Movements and home range: Seasonal movements and migration

provided by Fire Effects Information System Animals
More info for the terms: cover, density, forest, severity

White-tailed deer exhibit multiple types of migratory strategies: they may be nonmigratory (year-round residents), obligate migrators (migrating every year), or conditional migrators (migrating some years but not others). All 3 strategies may be observed within the same population, although in general, young of mothers that migrate are more likely to migrate than young of nonmigratory mothers [392]. In an agricultural region of southwestern Minnesota, 15% of female white-tailed deer were nonmigratory, 35% were conditional migrators, and 43% were obligate migrators [39]. In east-central Illinois, 20% of does migrated seasonally [296]. In northern and central South Dakota and southern Minnesota, white-tailed deer in highly fragmented landscapes, with sparse (≤0.9 forest patch/100 ha) and small (≤1.5-acre (0.6 ha)) forest patches, were more likely to migrate. Where forest patch density and mean patch size on summer rangelands were intermediate (ranged between 0.9 and 2.7 patches/100 ha and 1.5 and 3.0 acres (0.6-1.2 ha), respectively), white-tailed deer were more likely to be conditional migrants. Conditional migrators were more likely to initiate migration as winter severity increased [137].

Migration between summer and winter ranges tends to be more pronounced where there are marked differences in seasonal weather patterns, such as in northern or mountainous areas, particularly in regions with deep snow [94,392]. In northern areas, white-tailed deer migrate in winter in response to cold temperatures and snowfall. They return to summer ranges as forage becomes available [94,255,381,392]. On the Chippewa National Forest in north-central Minnesota, fall migration usually occurred in November, but it ranged from early November to January, depending weather. As snow depth increased, the annual cumulative proportion of white-tailed deer migrating also increased [114]. In the Northeast and Midwest, migratory deer concentrate in yards during winter [392]. In yards, snow depth governs movements and habitat use. Deep snow (approximately >70% of chest heights or >16 inches (40 cm) deep) makes travel difficult [255,264,365]. When snow is deep, travel within yards is confined to well-used trails that minimize energy expenditure [94,279,408]. White-tailed deer may select yards with abundant forage [392]. However, white-tailed deer apparently select cover over food abundance when snow is deep [381]. Migratory white-tailed deer may remain on summer ranges during mild winters [173]. In agricultural areas, migration appears to be driven partly by changing availability of cover following harvest in autumn, which causes white-tailed deer to move to areas of permanent cover on winter ranges [392]. In the Florida Everglades, nonmigratory white-tailed deer shift habitats seasonally in response to water levels. Movements in response to flooding are common in extensive southern river swamps [255].

According to reviews, mean migration distances range from 4 to 55 miles (6-89 km) [79,279,381]. However, migrations to winter ranges generally are <10 miles (16 km) [94]. Longer seasonal migrations are most common in populations at northern latitudes and in mountainous terrain [255,381]. Migration distances of white-tailed deer in some areas of Minnesota and the Upper Peninsula of Michigan are among the longest [94,279].

White-tailed deer show high fidelity to seasonal ranges [94,173,255,293,381]. Although wintering areas can be used annually for long periods, their use may change over time [95]. Boer [34] identified 99 wintering areas in New Brunswick in 1975 and found that 42 of these were vacant 13 years later. Small yards (<124 acres (50 ha)) were more likely to be vacant in the subsequent survey than large yards (>247 acres (100 ha)) [34].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Life span and survival

provided by Fire Effects Information System Animals
According to reviews, white-tailed deer may live 20 years or more, but few live more than 10 years [79,381]. Another review stated that white-tailed deer have an average life span of 8 years, but most do not live past 4 or 5 years [264]. The life span of females is typically longer than that of males [279]. The average life expectancy of white-tailed deer in heavily hunted populations in Pennsylvania was 2 years for males and 3 years for females (Forbes and others 1979 cited in [79]). The maximum age for a female Key deer was 19 years (mean: 6.2 years), whereas the maximum age of a male Key deer was only 11 years (mean: 3.0 years) (Lopez and others 2000 cited in [279]).
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Life span and survival: Malnutrition and weather

provided by Fire Effects Information System Animals
More info for the terms: cover, forest, grassland, severity

Malnutrition is often the leading cause of white-tailed deer deaths. In southern Llano County, Texas, starvation killed 28% and 54% of a white-tailed population during 2 years when rainfall was less than half the average and rangelands were in poor condition [405]. White-tailed deer die-offs due to food scarcity were reported in portions of the Northeast, Great Lakes, and southern Canada [264]. For example, in the early 1950s, when white-tailed deer populations in the Great Lakes region were "probably at their peak", severe winter weather resulted in 20,000 to 50,000 white-tailed deer deaths [33]. Poor forage in yards coupled with prolonged periods of deep snow can lead to high overwinter mortality. During a severe winter on the Upper Peninsula of Michigan in the mid-1980s, an estimated 11,000 of 43,000 wintering white-tailed deer died in the Mead Deer Yard (Ozoga 1995 cited in [279]).

Inclement weather influences the movement, productivity, and mortality rate of white-tailed deer by reducing growth and seasonal availability of food and by placing an energy stress on animals, making them more vulnerable to predation [124,264,274,279,291]. In the North, deep snow (approximately >16 inches (40 cm)) restricts white-tailed deer movement and forage availability and influences habitat use, all of which affect energy budgets and contribute to overwinter mortality [264,365,381]. A winter severity index that incorporated wind chill, snow depth, and the ability of the snow to support the body weight of white-tailed deer was positively correlated with mortality during 3 winters in the Upper Peninsula of Michigan [432]. Studies of an unhunted population on Huntington Wildlife Forest, New York, reported that white-tailed deer densities fluctuated widely, primarily in response to winter severity. The principal factor driving this fluctuation was the length of time white-tailed deer were confined by deep snow to winter rangelands. Populations grew only when winters were milder than average. During average to severe winters, populations remained constant or declined (Underwood 1990 cited in [357]). In the oak-hickory forest region of the East, harsh winters during years of acorn crop failure can adversely affect white-tailed deer production, especially on overpopulated rangelands [423] (see Diet).

Because survival may be heavily influenced by deep snow, white-tailed deer are potentially affected by large-scale climatic fluctuations, such as the North Atlantic Oscillation (NAO), that influence local temperature and precipitation patterns [326]. Researchers in Minnesota suggested that increased snow depths resulting from the NAO led to high white-tailed deer mortality and low recruitment and ultimately reduced white-tailed deer densities 3 years later [325,326]. Conversely, on Anticosti Island, Quebec, at the northern limit of the white-tailed deer's range, Simard and others [371] did not find negative effects of winter NAO on female survival.

In the Southwest, periodic droughts are common and may result in high white-tailed deer mortality through lowered plant productivity [10,122]. Drought can reduce hiding cover, which may make white-tailed deer fawns more susceptible to predation [19]. In a study in south-central Texas, reduced ground cover and poor nutrition due to severe drought resulted in high fawn mortality, especially due to predators, whereas fawn survival increased during the subsequent year when rainfall was higher and rangelands were improved. This suggested that predation was less if hiding cover was adequate [59]. A severe, year-long drought in desert shrub-desert grassland habitat of southeastern Arizona caused an apparent decline in local white-tailed deer and mule deer populations [10]. Populations of white-tailed deer were affected by severity of drought during early summer and fall in the Sonoran Desert of Arizona. Fawn survival was correlated with the June Palmer Drought Severity Index (PDSI) (r = 0.45, P< 0.05) and the November PDSI (r = 0.56, P< 0.01) from 1948 to 1978. Together, these drought indices accounted for about 34% of the annual variation in fawn survival [41]. In Prairie County, Montana, total amount of precipitation from July through April prior to fawning and percent of fawns in the population in spring were positively correlated (r=0.78, P=0.01) during 12 years [463]. Fawn recruitment was examined over 18 years across a precipitation gradient from western Texas (<15 inches (370 mm) of annual rainfall) to eastern Texas (>51 inches (1,300 mm)). In arid western Texas, recruitment was strongly and positively related to March through July precipitation totals. In eastern Texas, there was a negative relationship between recruitment and precipitation. The positive relationship to precipitation in western Texas was attributed to increased vegetation production. The increased production likely enhanced hiding cover and increased forage abundance. Negative relationships between recruitment and precipitation in the wetter regions of Texas were attributed to possible reduced forage quality due to dilution of forage nutrients and increased prevalence of diseases, parasites, and red imported fire ants (Solenopsis invicta) [132].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Life span and survival: Predators

provided by Fire Effects Information System Animals
Principal predators of white-tailed deer include mountain lions (Puma concolor), bobcats (Lynx rufus), coyotes (Canis latrans), gray wolves (C. lupus), American black bears (Ursus americanus), and humans [19,79,122,271,279,381,430]. Predators may kill white-tailed deer of all sexes and ages and in all physical conditions, although fawns are particularly susceptible [19,170,209,255,279,328,381,430]. For more information, see Predation risk. For a review of white-tailed deer-predator relationships, see Ballard [19].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Management Considerations

provided by Fire Effects Information System Animals

Federal legal status: The Key deer is listed as Endangered throughout its range. The Columbian white-tailed deer is listed as Endangered in portions of the Columbia River Basin (in Clark, Cowliz, Pacific, Skamania, and Wahkiakum counties, Washington., and in Clatsop, Columbia, and Multnomah counties, Oregon) [425].

Other status: Information on state- and province-level protection status of animals in the United States and Canada is available at NatureServe, although recent changes in status may not be included.

Other management information:
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Management Considerations: Habitat management

provided by Fire Effects Information System Animals
More info for the terms: competition, cover, density, dispersion, fire management, forb, forbs, forest, herb, herbaceous, mast, prescribed fire, presence, scarification, shrubs, succession

Disturbance can produce high-quality habitat for white-tailed deer by favoring forage growth and by creating ecotones between areas of dense cover and more open feeding areas. Conversely, loss of cover over large areas can be detrimental to white-tailed deer [79,95]. Several researchers suggested that resource managers consider proximity of food, cover, and water before implementing actions that may impact white-tailed deer habitats (e.g., [33,95,121,143,310]). Stewart and others [392] suggested that because male and female white-tailed deer often use different habitats (see Age and sex), they should be managed as if they were separate species.

Prescribed fire: For information on the use of prescribed fire in white-tailed deer habitats, see Fire Management Considerations.

Logging: White-tailed deer generally benefit from early-successional vegetation that establishes after logging and other disturbances [79]. Logging may benefit white-tailed deer because early-seral habitats often contain a greater variety, quantity, and quality of white-tailed deer forage than mature forests (e.g., [313]). A lack of food and cover immediately after clearcutting may be detrimental to white-tailed deer. In the long term, food may be scarce over a large area as the forest matures to midsuccession [56,143]. The duration of logging benefits to white-tailed deer varies with forest type, soils, climate, and other factors. A study in the western redcedar-western hemlock zone of northern Idaho concluded that clearcuts produce maximal quantities of browse from about 15 years after logging [319]. In ponderosa pine forest on the Kaibab National Forest in northern Arizona, herbage production peaked at 6 years after logging and then declined. After 15 to 20 years, it was about the same as on uncut areas [334]. In the eastern mixed forest region, DeGarmo and Gill (1958 cited in [20]) reported that clearcuts supply abundant forage for up to 10 years. Thereafter, browse plants grow out of reach and form dense thickets that white-tailed deer are reluctant to enter. DeGraaf and Yamasaki [87] recommended group-selection cutting or patch cutting approximately every 10 to 15 years to benefit white-tailed deer in the Northeast. In southeastern loblolly pine-shortleaf pine-hardwood forests, herb production typically peaks 2 to 3 years after thinning and then declines. Browse production typically peaks in about 5 to 8 years [143]. Use of prescribed fire, herbicides, soil scarification, planting of seeds and seedlings, and other site preparation may shorten or lengthen the time white-tailed deer use a logged site [95]. In addition, succession following clearcutting may be affected by heavy white-tailed deer browsing (see White-tailed deer foraging effects). White-tailed deer use of logged areas is modified by opening size, logging slash, weather, particularly snow depth, and other factors. A review stated that managing for a mix of forest ages (early-successional, midsuccessional, and mature) is most likely to benefit white-tailed deer. Early-successional forests provide food for white-tailed deer in the form of woody browse, forbs, and soft mast, while midsuccessional and mature forests provide less browse and forbs, but more hard mast [33,95] (see Successional status).

Size and shape of openings: The size and distribution of clearcuts in space and time are important to white-tailed deer, which is also likely true of burned sites (see Size and shape of burned areas). In boreal forest in western Alberta, the size and dispersion of 2- to 9-year-old clearcut blocks and type of treatment best explained white-tailed deer and mule deer use of clearcuts (R²=0.21, P<0.01). Deer showed a strong preference for clearcut blocks that were <40 acres (16 ha) and because they preferred areas within clearcuts that were <330 feet (100 m) from cover, they favored configurations that provided a high degree of edge per unit area. They also preferred clearcuts that were either scarified or scarified then burned under prescription compared with untreated clearcuts. The authors suggested that such treatments may have led to greater abundance of preferred herbaceous species and reduced logging slash, which benefited deer. Clearcut blocks in clumped patterns appeared unfavorable [422]. A review stated that several studies found that deer likely benefitted from the creation of small openings in dense ponderosa pine stands [64]. In Wisconsin, white-tailed deer made greater use of clearings <5 acres (2 ha) or <330 feet (100 m) wide than they made of larger or wider ones (McCaffery and Creed 1969 cited in [407]). Estimates of optimum size of a clearcut vary from <25 acres to <320 acres (10-130 ha), but according to a review, small clearcuts (25-50 acres (10-20 ha)) are most beneficial to white-tailed deer. The authors recommended that the distance across clearcuts be no more than twice the distance a white-tailed deer generally moves from the forest edge, approximately 600 to 800 feet (183-244 m) [267]. Reviews and Habitat management guidelines recommend approximately 40% to 60% of the landscape provide openings for foraging, with the remainder providing cover [45,302]. However, Cypher and Cypher [79] suggested that distribution of openings in a landscape is more important than the amount of area that is open. They recommended that openings occur in areas accessible to white-tailed deer (i.e., within their home range) and not be "too large" [79] (see Edge habitat). Halls [143] suggested that clearcuts in southeastern loblolly pine-shortleaf pine-hardwood forests be 20 to 100 acres (8-40 ha) because smaller areas are likely to be overbrowsed and larger areas may reduce habitat diversity. Patton [310] recommended small, irregular clearcuts in ponderosa pine/Gambel oak (Quercus gambelii) forest on the Apache National Forest be placed adjacent to stands of saplings, pole timber, and sawtimber to increase habitat diversity and grass, forb, and browse production beneficial to white-tailed deer.

Logging slash: Depending upon its density, logging slash may be detrimental or beneficial to white-tailed deer. A review stated that abundant logging slash generally impedes white-tailed deer and mule deer movements and may act as a barrier to deer use of an area [53]. In quaking aspen stands on the Apache and Coconino National Forests, deer use was lower in thinned stands with abundant slash than unthinned stands despite greater density of perennial grasses, forbs, and quaking aspen sprouts in thinned stands. Apparently, the amount of woody debris in thinned stands reduced use by deer [336]. Conversely, some logging slash provides cover for white-tailed deer. In a selectively cut ponderosa pine forest in Arizona, deer pellet groups were more numerous where slash was undisturbed after logging. Slash abundance was 1.7 times greater on sites where slash was undisturbed than on sites where it was piled and burned, but forbs were more abundant where slash was piled and burned. The author suggested that slash may have provided protective cover [335]. In Arizona, Neff (1980 cited in [64]) found that deer showed no preference for either the presence or absence of slash in small (1-10 acres (0.4-4.0 ha)) openings in ponderosa pine stands. Slash burning often favors establishment of seral shrubs, many of which are preferred white-tailed deer browse species [319]. For information about effects of postfire debris accumulations, see Physical barriers.

Weather and use of clearcuts: Similar to their use of burned areas (see Weather and use of burned areas), white-tailed deer may not use clearcuts because of deeper snow than in mature forests [101]. For example, in white spruce forest near Hinton, Alberta, white-tailed deer and other ungulates used strip clearcuts almost exclusively in summer during a 5-year study but used the clearcuts "very little" in winter [390].

Livestock grazing: Influences of livestock grazing on white-tailed deer can be detrimental, neutral, or beneficial [60,121,122,365]. Grazing, as well as the physical presence of cattle (Bos taurus), domestic sheep (Ovis aries), domestic goats (Capra hircus), and other livestock can reduce forage and also cause behavioral changes and altered activity budgets that make foraging less productive [60,121,122,365]. On rotationally burned longleaf pine-bluestem (Andropogon spp.) winter rangelands in Louisiana that were continuously grazed by livestock, tame white-tailed deer selected more herbs and less browse than white-tailed deer on rotationally burned rangelands that were not grazed by livestock, suggesting that white-tailed deer diets changed as a result of livestock grazing [411]. Along the Yellowstone River in eastern Montana, only 5% of daytime white-tailed deer locations over all seasons were in areas where cattle occurred. Locations of white-tailed deer indicated an "immediate exodus" of white-tailed deer from areas after cattle were introduced. White-tailed deer resumed use of the areas after cattle were removed [69].

A review stated that white-tailed deer are better adapted to browsing and select plants with higher nutritional quality than cattle, which have better ability to digest low-quality grasses, thus making forage competition minimal [60]. However, white-tailed deer and cattle diets overlap somewhat (range: 15%-60%) depending upon location, duration and type of grazing (continuous vs. rotational), and time of year [60]. Overlap may increase as forage becomes less available, typically in winter and early spring [44,60,121]. Domestic sheep and domestic goats compete more directly with white-tailed deer for forage than cattle because their diets overlap more [44,121]. A review stated that competition between livestock and white-tailed deer is particularly severe in habitats that are overgrazed [121].

Fawn survival may be lower in areas with livestock grazing due to removal of hiding cover and reduced forage [121]. During a drought year on Texas rangelands, a November helicopter survey showed no fawns with any of 65 females sighted in a short-duration grazed area, whereas fawns were sighted at a ratio of 0.27 fawn:female for 164 females sighted in an adjacent continuously grazed area. During 2 other years, when rainfall was greater, fawns were sighted at similar ratios in both areas. The author speculated that coyote predation on fawns might have been higher in the short-duration grazed area during the drought year because the area had less hiding cover compared to the continuously grazed area (Hyde 1987 cited in [140]). During the drought year, female white-tailed deer harvested quarterly on the short-duration grazed and continuously grazed areas were similar in field-dressed weight, kidney fat index, and fawns in utero (Kohl and others 1987 unpublished data cited in [140]). High, continuous cattle, domestic sheep, and domestic goat grazing in 96-acre (39 ha) fenced pastures was associated with lower weights and reduced fat content in stocked female white-tailed deer, reduced recruitment, and decreased adult white-tailed deer survival. The study sites were in a live oak-shinoak (Quercus virginiana-Q. sinuata var. breviloba) savanna at the Kerr Wildlife Management Area, Texas [268]. For more information, see these reviews: [60,121,122,365].

Water management: A review stated that water developments have likely benefitted white-tailed deer populations in the Southwest [351]. Another review noted that while white-tailed deer commonly use water developments for livestock, there is no documentation that livestock watering facilities increased white-tailed deer populations or productivity in Oklahoma, Texas, or northern Mexico [121]. For specific development and management ideas to consider, see the review by Olson [302].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Management Considerations: Population management

provided by Fire Effects Information System Animals
More info for the term: density

White-tailed deer are hunted by humans throughout their range [121,264,279]. Hunting can alter population density, sex ratios, behavior, movements, and life span [94,264]. Historically, overhunting has reduced white-tailed deer populations (see Threats). See these reviews for information on harvest and management of white-tailed deer populations [3,121,146,179,264,430].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Management Considerations: Threats

provided by Fire Effects Information System Animals
More info for the terms: cover, fire exclusion, fire frequency, fire occurrence, forest, frequency, fuel, seed, shrub, shrubs, succession, tree, xeric

Adams and Hamilton [3] described the history of white-tailed populations as follows: periods of American Indian exploitation (before 1800), moderate recovery (1800-1850), European-American exploitation (1850-1900), protection and recovery (1900-1975), and in contemporary times (after 1975), a period of managing "quality" white-tailed deer populations and curbing overabundance in many areas. Before European settlement, white-tailed deer were likely abundant over much of their range [392]. Extensive land clearing and agricultural development over much of the white-tailed deer's range came with European settlement, resulting in expansion of white-tailed deer populations [381,392], but then numbers were reduced as a result of overhunting [381]. Subsequently, in the late 19th and early 20th centuries, large agricultural lands in the East were abandoned, resulting in extensive reforestation [392]. Populations recovered after World War II, partly due to reforestation but also due to hunting restrictions and successful reintroductions in many areas [381]. Since the mid-1900s there has been a pronounced decline in the extent of early-successional forest across much of the eastern United States because of forest succession, development, and fire exclusion [3,33,181,225,392,424].

Successional changes since European-American exploitation, and particularly during the 1900s, may have benefitted white-tailed deer in the Great Plains and Southwest. On many rangelands in these regions, cover and forage increased due to encroachment of woody plants onto areas formerly dominated by grasses due to historical livestock grazing practices, alterations of fire patterns, and possibly climatic shifts [121,138,365,430]. Arno and others [13] concluded that after 1900, understory shrubs and fir saplings in western larch, ponderosa pine, and Douglas-fir forests in the Swan Valley, Montana, increased as a result of fire exclusion, which enhanced forage and cover for white-tailed deer on both summer and winter rangelands. The authors stated that predator control and hunting regulations may have further contributed to increased white-tailed deer populations in the early 1900s. The white-tailed deer population peaked in the mid-1950s. Populations then declined as forests canopies closed and understory shrubs declined. Heavy timber harvesting started in the 1950s. Although resulting in seral shrub communities generally favorable to white-tailed deer, it also reduced winter rangelands for decades [13]. Irrigation may have encouraged the extension of white-tailed deer rangelands into western Texas and other arid regions of the Southwest [381]. Historically, white-tailed deer occurred in only the southern parts of a few Canadian provinces, but logging and forest fires, fire exclusion from prairies, and increased agriculture have contributed to extension of their range farther north into Canada [279,381].

Urban development (habitat loss) and its associated risks (e.g., motor vehicle collisions and human interactions) are considered the greatest threat to Key deer populations [242]. Key deer are also at risk from large-scale environmental changes such as those caused by hurricanes [240].

Nonnative invasive plants: Spread of nonnative invasive plants may be harmful, neutral, or beneficial to white-tailed deer. Taber and Murphy [403] considered nonnative cheatgrass (Bromus tectorum) of "little benefit to deer". One source suggested that carrying capacity of rangelands for white-tailed deer may not be affected by nonnative invasive plants. Along the Selway River in Idaho, where population densities ranged from 0.01 to 0.05 white-tailed deer/ha during winter, spotted knapweed (Centaurea stoebe subsp. micranthos) infestation of xeric south and west-facing slopes on winter range did not appear to affect white-tailed deer carrying capacity in winter when compared with bluebunch wheatgrass-sedge sites [466]. Other researchers show that white-tailed deer commonly consume nonnative invasive plants and may benefit from them [103,245,398,400,454,466]. For example, Canada thistle (Cirsium arvense) provided cover for Columbian white-tailed deer in Washington in summer, allowing them to use previously unused areas [400]. Along the Selway River in Idaho, spotted knapweed was a major food item in white-tailed deer diets. White-tailed deer and mule deer ate spotted knapweed seed heads, particularly when snow was on the ground and seed heads were easily obtainable above the snow. In fact, the seed heads were one of the few foods readily available to deer in open areas when snow was >12 inches (30 cm) deep. White-tailed deer also ate large amounts of spotted knapweed rosettes, particularly in spring after snowmelt [466]. Roche and others [343] suggested that diffuse knapweed (C. diffusa) and spotted knapweed may be important forage for white-tailed deer in the Kootenay Ranges of British Columbia. Stromayer and others [398] suggested that Chinese privet (Ligustrum sinense) be managed as an important winter forage for white-tailed deer in northwestern Georgia. Williams [454] suggested that nonnative invasive shrubs may offer important cover for white-tailed deer in some areas of the eastern and midwestern United States.

White-tailed deer may contribute to the spread of nonnative invasive plants by ingesting, transporting, and disseminating viable seeds of species such as spotted knapweed, leafy spurge (Euphorbia esula), purple loosestrife (Lythrum salicaria), and Morrow's honeysuckle (Lonicera morrowii) in their feces [222,287,300,429,439,455,456]. In addition, preferential foraging on native herbs and creation of open patches by white-tailed deer may facilitate invasions [106,198].

The spread of some nonnative invasive plants such as cheatgrass, red brome (B. rubens), Mediterranean grass (Schismus spp.), and medusahead (Taeniatherum caput-medusae) may indirectly effect white-tailed deer, mule deer, and other wildlife by increasing fuel loads and fire frequency, which may alter the structure and composition of native plant communities [339,340].

Climate change: During the 21st century, it is predicted that average surface temperatures will increase 4.5 to 7.2 °F (2.5-4.0 °C) throughout the range of the white-tailed deer in eastern North America (Intergovernmental Panel on Climate Change 2007 cited in [95]). Furthermore, in more northern latitudes, precipitation is predicted to increase 10% to 20%, occur less frequently, and occur with greater intensity [326]. The effect of climate warming on white-tailed deer is unresolved and predictions are conflicting. A review stated that forest vegetation changes as a result of climate change are unlikely to have major effects on white-tailed deer populations because white-tailed deer are generalists and occupy all forest types. However, the review also noted that predicted changes in the distribution of some key midwinter cover and forage species could have adverse effects on white-tailed deer. Eastern hemlock, for example, provides thermal and snow-interception cover and is predicted to be substantially reduced in most of the United States as a result of climate change [95]. In northern latitudes, more frequent fires and insect outbreaks (predicted to occur with climate warming) may shift forest age structure to younger age classes that would provide abundant forage for white-tailed deer [95]. Thompson and others [414] predicted that the combination of temperature rise and greater than average fire occurrence may reduce boreal forest in northern and eastern Ontario, leading to increased white-tailed deer abundance [414]. Computer simulations by Johnston and Schmitz [186] indicated that altered thermal conditions in the continental United States alone were unlikely to affect white-tailed deer's distribution because their physiological tolerance to heat would allow them to survive. Analyses of the effects of vegetation change indicated that the species should retain its distribution in most areas and may expand in some areas [186]. In the southwestern United States, climate is predicted to become warmer and drier during the 21st century, which could negatively affect white-tailed deer distribution and abundance by reducing free water and converting some preferred woodlands to desert plant communities [95,122]. In Florida, rising sea levels that may result from global warming would be detrimental to Key deer due to loss of already limited habitat [283].

Climate warming may increase the prevalence of diseases and parasites that could negatively impact white-tailed deer populations. In eastern Canada, for example, blacklegged ticks (Ixodes scapularis), the main vector of Lyme disease in North America, are predicted to spread through the region in 10 to 20 years, and white-tailed deer are an important overwinter host for blacklegged ticks [95]. Climate warming could also potentially result in increased reproduction and survival of biting midges (Culicoides spp.) that transmit epizootic hemorrhagic disease [95], a disease potentially fatal to white-tailed deer [55]. Predicted increases in fire occurrence could have interacting effects with disease prevalence and climate warming (see Fire effects on white-tailed deer diseases and parasites).

In the Boundary Waters Canoe Area Wilderness, Minnesota, warm-wet scenarios of global climate change predicted that northern whitecedar, eastern white pine, northern red oak, and yellow birch populations would be reduced by predicted high white-tailed deer populations. Establishment of 7 other tree species into the area is predicted to be reduced by the high white-tailed deer populations [119].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Movements and home range

provided by Fire Effects Information System Animals
White-tailed deer may inhabit the same range throughout the year or migrate to separate summer-fall and winter ranges [173,279]. Migratory individuals use transitional ranges in spring and fall as they move between summer and winter ranges [173]. Migratory white-tailed deer are generally found in northern latitudes and in mountainous areas [255,279]. However, a single population may be comprised of migratory and nonmigratory individuals [173]. Individuals generally retain the same ranges from year to year and travel the same routes between ranges [94,173,255,293,381].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Physical description

provided by Fire Effects Information System Animals
More info for the term: mast

White-tailed deer vary in size depending upon region. The smallest occur at latitudes nearer the equator and/or at low elevations [131,381]. Island white-tailed deer are typically smaller than their mainland counterparts [79,98,131]. Key deer are one of the smallest subspecies; mature males (bucks) weigh about 79 pounds (36 kg) and mature females (does) weigh about 64 pounds (29 kg) [131]. The largest subspecies occurs in the Northeast and Great Lakes regions. Adult bucks (≥2.5 years old) weigh about 220 pounds (100 kg), and adult does weigh about 145 pounds (66 kg). Large changes in body size occur over relatively small geographic distances. White-tailed deer bucks in the Florida Everglades are 1.5 times the weight (mean: 117 pounds (53 kg)) of Key deer [131]. Body size is plastic and varies within and between regions depending upon nutritional condition [131,179,279]. Nutritional condition is often related to soil fertility, with the most fertile soils producing heavier-bodied and larger-antlered individuals than low fertility soils [179]. For example, in Mississippi, the eviscerated body mass of white-tailed deer in the fertile Delta region was 30% to 40% more than that of equivalent-aged white-tailed deer in the less fertile Coastal Flatwood region [397]. White-tailed deer body mass is generally highest in the agricultural Midwest, where white-tailed deer have access to mast, fertile alluvial land, and fertilized, high-protein agricultural crops [131]. Mature, nonpregnant does weigh roughly 60% to 75% of what adult bucks weigh [279]. For more information, see Growth.
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Population density

provided by Fire Effects Information System Animals
More info for the terms: cover, hardwood

According to a review, population densities range from less than 1 to >80 white-tailed deer/km² [381]. Availability of agricultural crops improves habitat quality for white-tailed deer, and some of the highest population densities (80 white-tailed deer/km²) occur in areas with numerous, small agricultural plots in a matrix of mature oak-hickory forests [381,430]. Bottomland hardwood forests produce high-quality white-tailed deer forage on the Coastal Plain, supporting a mean of 25 white-tailed deer/km². In oak savannas of interior valleys of southwestern Oregon, densities approach 34 white-tailed deer/km². Quaking aspen parklands in southern Alberta are "prime" habitat for white-tailed deer, supporting 12 white-tailed deer/km². Distribution in arid regions is typically patchy, and densities seldom exceed 4 white-tailed deer/km² [381]. Relatively low white-tailed deer densities are found in landscapes with dense, contiguous forests such as in the northern Great Lakes and Northeast [430]. However, during severe winter weather in these regions, white-tailed deer may concentrate in yards at densities ranging from 16 to 39 white-tailed deer/km² [131]. Low densities also occur in western Great Plains grasslands where forests and agricultural lands are sparse, in the Corn Belt where wooded cover is sparse, and in urban areas [430].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Preferred Habitat

provided by Fire Effects Information System Animals
More info for the terms: cover, forbs, herbaceous, mesic, woodland

Figure 2. Yearling white-tailed deer doe at Great Bay National Wildlife Refuge, Newington, New Hampshire. Photo courtesy of Greg Thompson, US Fish and Wildlife Service.

White-tailed deer are generalists that can use a variety of habitats. They are often associated with shrublands, woodlands, and forests throughout their range in North America. Woody vegetation is used for forage and cover. Disturbed communities that produce abundant forbs or browse often support relatively high densities of white-tailed deer. Important components of habitat for white-tailed deer vary across their distribution. In northern and eastern ranges, white-tailed deer are associated with forests and spend the winter in yards to avoid deep snow and mitigate cold temperatures. In western ranges, mesic habitats and riparian zones are important for foraging and cover. In southern regions, optimum habitat generally consists of openings containing herbaceous forage species interspersed in a woodland matrix [392]. In general, white-tailed deer herds are most productive in areas with a variety of habitat types and diversity of stand age classes [3,79,121,251,407].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Preferred Habitat: Edge habitat

provided by Fire Effects Information System Animals
More info for the terms: cover, density, habitat type, selection

The white-tailed deer is often considered an "edge species" because it does best in landscapes where cover and food are in close proximity [430]. White-tailed deer commonly use edges between clearcut and mature forests [422] (see Logging). Edge habitat is generally considered important to deer because of high habitat diversity in ecotones and easy access to more than one habitat type [30,63]. In contrast, in southeastern Arizona's Mexican pinyon (Pinus cembroides) stands in Madrean oak-conifer communities, both browse use and the rate of deposition of white-tailed deer pellet groups in burned stands 6.5 years after fire decreased significantly within 1,391 feet (424 m) of habitat edges (P<0.05) [23]. Like mule deer, white-tailed deer use of edge habitats may be greater where there is less interspersion of forage and cover. A review stated that studies finding little response of deer to edges tended to be in areas that had a high degree of interspersion of forage habitats and cover habitats or had a fine-grained interspersion where forage and cover were available in the same habitat [204]. On Anticosti Island, Quebec, July through November habitat selection by female white-tailed deer was driven mainly by forage acquisition rather than a trade-off between forage acquisition and proximity to protective cover. The island had no white-tailed deer predators, little hunting of females, and high population density (>20 white-tailed deer/km²). The authors suggested that preference for open–forest edges may be reduced when predation is absent and conspecific density is high [258].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Preferred Habitat: Predation risk

provided by Fire Effects Information System Animals
More info for the terms: association, cover, density, forbs, forest, frequency, habitat type

A review stated that antipredator strategies used by white-tailed deer include hiding in dense vegetation; using trails to outrun predators; going into water; and forming groups in open areas [130,131]. Geist [131] suggested that the white-tailed deer's antipredator strategies partly determine the species' preference for flat terrain and/or areas without obstacles. Yarding behavior may be an antipredator strategy. Some authors found that white-tailed deer using yards have higher survival rates than nonyarding white-tailed deer [277,292]. Trail systems within yards may enhance an animal's ability to escape gray wolves and coyotes [19,292]. In contrast, Whitlaw and others [452] found no differences in predator-caused mortality rates between yarding and nonyarding white-tailed deer populations in northern and southern New Brunswick.

Predators or human hunters may alter white-tailed deer habitat use, movements, diet, and behavior [94]. During hunting season, for example, white-tailed deer may move to habitats with dense cover and become more nocturnal [121]. Mech [270,273] found that white-tailed deer densities in a declining white-tailed deer population tended to be greater along gray wolf pack territory buffer zones than in territory centers, possibly due to reduced risk of predation. On the Rob and Bessie Welder Wildlife Refuge in southern Texas, predation risk appeared to reduce segregation between male and female white-tailed deer. At moderate population density (39 white-tailed deer/km²), females with young used blackbrush acacia-honey mesquite savanna with dense cover more than males. At high population density (77 white-tailed deer/km²), which was a result of predator control, segregation among males and females decreased during all seasons (P< 0.05). Males that otherwise used more open habitats increased their use of the blackbrush acacia-honey mesquite savanna as population density increased. As spatial segregation between males and females decreased at the high population density, diets of both sexes shifted away from forbs toward more graminoids and browse, and shifts were more pronounced among males [192].

Snow depth and hardness may affect white-tailed deer predation risk. In central Ontario's mixed-forest French River-Burwash ecosystem, white-tailed deer had a stronger positive association with predation risk (defined as the frequency of a predator's occurrence across the landscape) in 2006 compared with the previous winter. The authors suggested this was due to deep, dense snow during 2006 that forced white-tailed deer to congregate in areas of shallower, light snow, where gray wolves typically hunt [196].

Habitat type partly determined fawn susceptibility to predation in Illinois. Rohm and others (2007 cited in [19]) examined causes of fawn mortality during 5 years in southern Illinois. Overall fawn survival was 59%, and predation was the leading cause of mortality (64%), with coyotes accounting for 56% of predation mortalities. Fawn survival was best explained by fawn age and landscape and forest characteristics. The authors indicated that areas inhabited by surviving fawns had forest patches next to nonforest patches and contained more edge habitats. They speculated that these habitats were areas where coyotes were less successful at locating and killing fawns (Rohm and others 2007 cited in [19]). Females with fawns appear to select fawning areas with reduced predation risk. For more information, see Fawning areas.

For information about how predation risk may affect use of burned areas, see White-tailed deer, predator, and fire interactions.

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Reproduction and development

provided by Fire Effects Information System Animals
More info for the terms: density, litter, parturition

Gestation ranges from 187 to 213 days [98,279]. Like the breeding season, fawning periods vary regionally. Fawning tends to occur during a short period in summer in the North, whereas fawning periods are more variable and longer in the South (see Courtship and mating).

Growth: As parturition approaches, pregnant does move to fawning areas. Does with fawns may remain in these areas for 8 to 10 weeks [279]. At birth, males tend to be larger than females [98,279]; male fawns weigh 4.4 to 14.6 pounds (2.0-6.6 kg), and female fawns weigh 3.5 to 8.6 pounds (1.6-3.9 kg) [131]. Singletons generally are larger than fawns from larger litters [98,279].

After parturition, fawns grow rapidly. Neonates gain 0.4 pound (0.2 kg)/day on average, doubling their weight by about 2 weeks and tripling their weight within 1 month [381]. At about 6 months of age, females have reached about 50% of their maximum body mass, whereas males have obtained only about 35% of their maximum body mass. Generally, female body mass stabilizes at 3 to 4 years old and male body mass stabilizes at 4 to 5 years old, although females may stabilize as early as 2 years old and males as late as 7 years old [94,98,279]. In addition to gender, birth mass and growth rate to reproductive maturity are influenced by many variables, including maternal nutrition, habitat conditions, population density, and weather [221,279,282,381]. For more information on white-tailed deer growth, see the review by Ditchkoff [98].

Most white-tailed deer attain sexual maturity and can breed as yearlings [94,279]. However, yearling males are likely prevented from mating by older males. Fawns may become pregnant in areas with good forage conditions, although they tend to breed 1 to 1.5 months later than older does [279]. Fall weight largely determines whether or not female fawns breed [92,346]. In severely malnourished populations, the age at first parturition may be ≥2.5 years old [279].

Pregnancy rates and recruitment: Adult white-tailed deer usually give birth to twins. If they reproduce, fawns and yearlings usually produce singletons [79]. White-tailed deer can have as many as 5 fawns in a litter, although this is rare. Litter size and birth weight are associated positively with female age. Fawns and yearlings tend to have smaller litter sizes and have fawns with lower birth weights than prime-aged does. Nutrient demands of growth in young does compete with lactation, slowing growth during lactation. Reproduction can negatively influence the nutritional condition of a doe and result in reduced productivity the following year. According to a review, reproductive senescence generally occurs by 10 years old [98]. However, in north-central Minnesota, DelGiudice and others [88] found no measurable reduction in the number of young produced in white-tailed deer females up to 15 years old. Similarly, does >10 years old in the central Adirondack Mountains, New York, exhibited little reproductive senescence (Masters and Mathews 1990 cited in [98]). However, most white-tailed deer likely do not live to see reproductive senescence because very few animals live past 10 years old [98] (see Life span and survival).

White-tailed deer have large reproductive potential [92]. Adult does in the Northeast generally have pregnancy rates of 85% to 96% [265]. Pregnancy and ovulation rates of fawns reported in reviews ranged from 0% to 77% [79,279]. Pregnancy rates are influenced by local environmental conditions and nutritional status of does [279]. In white-tailed deer and cervids generally, body mass and condition of maternal does as they enter the breeding season directly affect conception and neonatal development and subsequent fawn development, body mass, and survival [108,381]. According to studies conducted on captive white-tailed deer by Verme and others [431,433], does fed a low plane of nutrition (similar to what might be expected during a severe northern winter) had longer gestational periods, lower fawn birth masses, and fewer incidences of twinning. In the southern Appalachian Mountains, changes in acorn abundance among years influenced reproductive output (Wentworth and others 1990a cited in [449]). The spring diet of pregnant does may be especially crucial to the survival of their fawns. Fawn mortality was <33% when captive white-tailed deer that were undernourished in winter were well-nourished in spring. However, when mothers were undernourished in both winter and spring, fawn mortality was 90% (Verme 1962 cited in [346]). On Anticosti Island, Quebec, where forage and winter browse were scarce and population density was high, female reproductive success was more influenced by spring and fall weather than by winter weather [371]. Severe winter weather can negatively influence resources available to does and result in low birth weights [272]. For information on the effects of weather on white-tailed deer recruitment, see Malnutrition and weather and the review by Ditchkoff [98].

license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Social behavior

provided by Fire Effects Information System Animals
More info for the terms: cover, forest

Social structure in white-tailed deer is organized around mixed "family" groups consisting of a maternal doe, her young of the year, and female offspring from previous years [94,255,279,381]. In some cases, not all individuals in family groups are close relatives. Family group size ranges from 2 to 12 individuals [94]. Males >1 year old form loose-knit "bachelor" groups ranging from 2 to 5 individuals [255,279,381]. Sexes are typically segregated throughout the year, except during the rut. However, temporary mixed-sex aggregations occasionally occur when food is scarce [255,279], when feeding in large, open areas [255], or during summer when family groups are split during the fawning period [381]. During the fawning period, pregnant females drive away young females and fawns of the previous year and isolate themselves in fawning areas. Females with fawns remain in fawning areas for 8 to 10 weeks, after which they re-form family groups with their yearling fawns [94,255,279,381]. Yearling males join adult male groups or form temporary associations with other yearling males [381]. Bachelor groups are formed of unrelated individuals [94]. Males are solitary during the rut, except when tending estrous females [94,255,381]. Individual family groups often fuse into larger groups during fall and winter, particularly in northern latitudes, where white-tailed deer aggregate in sheltered areas called yards [94,255,279]. These large winter aggregations typically use traditional wintering areas and migration routes. Small winter aggregations often consist of related individuals [279]. Winter aggregations may be comprised of as many as "several hundred" individuals [94]. The 360-mile² (930 km²) Mead Deer Yard on the Upper Peninsula of Michigan supported an estimated 43,000 white-tailed deer during the winter of 1987 (Ozoga 1995 cited in [94]). Group size may be inversely related to forest cover, with larger groups forming in open areas and smaller groups in forested areas [94,211,255,279]. The oldest females tend to dominate family groups, whereas the largest males tend to dominate bachelor groups. In mixed groups, males tend to be dominant over females [94,279,381]. White-tailed deer are not generally territorial, although they may defend fawning areas [94,121,255,279].
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Taxonomy

provided by Fire Effects Information System Animals

The scientific name of white-tailed deer is Odocoileus virginianus (Zimmerman) (Cervidae) [458]. There are 38 subspecies in the world. Seventeen of these occur in North America [131,155,279,381,458]:

Odocoileus virginianus (Zimmerman) virginianus [279,381,458], Virginia white-tailed deer

Odocoileus virginianus (Zimmerman) borealis (Miller) [155,279,381,458], northern white-tailed deer

Odocoileus virginianus (Zimmerman) carminis Goldman and Kellogg [131,155,279,381], Carmen Mountains white-tailed deer

Odocoileus virginianus (Zimmerman) clavium Barbour and Allen [131,155,279,381,458], Key deer

Odocoileus virginianus (Zimmerman) couesi (Coues and Yarrow) [131,155,279,381], Coues white-tailed deer

Odocoileus virginianus (Zimmerman) dacotensis Goldman and Kellogg [155,279,381,458], Dakota white-tailed deer

Odocoileus virginianus (Zimmerman) hiltonensis Goldman and Kellogg [155,279,381,458], Hilton Head Island white-tailed deer

Odocoileus virginianus (Zimmerman) leucurus (Douglas) [131,279,381], Columbian white-tailed deer

Odocoileus virginianus (Zimmerman) macrourus (Rafinesque) [155,279,381,458], Kansas white-tailed deer

Odocoileus virginianus (Zimmerman) mcilhennyi F. W. Miller [131,155,279,381], Avery Island white-tailed deer

Odocoileus virginianus (Zimmerman) nigribarbis Goldman and Kellogg [155,279,381,458], Blackbeard Island white-tailed deer

Odocoileus virginianus (Zimmerman) ochrourus Bailey [131,155,279,458], northwestern white-tailed deer

Odocoileus virginianus (Zimmerman) osceola (Bangs) [155,279,381,458], Florida coastal white-tailed deer

Odocoileus virginianus (Zimmerman) seminolus Goldman and Kellogg [155,279,381,458], Florida white-tailed deer

Odocoileus virginianus (Zimmerman) taurinsulae Goldman and Kellogg [155,279,381,458], Bull Island white-tailed deer

Odocoileus virginianus (Zimmerman) texanus (Mearns) [131,155,279,381], Texas white-tailed deer

Odocoileus virginianus (Zimmerman) venatorius Goldman and Kellogg [131,155,279,458], Hunting Island white-tailed deer


Subspecies are distinguished by body size, pelage color, skull form and dentition, size and shape of antlers, and geographical distribution [18,131,279]. However, morphometric characteristics can be influenced by habitat characteristics [279], and the distinction of North American subspecies has been brought into question by genetic analyses. Cronin [76] found no variation in mitochondrial DNA among white-tailed deer subspecies. Gavin and May [129] concluded that the genetic distance of Columbian white-tailed deer based upon allelic frequencies may not be sufficiently different from that of the northwestern white-tailed deer to warrant subspecific designation. Early genetic work with allozymes found no significant genetic differentiation among 6 subspecies covering the northern, Blackbeard Island, Florida, Texas, and Virginia white-tailed deer [377]. A review stated that the subspecific status of Key deer is "unquestionable, being geographically, phenotypically, and genetically differentiated" [155]. Other studies found some regional differentiation among white-tailed deer subspecies in the Southeast, but the genetic division did not match described subspecies ranges (e.g., [93,104,220]). Preliminary investigations into the genetic uniqueness of Coues white-tailed deer suggests it may warrant subspecific designation (Paetkau unpublished data cited in [155]).


Translocations have led to intermixing of subspecies in some areas [76,131,155], and subspecies may interbreed where they coexist [77]. Leberg and Ellsworth [220] concluded that translocations have had substantial and persistent effects on the genetic composition of white-tailed deer populations in the Southeast based upon mitochondrial DNA and allozyme variation.


White-tailed deer and mule deer (O. hemionus) may hybridize where their ranges overlap [75,76,77,129,167,399], although hybrids appear to be rare in the wild [131]. The survival of hybrids in captivity [7] and in the wild [131] is poor. For more information about white-tailed deer and mule deer hybridization, see Geist [131].


This review synthesizes information about white-tailed deer at the species level, except for Key deer and the Columbian white-tailed deer, which due to their past or present status as federally listed endangered species
in all or parts of their ranges [95,155], are mentioned by their common subspecies names when possible. In some publications the term "deer" was used to describe white-tailed deer and mule deer in combination. In those cases, this review does the same.



SYNONYMS:




Dama virginiana (Rafinesque) [141]
license
cc-publicdomain
bibliographic citation
Innes, Robin J. 2013. Odocoileus virginianus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: www.fs.fed.us/database/feis/animals/mammal/odvi/all.html

Habitat ( Spanish; Castilian )

provided by INBio
Viven en bosques secos, bosques de galería, sabanas, y bosques secundarios.

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Behavior ( Spanish; Castilian )

provided by INBio
Son diurnos y nocturnos.

Se observan solitarios o en grupos pequeños.

Las cacheras de los venados del país son más pequeñas que las de los venados que habitan en E.E.U.U. quizás debido a la dieta pobre en calcio que consumen los individuos nativos. Los cuernos de los machos están en forma de terciopelo desde diciembre hasta finales de setiembre o aún hasta mayo. En el Parque Nacional Santa Rosa, se encuentran arbustos pequeños sin corteza desde febrero a junio porque los machos se pulen la cachera y practican sus combates.

Las cacheras mudadas se pudren en cuestión de meses con la ayuda de roedores.

En la zona de Cóbano, Península de Nicoya (Puntarenas), se determinó como ámbito de acción de 6 hembras reintroducidas un promedio de 323.2 ha..

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Distribution ( Spanish; Castilian )

provided by INBio
Distribucion en Costa Rica: Desde el nivel del mar hasta las montañas de la vertiente pacífica y en las faldas de las montañas en la vertiente caribe, donde la mayor parte de los bosques ha sido destruida. Se localiza desde el nivel del mar hasta al menos los 1.300m. Introducido en la Isla del Coco.


Distribucion General: Desde el sur de Canadá y E.E.U.U. hasta Bolivia, las Guyanas y el norte Brasil. Se localiza desde las tierras bajas hasta los 2.600m.s.n.m..

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Trophic Strategy ( Spanish; Castilian )

provided by INBio
Se alimentan mediante el ramoneo de ramas tiernas, hojas y frutos (ej. "poro poro" (Cochlospermun vitifolium), "jocotes" (Spondias mombin, S. purpurea)), semillas (bellotas de"encino" Quercus oleoides), "panamá" (Sterculia apetala), "nance" (Byrsonima crassifolia), "guácimo" (Guazuma ulmifolia) e "higos" (Ficus spp.) entre otros).

En el Parque Nacional Santa Rosa, durante la primera mitad de la estación lluviosa forrajean (entre otros lugares) a las orillas de los bosques, ramoneando sobre ramas bajas, siendo los alimentos preferidos las láminas foliares grandes de "poro poro" (Cochlospermum vitifolium) (rechazan los peciólos de la hoja) y las hojas grandes y compuestas del "jobo" (Spondias mombin, S. radlkoferi) y "jocote" (Spondias purpurea).

En este Parque, las heces de los venados consisten en material molido muy fino, sin embargo, nunca tienen semillas, excepto a veces de "higos" (Ficus spp.).

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Associations ( Spanish; Castilian )

provided by INBio
Entre sus depredadores están: "coyotes" (Canis latrans), "jaguares" (Panthera onca), "pumas" (Puma concolor) y la "béquer" (Boa constrictor emperator).

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Reproduction ( Spanish; Castilian )

provided by INBio
En general, el apareamiento tiene lugar en la estación lluviosa y las hembras tienen 1 o 2 crías durante la estación seca (febrero-marzo). Sin embargo, algunos científicos creen que las camadas pueden ser de 2 a 4 crías y que la época de nacimientos ocurre entre enero y abril.

Los cervatillos adquieren sus manchas entre febrero y mayo.

La mayor parte de la hembras quedan preñadas entre el 15 de julio y el 15 de setiembre y en este último mes, se inicia el periodo de preñez que dura aproximadamente 200 días (7 meses).

En mayo continúa el amamantamiento, que finaliza en julio.

En el Parque Nacional Santa Rosa, la época de brama parece ocurrir entre julio y noviembre.

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Diagnostic Description ( Spanish; Castilian )

provided by INBio
Longitud de la cabeza y cuerpo 900-1500mm, longitud de la cola 120-180mm, altura al hombro 700-1000mm, peso 25-43kg.

Tamaño mediano, delgado y con patas largas, con una espalda lisa y una cabeza grande y angosta. La parte dorsal es café parduzco hasta café anaranjado. El vientre, la parte inferior del muslo, pecho y garganta son de color blanco. La frente es de color café oscuro. Posee marcas faciales conspícuas y de color blanco alrededor de los ojos y sobre el hocico. Las orejas son relativamente largas y angostas. Las astas son curveadas y bifurcadas y están presentes sólo en el macho. La cola es café por encima y en los bordes y en la parte ventral es blanca. Ante el reflejo de la luz los ojos son brillantes y de color amarillo pálido o azulado IMAGEDB.GET_BFILE_IMAGE?p_imageId=13820&p_imageResolutionId=2">(ver">http://attila.inbio.ac.cr:7777/pls/portal30IMAGEDB.GET_BFILE_IMAGE?p_imageId=13820&p_imageResolutionId=2">(ver imagen). Los juveniles son café rojizo con manchas y rayas de color blanco.

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Diagnostic Description ( Spanish; Castilian )

provided by INBio
Localidad del tipo: Limitado por Hershkovitz (1948) a USA, Virginia.
Depositario del tipo:
Recolector del tipo:
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Conservation Status ( Spanish; Castilian )

provided by INBio
Su carne es muy apreciada por los cazadores.

MANEJO:
Se ha manejado en el pais con fines con fines de reintroduccion en sitios donde la especie ha sido eliminada o su poblacion ha sido muy diezmada.

license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Luis Humberto Elizondo C.
editor
The Nature Conservancy
partner site
INBio

Witsterthert ( Afrikaans )

provided by wikipedia AF

Die witsterthert (Odocoileus virginianus) is ’n mediumgroot hert wat inheems is aan die VSA, Kanada, Mexiko, Sentraal-Amerika en Suid-Amerika tot so ver suid as Peru en Bolivië.[1] Dit is ook ingevoer na Nieu-Seeland, Kuba, Jamaika, Hispaniola, Puerto Rico, Bermuda, Bahamas en Klein Antille, asook sommige Europese lande soos Finland, Tsjeggië en Serwië.[2][3][4]

In die Amerikas is dit die mees wydverspreide wilde hoefdier.

Taksonomie

 src=
’n Waaksame wyfie hou haar stert omhoog.

Sommige kenners het probeer om die witsterthert in talle subspesies te verdeel volgens morfologiese verskille, maar genetiese studies het getoon daar is minder subspesies as die 30 tot 40 wat in die laaste eeu beskryf is. Die Florida Key-hert (O. virginianus clavium) en die Columbiese witsterthert (O. virginianus leucurus) word albei in Amerika as "bedreig" beskou, terwyl die Virginiese witstert (O. virginianus virginianus) een van die mees wydverspreide subspesies is. Die witsterthert het ’n groot genetiese variasie en kan by verskeie omgewings aanpas.

Beskrywing

Die hert se pels is ’n rooierige bruin kleur in die lente en somer, en word grysbruin vir die herfs en winter. Hulle kan uitgeken word aan die wit onderkant van hul stert. Wanneer die diere waaksaam is, sal hulle hul stert lig om ander te waarsku.

Witstertherte wissel in grootte; die Noord-Amerikaanse ram weeg gewoonlik sowat 50 kg, maar kan meer as 75 kg en tot 200 kg weeg. Die tropiese en Florida Keys-spesies is kleiner; wyfies kan so min as 25 kg weeg.[5] Die diere se lengte wissel van 95 tot 220 cm, met ’n stert van 10 tot 36,5 cm, en die skouerhoogte kan tussen 53 en 120 cm wees.[6][7]

Ramme het gewei (horings), en sommige wyfies ook. Sommige ramme se gewei het nie vertakkings nie – dit wissel na gelang van voeding, ouderdom en genetika.

Witstertherte pas by baie omgewings aan.[8] Hoewel hulle meestal as wouddiere beskou word, kom hulle ook op oop grasvlaktes, savannes en in gemengde bladwisselende riviervalleie voor. Hulle het ook goed aangepas in die Europese lande waar hulle ingevoer is.[9]

Verwysings

  1. http://maps.iucnredlist.org/map.html?id=42394
  2. http://jamaicachm.org.jm/PDF/August2007.pdf
  3. http://www.arthurgrosset.com/mammals/white-taileddeer.html
  4. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1093&context=icwdm_wdmconfproc
  5. "White-tailed deer and red brocket deer of Costa Rican Fauna". 1-costaricalink.com. Besoek op 2011-02-20.
  6. "ADW: Odocoileus virginianus: Information". Animaldiversity.ummz.umich.edu. 2011-02-13. Besoek op 2011-02-20.
  7. Boitani, Luigi, Simon & Schuster's Guide to Mammals. Simon & Schuster/Touchstone Books (1984), ISBN 978-0-671-42805-1
  8. (2010) “Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications”. Therya 1 (1): 41–68.
  9. Erhardová-Kotrlá, B. (1971). The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Academia, Prague, 155 pp.

Eksterne skakels

license
cc-by-sa-3.0
copyright
Wikipedia skrywers en redakteurs
original
visit source
partner site
wikipedia AF

Witsterthert: Brief Summary ( Afrikaans )

provided by wikipedia AF

Die witsterthert (Odocoileus virginianus) is ’n mediumgroot hert wat inheems is aan die VSA, Kanada, Mexiko, Sentraal-Amerika en Suid-Amerika tot so ver suid as Peru en Bolivië. Dit is ook ingevoer na Nieu-Seeland, Kuba, Jamaika, Hispaniola, Puerto Rico, Bermuda, Bahamas en Klein Antille, asook sommige Europese lande soos Finland, Tsjeggië en Serwië.

In die Amerikas is dit die mees wydverspreide wilde hoefdier.

license
cc-by-sa-3.0
copyright
Wikipedia skrywers en redakteurs
original
visit source
partner site
wikipedia AF

Ağquyruq maral ( Azerbaijani )

provided by wikipedia AZ


Ağquyruq maral (lat. Odocoileus virginianus) - amerika maralı cinsinə aid heyvan növü. Marallar fəsiləsinin Şimali Amerikada daha çox yayılmış növüdür.

Mənbə


Felis margarita.jpg Məməlilər ilə əlaqədar bu məqalə qaralama halındadır. Məqaləni redaktə edərək Vikipediyanı zənginləşdirin.
license
cc-by-sa-3.0
copyright
Vikipediya müəllifləri və redaktorları
original
visit source
partner site
wikipedia AZ

Ağquyruq maral: Brief Summary ( Azerbaijani )

provided by wikipedia AZ


Ağquyruq maral (lat. Odocoileus virginianus) - amerika maralı cinsinə aid heyvan növü. Marallar fəsiləsinin Şimali Amerikada daha çox yayılmış növüdür.

license
cc-by-sa-3.0
copyright
Vikipediya müəllifləri və redaktorları
original
visit source
partner site
wikipedia AZ

Kariakou ( Breton )

provided by wikipedia BR
lang="br" dir="ltr">

Ar c'hariakou (Odocoileus virginianus) a zo ur c'harv eus Amerika.

license
cc-by-sa-3.0
copyright
Skrivagnerien ha kempennerien Wikipedia |
original
visit source
partner site
wikipedia BR

Cérvol de Virgínia ( Catalan; Valencian )

provided by wikipedia CA
Crystal128-pipe.svg
Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat.

El cérvol de cua blanca o cérvol de Virgínia (Odocoileus virginianus) és un mamífer artiodàctil de mida mitjana que es troba en zones boscoses de la gran majoria d'estats dels Estats Units, les regions subàrtiques del Canadà, els boscos secs dels vessants muntanyoses de Mèxic, les selves humides de Centreamèrica i Sud-amèrica fins a arribar a Bolívia i el Perú.[1]

Hàbitat

 src=
Exemplar de cérvol de cua blanca

El cérvol de cua blanca habita gran varietat d'hàbitats terrestres. Habiten principalment en regions temperades i tropicals, tant en boscos plujosos i de matolls com en zones pantanoses. Podem trobar-los des dels grans boscos del nord de Maine als pantans d'hamaca o les serres de Florida. També els trobem en les terres de conreu, les zones de males herbes i els deserts de cactus i matolls espinosos del sud de Texas i Mèxic. El seu hàbitat ideal és aquell amb matolls densos i alts per a poder fer-los servir d'amagatall i que on hi hagi accés a aliment.[2]

Els seus depredadors principals són els humans, els llops, els lleons de muntanya, els ossos i els jaguars.[3]

Descripció Físiques

El cérvol de Virgínia té una longitud (de cap i cos) d'entre 1,5 i 2 metres, i una alçada (fins a les espatlles) d'entre 80 i 100 cm.[4] Els cérvols de cua blanca recent nascuts pesen entre 1,5 i 2,5 kg i es caracteritzen per tenir taques arrodonides i blanques en tot el seu pelatge. Un cop arriba l'hivern, perden la coloració blanca per adquirir un pelatge gris característic de l'estació.[2]

 src=
Cria d'Odocoileus Virginianus

Presenten dimorfisme sexual entre mascles i femelles.[5] Els mascles pesen entre 60 i 160 kg, mentre que les femelles pesen entre 40 i 105 kg. A més, aquells exemplars que habiten zones tropicals tendeixen a ser més petits i normalment no solen sobrepassar els 60 kg. El color del pelatge d'aquest cérvol varia segons la zona, l'estació de l'any i entre les diverses subespècies.[6] Generalment, tenen un pelatge rogenc o groguenc durant la primavera i l'estiu, mentre que durant l'hivern i la tardor és més aviat marró o grisós. Pel que es refereix a la zona que habiten, en aquelles zones més tropicals i càlides, el pelatge tendeix a ser més rogenc, mentre que en zones més fredes és més aviat gris o marró. Tenen zones específiques del pelatge de color blanc, com el voltant dels ulls i del nas, dins les orelles, la part interior i superior de les potes i, finalment, la punta de la cua.[1] [2]

Els mascles tenen banyes ramificades i inclinades (entre 8 i 64 cm) que creixen durant l'abril o el maig i els cauen entre gener i març, després de l'aparellament.[2]

Finalment, el cérvol de cua blanca està dotat d'uns sentits de la vista i la oïda molt acurades. tot i que la seva supervivència i detecció del perill depèn principalment de seu olfacte molt ben desenvolupat.[4]

Reproducció

 src=
Femella de cérvol de Virgínia alimentant a la seva cria

Els cérvols de Virgínia assoleixen la maduresa sexual a partir del segon any de vida, tot i que en alguns casos les femelles poden fer-ho fins a 7 mesos després de néixer. Són mamífers poligàmics que poden arribar a estar amb una mateixa parella alguns dies o fins i tot setmanes, fins que la femella assoleix el període de fertilitat i receptivitat sexual (oestrus).[7]

El seu d'aparellament té lloc un cop l'any, entre l'octubre i el desembre. De manera que les cries naixeran a la primavera, després d'una gestació de 6,5 mesos. De tota manera, si una femella no troba parella durant aquest període, patirà un altre període de fertilitat 28 dies després.[2]

El cérvol de cua blanca tenen entre una i tres cries. Els cérvols recent nascuts ja són capaços de caminar i, en només uns dies, seran capaces de mossegar vegetals. Les femelles tenen una actitud sobre-protectora envers les seves cries i es fan càrrec d'elles durant els primers entre 8 i 10 mesos de vida fins que són deslletades. En el cas dels mascles, romanen amb les seves mares durant el primer any de vida, mentre que les femelles tendeixen a romandre-hi durant els dos primers anys de vida.[1]

Els cérvols de Virgínia solen viure només entre 2 i 3 anys, alguns d'ells arriben a sobreviure fins a 10 anys.[4]

Comportament

Aquesta espècie de cérvol és la més nerviosa i tímida de cérvol. Són molt àgils i poden arribar a gairebé a 50 km/h. També tenen una gran habilitat per nedar, i arriben a recórrer llargues distàncies en rius i llacs per escapar dels seus depredadors o d'insectes.[7]

Generalment, l'àrea que consideren llar no sol ser gaire àmplia, d'aproximadament un kilòmetre quadrat o menys. Quan se senten amenaçats corren amb la cua aixecada fins a posar-se a cobert. El blanc de la cua que mostren en fugir sembla que és per alertar altres cérvols.[2]

 src=
Exemplar de cérvol de cua blanca amb la cua aixecada com a senyal de perill

Es consideren animals solitaris, especialment durant l'estiu. La unitat principal d'aquesta espècie és una femella i les seves cries o grups de mascles joves, tot i que de vegades es poden observar grans grups d'aquests mamífers de fins als 100 exemplars pasturant junts. Generalment, aquests cérvols formen grups d'entre 2 i 15 exemplars (2-4 exemplars durant l'estiu). Però en el cas dels mascles, quan arriba l'època de zel (al setembre) i, per tant, d'aparellament, es separen i trobar una parella es converteix en la seva màxima prioritat. L'època de zel de els femelles té lloc a mitjans de la tardor. Si dos mascles coincideixen intentant-se aparellar amb la mateixa femella, lluitaran fent servir les seves banyes per guanyar l'aparellament. Un mascle pot arribar a copular fins a 4 femelles en la mateixa època de zel.[1] [2] [4]

Com ja hem comentat, les cries femelles es mantenen amb la seva mare durant els seus 2 primers anys de vida. En canvi, el mascle, abandona el grup durant el primer any. Són animals extremadament protectors amb les seves cries. Les amaguen en zones de densa vegetació quan detecten depredadors.[1]

Alimentació

El cérvol de cua blanca és remugant i herbívor. S'alimenta de diversos elements que troba en la vegetació determinada pel que té disponible al seu voltant: fulles, brots, bolets, ... [2] [8]

Comunicació i Percepció

Els cérvols de cua blanca tenen glàndules odorípades entre les dues parts de les peülles en els quatre peus, a l'exterior i interior de cada cama posterior.L'olor que produeixen aquestes glàndules els serveix per comunicar-se amb altres cérvols. les secrecions són especialment accentuades durant l'època d'aparellament.[1] [4]

Els cérvols de Virginia produeixen diversos sons com grunyits, sibilàncies o xiulets que, juntament amb les postures que fam, s'utilitzen també per comunicar-se. Quan un cérvol és ferit, sol llençar un crit sorprenentment fort.[2] [7]

Subespècies

Fins ara s'han classificat 38 subespècies de cérvols de cua blanca. les subespècies sud-americanes es diferencien principalment de les nord-americanes per les seves diferències genètiques, la mida menor de les seves banyes i un pes i mida menor. S'han proposat diverses modificacions en la manera de classificar aquestes subespècies: que n'hi hagi només dues (una pels nord-americans i una pels sud-americans) o que les sud-americanes havíem d'estar encara més subdividides.[2] [9][10]

Actualment, les subespècies es troben dividides geogràficament:

  • Odocoileus virginianus borealis (Miller 1900) – est de Canadà i nord-est dels Estats Units.
  • Odocoileus virginianus dacotensis (Goldman & Kellog 1940) – Dakota del Nord i del Sud, Nebraska, Wyoming i sud-est de Canadà.
  • Odocoileus virginianus virginianus (Zimmermann, 1780) – Virginia.
  • Odocoileus virginianus macrourus (Rafinesque 1817) – Kansas.
  • Odocoileus virginianus mcilhennyi (Miller 1928) – illa Avery, Luisiana.
  • Odocoileus virginianus taurinsulae (Goldman & Kellog 1940) – illa de Bull, Carolina del Sud.
  • Odocoileus virginianus osceola (Banqs 1896) – costes de Florida.
  • Odocoileus virginianus seminolus (Goldman & Kellog 1940) – interior de Florida.
  • Odocoileus virginianus clavium (Barbour & G. M. Allen, 1922) – illots de la Florida i Cuba.
  • Odocoileus virginianus ochrourus (V. Bailey 1932) – Muntanyes Rocoses.
  • Odocoileus virginianus leucurus (Douglas, 1829) – riu Columbia, estats de Oregón i Washington.
  • Odocoileus virginianus couesi (Coues & Yarrow 1875) – Arizona, sud-est de California, Nou Mèxic i nord-est de Mèxic.
  • Odocoileus virginianus texanus (Mearns 1898) – Texas, Oklahoma, sud-est de Colorado i Nou Mèxic.
  • Odocoileus virginianus carminis (Goldman & Kellog 1940) – nord de Mèxic.
  • Odocoileus virginianus miquihuanensis (Goldman & Kellog 1940) – centre de Mèxic.
  • Odocoileus virginianus mexicanus (Gmelin 1788) – Puebla i Morelos, Mèxic
  • Odocoileus virginianus acapulcensis (Caton 1877) – sud de Mèxic.
  • Odocoileus virginianus veraecrucis (Goldman & Kellog 1940) – orient de Mèxic.
  • Odocoileus virginianus thomasi (Merriam 1898) – Oaxaca i Chiapas, Mèxic.
  • Odocoileus virginianus yucatanensis (Hays 1872) – Yucatán, Mèxic.
  • Odocoileus virginianus nelson (Merriam 1898) – Guatemala.
  • Odocoileus virginianus truei (Merriam 1898) – Centreamèrica.
  • Odocoileus virginianus chiriquensis (J.A. Allen 1910) – Panamà.
  • Odocoileus virginianus rothschildi (Thomas 1902) – Coiba, Panamà.
  • Odocoileus virginianus curassavicus (Hummelink, 1940) – Valls del nord de Colombia, i Curazao.
  • Odocoileus virginianus goudotii (Gay & Gervais 1849) – zona andina de Colombia i Veneçuela.
  • Odocoileus virginianus margaritae (Osgood 1910) – illa de Margarita, Veneçuela.
  • Odocoileus virginianus apurensis (Brokx, 1972) – plans colombo-veneçolans i nord-est de la Amazonia.
  • Odocoileus virginianus ustus (Trouessart, 1913) – zona andina d'Ecuador i Perú, sud de Colombia.
  • Odocoileus virginianus tropicalis (Cabrera 1918) – regió del Pacífic a Colombia i Perú.
  • Odocoileus virginianus peruvianus (Gray 1874) – Andes del Perú.
  • Odocoileus virginianus gymnotis (Wergmann 1833) – Veneçuela, Guyana i Surinam.
  • Odocoileus virginianus cariacou (Boddaert 1784) – Guayana Francesa i nord del Brazil.

Referències

  1. 1,0 1,1 1,2 1,3 1,4 1,5 «Odocoileus virginianus (white-tailed deer)» (en anglès). [Consulta: 3 desembre 2017].
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 «Odocoileus virginianus (white-tailed deer)» (en anglès). [Consulta: 3 desembre 2017].
  3. Michels, T. R.. Whitetail Addicts Manual: Proven Methods for Hunting Trophy Whitetail (en anglès). Quarto Publishing Group USA, 2007-09. ISBN 9781610603188.
  4. 4,0 4,1 4,2 4,3 4,4 «White-Tailed Deer». National Geographic, 12-03-2010.
  5. «Odocoileus virginianus» (en castellà). [Consulta: 3 desembre 2017].
  6. Smith, Michael H.; Branan, William V.; Marchinton, R. Larry; Johns, Paul E.; Wooten, Michael C. «Genetic and Morphologic Comparisons of Red Brocket, Brown Brocket, and White-Tailed Deer». Journal of Mammalogy, 67, 1, 1986, pàg. 103–111. DOI: 10.2307/1381006.
  7. 7,0 7,1 7,2 McShea, William J. «Ecology and management of white-tailed deer in a changing world». Annals of the New York Academy of Sciences, 1249, febrer 2012, pàg. 45–56. DOI: 10.1111/j.1749-6632.2011.06376.x. ISSN: 1749-6632. PMID: 22268688.
  8. «Lo mejor de la fauna de Honduras, otro símbolo nacional» (en castellà). Diario La Prensa.
  9. «Taxonomy of Venezuelan white-tailed deer (Odocoileus, Cervidae, Mammalia), based on cranial and mandibular traits (PDF Download Available)» (en eanglès). [Consulta: 3 desembre 2017].
  10. «Subspecies Odocoileus virginianus texanus». [Consulta: 3 desembre 2017].
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Cérvol de Virgínia: Brief Summary ( Catalan; Valencian )

provided by wikipedia CA

El cérvol de cua blanca o cérvol de Virgínia (Odocoileus virginianus) és un mamífer artiodàctil de mida mitjana que es troba en zones boscoses de la gran majoria d'estats dels Estats Units, les regions subàrtiques del Canadà, els boscos secs dels vessants muntanyoses de Mèxic, les selves humides de Centreamèrica i Sud-amèrica fins a arribar a Bolívia i el Perú.

license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Jelenec běloocasý ( Czech )

provided by wikipedia CZ

Jelenec běloocasý, také jelenec virginský, jelen viržinský nebo jelenec viržinský,[2] (Odocoileus virginianus, Zimmermann, 1780) je druh spárkaté zvěře původem z oblastí od jižní Kanady až po sever Brazílie, importovaný do mnoha míst Evropy mj. i do Česka.

Popis

Samci obvykle váží 50-100 kg, ale vzácně, hlavně v Americe byly zaznamenány kusy, které přesahovaly 159 kg. Samice obvykle dosahují váhy 40–90 kg, ale byly zdokumentovány kusy, které dosahovaly až 105 kg. Délka se pohybuje od 160 do 220 cm včetně ocasu a výška v kohoutku od 80 do 100 cm.[3] Jelenec běloocasý žijící v tropech bývá často mnohem menší než v mírném pásu, v průměru 35–50 kg.[4] Laně jsou bez paroží. Samci paroží shazují v lednu až březnu. V letním šatu je srst jelenců krátká a červenohnědá, v zimním je delší a šedohnědá. Spodní část hlavy, krku a břicha je bělavá. kelka je 15 až 30 cm dlouhá, porostlá na okrajích a vespod dlouhou bílou a řasnatou srstí. Při nebezpečí jelenci charakteristicky vyskakují všemi čtyřmi běhy najednou a vztyčují kelku, takže vlaje jako dlouhý bílý prapor.

Ekologie

Jelencům vyhovuje krajina, kde se střídají lesy s poli a loukami. Říje probíhá v listopadu, někdy se protáhne do prosince , samci se při ní ozývají sykavými až hvízdavými zvuky a tvrdě mezi sebou bojují o přízeň samic. Po 7 měsících březosti rodí samice 1 až 2 mláďata, která jsou na hřbetě a bocích bíle skvrnitá. Stejně jako ostatní parohatá zvěř se jelenci dorozumívají kelkou.

Poddruhy

Niže je uvedena klasifikace a taxonomie jelence běloocasého a některé jeho poddruhy.

Některé zdroje uvádí až 38 poddruhů.[2]

Zajímavosti

Jelenci běloocasí byli poprvé vysazeni na českém území knížetem Josefem Colloreda Mansfeldem na panství Dobříš v roce 1855. V současné době žijí jelenci v Čechách, např. na Dobříšsku a místy v Brdech. V Evropě se dále vyskytují ve Finsku a malá populace též na Islandu Nejznámější, ale zcela fiktivní jelenec běloocasý je Bambi z pohádky Walta Disneye, přestoźe v románové předloze od Felixe Saltena se jednalo o srnce.

Reference

V tomto článku byl použit překlad textu z článku White-tailed deer na anglické Wikipedii.

  1. Červený seznam IUCN 2018.1. 5. července 2018. Dostupné online. [cit. 2018-08-10]
  2. a b KOŘÍNEK, Milan; ANDĚRA, Miloš. Odocoileus virginianus (jelenec běloocasý) [online]. BioLib.cz [cit. 2008-09-09]. Dostupné online.
  3. DEWEY, Tanya. Odocoileus virginianus [online]. Michigan: Animal Diversity Web, 2003 [cit. 2008-09-09]. Dostupné online. (anglicky)
  4. The Costa Rican varieties are smaller [online]. Costa Rica Information [cit. 2008-09-09]. Dostupné v archivu pořízeném dne 2010-12-30. (anglicky)

Externí odkazy

Pahýl
Tento článek je příliš stručný nebo postrádá důležité informace.
Pomozte Wikipedii tím, že jej vhodně rozšíříte. Nevkládejte však bez oprávnění cizí texty.
license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Jelenec běloocasý: Brief Summary ( Czech )

provided by wikipedia CZ

Jelenec běloocasý, také jelenec virginský, jelen viržinský nebo jelenec viržinský, (Odocoileus virginianus, Zimmermann, 1780) je druh spárkaté zvěře původem z oblastí od jižní Kanady až po sever Brazílie, importovaný do mnoha míst Evropy mj. i do Česka.

license
cc-by-sa-3.0
copyright
Wikipedia autoři a editory
original
visit source
partner site
wikipedia CZ

Virginiahjort ( Danish )

provided by wikipedia DA

Virginiahjort, også kaldet hvidhalet hjort, (Odocoileus virginianus) er et af de større medlemmer af hjortefamilien. Bukken (handyret) kan blive op til 140 kg, mens hinden (hundyret) kan veje op til 115 kg. Kalven har lyse pletter i den rødbrune pels. Fælles for alle virginiahjorte er en markant mælkehvid hale, som rejser sig, når hjorten bliver skræmt, og som bruges til at advare andre dyr i flokken.

Adfærd

 src=
Kalv af virginiahjort

Virginiahjorten har udmærket syn, hørelse og lugtesans og kan udmærket opdage, hvis der er mennesker eller andre fjender i nærheden. Selv når den spiser, er den på vagt og tager ofte små pauser for at kigge sig omkring. Når en virginiahjort opdager, at der er fare på færde, løfter den hovedet og stirrer i den retning, hvor faren befinder sig. Samtidig skærpes høre- og lugtesansen for at opfange mistænkelige signaler.

Virginiahjorten er mest et natdyr, men man kan møde den døgnet rundt. Den spiser som regel tidligt om morgenen eller ved solnedgang. Om vinteren danner virginiahjortene nogle gange enorme flokke på over hundrede dyr.

Føde

I lighed med andre hjorte lever virginiahjorten af græs og løvtræsblade, som den supplerer med frugter, urter og blomster. Føden varierer markant efter årstiden, og om vinteren, hvor føden er knap, bruger den betydeligt mere energi, end den indtager. Dermed taber den i vægt, men i lighed med andre hjorte kan den tåle en nedsat fødeindtagelse om vinteren

Forplantning

Hinden bliver kønsmoden efter et år, mens bukken ikke er kønsmoden før tidligst efter fire år. Parringen sker sent på efteråret, og hinden går drægtig i 6½ måned. Antallet af kalve øges med hindens alder: Som førstegangskælvende får den som regel kun én kalv, mens ældre hinder kan få op til tre kalve.

Kalvene holder sig i de første uger inden for et lille område med tæt vegetation, selv om de både kan stå og gå. De holder sig til deres mødre i et til to år.

 src=
To virginiahjortebukke

Udbredelse

Virginiahjorten findes vildt over store dele af Amerika. Den findes i hele USA og det sydlige Canada og helt ned til Peru og Brasilien. Den er i de senere år også med held indført i Finland og New Zealand.

Hjorten var i en periode næsten udryddet i Nordamerika, men efter regulering af jagten er arten igen vokset i antal. Blandt dens naturlige fjender er pumaen, og man regner med, at helt op til 3/4 af en pumas føde er virginiahjorte.

Eksterne henvisninger

license
cc-by-sa-3.0
copyright
Wikipedia-forfattere og redaktører
original
visit source
partner site
wikipedia DA

Virginiahjort: Brief Summary ( Danish )

provided by wikipedia DA

Virginiahjort, også kaldet hvidhalet hjort, (Odocoileus virginianus) er et af de større medlemmer af hjortefamilien. Bukken (handyret) kan blive op til 140 kg, mens hinden (hundyret) kan veje op til 115 kg. Kalven har lyse pletter i den rødbrune pels. Fælles for alle virginiahjorte er en markant mælkehvid hale, som rejser sig, når hjorten bliver skræmt, og som bruges til at advare andre dyr i flokken.

license
cc-by-sa-3.0
copyright
Wikipedia-forfattere og redaktører
original
visit source
partner site
wikipedia DA

Weißwedelhirsch ( German )

provided by wikipedia DE

Der Weißwedelhirsch (Odocoileus virginianus) ist die häufigste Hirschart Nordamerikas. Er ist deutlich kleiner und zierlicher als die oft in gleichen Regionen verbreiteten Wapitis.

Merkmale

 src=
Schädel

Im Winter ist das Fell fast zinngrau, im Sommer dagegen rötlicher und oben dunkler als unten. Namengebend ist der Schwanz, der oberseits braun ist, unterseits aber weiß. Auf der Flucht wird er aufgerichtet, so dass man ein weißes „Fluchtsignal“ sieht. Nur die Männchen tragen ein Geweih. Es wird jeweils nach der Brunft abgeworfen und danach wieder neu gebildet. Beide Geweihstangen sind halbkreisförmig nach vorne und außen gerichtet und tragen normalerweise sechs oder sieben Sprossen.

Die Größe variiert stark zwischen den Unterarten. Bei den Tieren der nördlichen USA beträgt die Schulterhöhe etwa 1,0 bis 1,1 m und das Gewicht des Männchens zwischen 100 und 150 kg. Weibchen sind geringfügig kleiner und leichter. Nach Süden hin werden die Unterarten kleiner. Auf den Florida Keys leben Weißwedelhirsche mit einer durchschnittlichen Schulterhöhe von 60 cm und einem Gewicht von 35 kg (Inselverzwergung). Die Lebenserwartung beträgt ungefähr zehn Jahre.

In der Regel tragen nur die Männchen ein Geweih. Es gibt jedoch Phänotypen, bei denen auch die Weibchen Geweihe tragen. Ebenso existiert eine geweihlose Morphe von Männchen, die aber offenbar fortpflanzungsfähig sind. Ein weiterer Phänotyp an Männchen verliert die samtartige Haut über den Geweihstangen nicht, die gewöhnlich abgeworfen (gefegt) wird, sobald das Geweih ausgebildet ist. Dieser Phänotyp weist auch einen Körperbau auf, der eher dem der Weibchen entspricht. Sie gelten als unfruchtbar.[1] In einigen Regionen beträgt der Anteil solcher Weißwedelhirsche 10 Prozent an der Gesamtpopulation, kann aber vereinzelt auch deutlich höher sein. Die Biologin Joan Roughgarden argumentiert deshalb, dass der Anteil zu hoch ist, als dass der Anteil als für die Gesamtpopulation als schädlich betrachtet werden kann.[1]

Verbreitung

 src=
Verbreitung der Weißwedelhirsche in beiden Amerikas
 src=
Die Unterart Key-Weißwedelhirsch lebt auf den Florida Keys
 src=
Weißwedelhirsch, Weibchen (Alttier) mit Kalb
 src=
Weiblicher Weißwedelhirsch der Unterart O. v. truei in Costa Rica
 src=
Hochflüchtiger Weißwedelhirsch

Der Weißwedelhirsch ist von Südkanada bis Peru und Nordbrasilien verbreitet. Er gehört zu den am weitesten verbreiteten Hirscharten überhaupt. Die Tiere sind einer Vielzahl unterschiedlichster Habitate angepasst. Es gibt sie sowohl in den großen Wäldern Neuenglands als auch in der Prärie, in den Sümpfen der Everglades ebenso wie in den Halbwüsten Mexikos und Arizonas. In Südamerika bewohnt der Weißwedelhirsch Galeriewälder, küstennahes Buschland und die Nordhänge der Anden, fehlt aber im Regenwald. In Mittel- und Südamerika sind Weißwedelhirsche generell sehr viel seltener als in Nordamerika (siehe Bedrohung und Schutz).

Weißwedelhirsche wurden auch in anderen Teilen der Welt eingeführt. 1934 brachte man wenige Tiere nach Finnland, wo sie sich inzwischen stark vermehrt und selbsttätig in benachbarte Staaten Skandinaviens ausgebreitet haben[2]. Auch in Tschechien gibt es eine eingeschleppte Population. Außerdem ist der Weißwedelhirsch eine von sieben Hirscharten, die in Neuseeland zu Jagdzwecken eingebürgert wurden.

Lebensweise

Generell ist der Weißwedelhirsch eher ein Einzelgänger als ein Herdentier. Dies gilt allerdings nur bedingt, denn vor allem außerhalb der Paarungszeit finden sich Weibchen ebenso wie Männchen immer wieder zu losen Verbänden zusammen. Zur Brunft suchen die Männchen einzelne Weibchen – anders als Wapitis versuchen sie nicht, einen Harem zu unterhalten.

Die Weibchen (Alttiere) bringen nach einer Tragzeit von etwa 200 Tagen ein bis zwei, sehr selten auch drei oder vier Kälber zur Welt. Wie viele junge Hirsche sind die Kälber bei der Geburt mit weißen Flecken überzogen.

Der Weißwedelhirsch lebt von Blättern, Gräsern, Knospen, Beeren und anderen Wildfrüchten sowie von Baumrinden. Er hat eine Vielzahl von Feinden, neben dem Menschen vor allem Wölfe, Pumas, Bären und Kojoten und in Süd- und Mittelamerika auch den Jaguar.

Bedrohung und Schutz

Vor der Ankunft der europäischen Siedler gab es allein in Nordamerika schätzungsweise 40 Millionen Weißwedelhirsche. Sie wurden von den Indianern gejagt, was aber wenig bis keine Auswirkungen auf die Bestandszahlen hatte. Die Kolonisten jagten die Hirsche wegen ihrer Felle und Häute, aber auch zum Vergnügen. Bis 1900 gingen die Populationen rapide zurück, bis es nur noch 500.000 dieser Tiere in Nordamerika gab. Seitdem hat eine Regulierung der Jagd zu einer weitgehenden Verbesserung geführt, aber regional ist die Lage sehr unterschiedlich.

Es gibt Gegenden, wie zum Beispiel das Gebiet der Großen Seen, in denen Weißwedelhirsche wieder so häufig wie einst sind. In den USA gibt es nun wieder 14 Millionen Weißwedelhirsche. In Mexiko, Zentral- und Südamerika gehen die Zahlen aber weiter zurück.

Einige Unterarten sind nahezu ausgestorben und stehen auf der Roten Liste der IUCN. Dies sind:

  • Key-Weißwedelhirsch (Odocoileus virginianus clavium) auf den Florida Keys, eine kleinwüchsige Unterart; durch die Jagd gab es 1945 nur noch 26 dieser Hirsche. Dank intensiver Schutzmaßnahmen gibt es nun wieder 300 Tiere, aber der wachsende Tourismus der Keys gibt Anlass zur Sorge. Fast alle Key-Weißwedelhirsche leben auf No Name Key und Big Pine Key. Benachbarte Inseln werden manchmal schwimmend erreicht, das Fehlen ausreichender Süßwasservorkommen macht aber stets eine Rückkehr zu den beiden genannten Inseln notwendig. Die IUCN bewertet die Unterart als „stark gefährdet“.
  • Columbia-Weißwedelhirsch (Odocoileus virginianus leucurus), benannt nach dem Columbia River in Washington und Oregon. Zwischenzeitlich waren die Bestände auf 400 Tiere gefallen, da die menschliche Besiedlung der Ufer des Columbia River dem Tier den Lebensraum nahm. Heute gibt es wieder 3000 Tiere, so dass sich der U.S. Fish & Wildlife Service 2003 entschied, die Unterart von der Liste der bedrohten Tiere der USA zu nehmen. Bei der IUCN gilt diese Unterart als „gering gefährdet“.

Sonstiges

Der nächste Verwandte des Weißwedelhirsches ist der Maultierhirsch. Die beiden Arten sind untereinander fruchtbar, so dass es gelegentlich zu Hybriden kommt. Meistens ist dabei das Muttertier eine Maultierhirschkuh. Die Männchen der Weißwedelhirsche setzen sich gegenüber den Männchen der Maultierhirsche beim Werben um ein brünftiges Weibchen durch, weil sie schneller sind als Maultierhirsche und in der Verfolgung des brünftigen Weibchens auch deutlich hartnäckiger. Die Nachkommen sind zwar fruchtbar, sie haben jedoch eine höhere Mortalitätsrate als die Nachkommen von Maultier- oder Weißwedelhirschen. Weder zeigen sie so ausgeprägte Prellsprünge wie reine Maultierhirsche noch erreichen sie die Fluchtgeschwindigkeit und Ausdauer von Weißwedelhirschen und fallen daher eher Fressfeinden zum Opfer.[3] Beide Arten sind für Chronic Wasting Disease empfänglich.

Der Weißwedelhirsch ist das Repräsentationstier der US-Bundesstaaten Arkansas, Illinois, Michigan, Mississippi, Nebraska, New Hampshire, Ohio, Oklahoma, Pennsylvania, South Carolina und Vermont. Er kommt, wie im Wappen der kanadischen Provinz Saskatchewan, auch in der Flagge Michigans und im Siegel Michigans sowie in der Flagge Vermonts vor.

Walt Disney nahm sich die Freiheit, für seinen Zeichentrickfilm Bambi aus dem europäischen Reh der Romanvorlage einen Weißwedelhirsch zu machen, da Rehe in Nordamerika nicht vorkommen. Da sich die Kitze von Rehen und die Kälber von Weißwedelhirschen sehr ähneln, wurde der Unterschied vom europäischen Publikum allerdings selten bemerkt. Bis heute ist unter anderem darum die irrige Meinung weit verbreitet, Rehe wären weibliche Hirsche und andersherum Hirsche männliche Rehe.

Mit Stand 23. Dezember 2021 konnten im Nordosten des US-Bundesstaates Ohio mindestens sechs Spillovers von SARS-CoV-2, dem Erreger von COVID-19 von Mensch zu diesen Tieren nachgewiesen werden, wobei drei Varianten des Virus beteiligt waren. Offenbar kann das Virus auch von Tier zu Tier übertragen werden. Welche Auswirkungen es auf die Einzeltiere und die Tierpopulation als Ganzes hat, blieb zunächst unklar. Da eine Rückübertragung auf den Menschen nicht ausgeschlossen werden kann, könnten die Tiere eine Rückzugsmöglichkeit für das Virus darstellen, in der sich auch neue Varianten entwickeln könnten. Eine genaue Überwachung des Geschehens scheint angebracht, um die Krankheit dauerhaft unter Kontrolle zu bringen.[4]

Literatur

  • Leonard Lee Rue III: The Encyclopedia of Deer. Voyageur Press, Stillwater 2003, ISBN 0-89658-590-5

Einzelbelege

  1. a b Joan Roughgarden: Evolution’s Rainbow: Diversity, Gender, and Sexuality in Nature and People. University of California Press, Berkeley 2004, ISBN 0-520-24073-1, S. 38.
  2. https://yle.fi/uutiset/osasto/news/article10294577.ece (Englisch)
  3. Rue, S. 86.
  4. Active COVID-19 Infection – By at Least Three Virus Variants – Detected in Wild Deer in 6 Ohio Locations, auf: SciTechDaily vom 23. Dezember 2021. Quelle: Ohio State University.
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Weißwedelhirsch: Brief Summary ( German )

provided by wikipedia DE

Der Weißwedelhirsch (Odocoileus virginianus) ist die häufigste Hirschart Nordamerikas. Er ist deutlich kleiner und zierlicher als die oft in gleichen Regionen verbreiteten Wapitis.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Mazatl ( Nahuatl )

provided by wikipedia emerging languages
Masat

Mazatl (Odocoileus virginianus, caxtillantlahtolli:Venado cola blanca) ce chichini yolcatl ochanti ipan teotlalli ahnozo ixtlahuatl.

Mazatl

Inin ce totiotzin ipan macehualtlahlamiquiliz. Ipan miyac tlahtolli ihuan macehualmeh quen yaqui, cora, wixárika, ihuan nahuameh quiittah quen ce titiotzin inin tlapiyalli.

Huahcapameh cequin macehualmeh queman ahcicoh caxatilantecameh quinhualicaqueh miyac cahuayohmeh ihuan inihhuntin macehualmeh no quitocaxtihqueh mazatl nopa cahuayoh ihuan naman quitocayotiah cahuayoh.

Ininixnezca mazameh

Inin mazameh quipiyah ininteixmatcahuan quen nopa tlapiyali reno, ciervo, alce, nopa corzo ihuan axis. Inin mazameh ahctoqui quinittaqueh nopa europeotlacameh, ihuan teipan inihhuantin quihuicaqueh ipan altepetl tlen itocah Nueva Zelandia. Ce mazatl inimiliz ihuan quiahxitia xihuitl nechca 20 xihuitl, zan cequin quintzin quipano ihuan cequin amo monequi cualli itztoz ihuan nemiz.

Occequin macehuallahtolcopa

Enalces externos

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

Mazatl: Brief Summary ( Nahuatl )

provided by wikipedia emerging languages

Mazatl (Odocoileus virginianus, caxtillantlahtolli:Venado cola blanca) ce chichini yolcatl ochanti ipan teotlalli ahnozo ixtlahuatl.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

Yuraqchupa luwichu ( Quechua )

provided by wikipedia emerging languages

Yuraqchupa luwichu[1][2] icha Luwichu[3] (Luychu)[4] chaylla (Odocoileus virginianus) nisqaqa tukuy Awya Yalapi kawsaq tarukam, iskay ruk'anayuq ñuñuqmi, yura mikhuqmi.

Pukyukuna

  1. Hilary Bradt, Kathy Jarvis - 2002: Peru and Bolivia - The Bradt Trekking Guide. Odocoileus virginianus: (Spanish Venado de cola blanca [cola blanca: yuraq chupa], Quechua Luychu).
  2. Víctor Pacheco, Richard Cadenillas, Edith Salas, Carlos Tello, Horacio Zeballos (2009): Diversidad y endemismo de los mamíferos del Perú (Diversity and endemism of Peruvian mammals). Anexo A02. Revista Peruana de Biología 16(1), pp. 5-32 (Agosto 2009), p. 31. Odocoileus peruvianus (Gray, 1874) Venado de cola blanca, luicho.
  3. Clodoaldo Soto Ruiz: Runasimi-kastillanu-inlis llamkaymanaq qullqa. University of Illinois, 2010. p. 85. Luwichu: Deer/Venado.
  4. Qheswa simi hamut'ana kuraq suntur: Simi Taqe Qheswa - Español - Qheswa. Qusqu, Piruw 2006. p. 258. luychu: Odoccileus virginianus peruvianas Gray.

Hawa t'inkikuna

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

Yuraqchupa luwichu: Brief Summary ( Quechua )

provided by wikipedia emerging languages

Yuraqchupa luwichu icha Luwichu (Luychu) chaylla (Odocoileus virginianus) nisqaqa tukuy Awya Yalapi kawsaq tarukam, iskay ruk'anayuq ñuñuqmi, yura mikhuqmi.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

வர்ச்சீனிய தூவால் மான் ( Tamil )

provided by wikipedia emerging languages

வர்ச்சீனிய தூவால் மான் (Odocoileus virginianus, White-tailed deer) பாலூட்டி வகையைச்சேர்ந்த ஒரு விலங்கு. இது அமெரிக்காவிலும் கனடாவிலும் நடு அமெரிக்காவிலும் தென் அமெரிக்காவில் தெற்கில் பொலிவியா, பெரு வரை இயற்கையாகக் காணப்படுகிறது. இது தான் அமெரிக்கக் கண்டத்தில் அதிகமாகக் காணப்படும் இரட்டைப்படைக் குளம்பி.

அடிக்குறிப்புகளும் மேற்கோள்களும்

  1. "Odocoileus virginianus". பன்னாட்டு இயற்கைப் பாதுகாப்புச் சங்கத்தின் செம்பட்டியல் பதிப்பு 2008. பன்னாட்டு இயற்கைப் பாதுகாப்புச் சங்கம் (2008). Database entry includes a brief justification of why this species is of least concern.
license
cc-by-sa-3.0
copyright
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்

வர்ச்சீனிய தூவால் மான்: Brief Summary ( Tamil )

provided by wikipedia emerging languages

வர்ச்சீனிய தூவால் மான் (Odocoileus virginianus, White-tailed deer) பாலூட்டி வகையைச்சேர்ந்த ஒரு விலங்கு. இது அமெரிக்காவிலும் கனடாவிலும் நடு அமெரிக்காவிலும் தென் அமெரிக்காவில் தெற்கில் பொலிவியா, பெரு வரை இயற்கையாகக் காணப்படுகிறது. இது தான் அமெரிக்கக் கண்டத்தில் அதிகமாகக் காணப்படும் இரட்டைப்படைக் குளம்பி.

license
cc-by-sa-3.0
copyright
விக்கிபீடியா ஆசிரியர்கள் மற்றும் ஆசிரியர்கள்

Oómêsta'hasené-váótséva

provided by wikipedia emerging_languages

Oómêsta'hasené-váótséva (Odocoileus virginianus) váótséva-éve.

Hestoé'kêhéso
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors

White-tailed deer

provided by wikipedia EN

Male O. v. nelsoni with antlers in velvet

The white-tailed deer (Odocoileus virginianus), also known commonly as the whitetail and the Virginia deer, is a medium-sized species of deer native to North America, Central America, and South America as far south as Peru and Bolivia, where it predominately inhabits high mountain terrains of the Andes.[2] It has also been introduced to New Zealand, all the Greater Antilles in the Caribbean (Cuba, Jamaica, Hispaniola, and Puerto Rico[3]), and some countries in Europe, such as the Czech Republic, Finland, France, Germany, Romania and Serbia.[4][5] In the Americas, it is the most widely distributed wild ungulate.

In North America, the species is widely distributed east of the Rocky Mountains as well as in southwestern Arizona and most of Mexico, except Lower California. It is mostly displaced by the black-tailed or mule deer (Odocoileus hemionus) from that point west except for mixed deciduous riparian corridors, river valley bottomlands, and lower foothills of the northern Rocky Mountain region from Wyoming west to eastern Washington and eastern Oregon and north to northeastern British Columbia and southern Yukon, including in the Montana valley and foothill grasslands. The westernmost population of the species, known as the Columbian white-tailed deer, was once widespread in the mixed forests along the Willamette and Cowlitz River valleys of western Oregon and southwestern Washington, but current numbers are considerably reduced, and it is classified as near-threatened. This population is separated from other white-tailed deer populations.[6]

Texas is home to the most white-tailed deer of any U.S. state or Canadian province, with an estimated population of 5.3 million.[7] High populations of white-tailed deer exist in the Edwards Plateau of central Texas. Michigan, Minnesota, Iowa, Mississippi, Missouri, New Jersey, Illinois, Wisconsin, Maryland, New York, North Dakota, Ohio, and Indiana also boast high deer densities. The conversion of land adjacent to the Canadian Rockies to agriculture use and partial clear-cutting of coniferous trees, resulting in widespread deciduous vegetation, has been favorable to the white-tailed deer and has pushed its distribution to as far north as Yukon. Populations of deer around the Great Lakes have expanded their range northwards, also due to conversion of land to agricultural use, with local caribou, elk, and moose populations declining.

Taxonomy

Some taxonomists have attempted to separate white-tailed deer into a host of subspecies, based largely on morphological differences. Genetic studies, however, suggest fewer subspecies within the animal's range, as compared to the 30 to 40 subspecies that some scientists have described in the last century. The Florida Key deer, O. v. clavium, and the Columbian white-tailed deer, O. v. leucurus, are both listed as endangered under the U.S. Endangered Species Act. In the United States, the Virginia white-tail, O. v. virginianus, is among the most widespread subspecies. Several local deer populations, especially in the Southern United States, are descended from white-tailed deer transplanted from various localities east of the Continental Divide. Some of these deer populations may have been from as far north as the Great Lakes region to as far west as Texas, yet are also quite at home in the Appalachian and Piedmont regions of the south. These deer, over time, have intermixed with the local indigenous deer (O. v. virginianus and/or O. v. macrourus) populations.

Central and South America have a complex number of white-tailed deer subspecies that range from Guatemala to as far south as Peru. This list of subspecies of deer is more exhaustive than the list of North American subspecies, and the number of subspecies is also questionable. However, the white-tailed deer populations in these areas are difficult to study, due to overhunting in many parts and a lack of protection. Some areas no longer carry deer, so assessing the genetic difference of these animals is difficult.

Subspecies

O. v. nemoralis, female, Costa Rica
Three O. v. borealis, New Hampshire

There are 26 subspecies; seventeen of these occur in North America, ordered alphabetically.[8] (Numbers in parentheses are range map locations.)

North America

  • O. v. acapulcensis (1)– (Southern coastal Mexico)
  • O. v. borealis (2)– northern white-tailed deer (the largest and darkest of the white-tailed deer)
  • O. v. carminis (4)– Carmen Mountains white-tailed deer (Texas-Mexico border)
  • O. v. chiriquensis (5)– (Panama)
  • O. v. clavium (6)– Key deer or Florida Keys white-tailed deer
  • O. v. couesi (7)– Coues' white-tailed deer, Arizona white-tailed deer, or fantail deer
  • O. v. dacotensis (9)– Dakota white-tailed deer or northern plains white-tailed deer (most northerly distribution, rivals the northern white-tailed deer in size)
  • O. v. hiltonensis (12)– Hilton Head Island white-tailed deer
  • O. v. leucurus (13)– Columbian white-tailed deer (Oregon and western coastal area)
  • O. v. macrourus (14)– Kansas white-tailed deer
  • O. v. mcilhennyi (15)– Avery Island white-tailed deer
  • O. v. mexicanus (17)– (central Mexico)
  • O. v. miquihuanensis (18)– (northern central Mexico)
  • O. v. nelsoni (19)– (southern Mexico to Nicaragua)
  • O. v. nemoralis (20)– Nicaraguan white-tailed deer (Gulf of Mexico to Suriname in South America; further restricted from Honduras to Panama)
  • O. v. nigribarbis (21)– Blackbeard Island white-tailed deer
  • O. v. oaxacensis (22)– (southern Mexico)
  • O. v. ochrourus (23)– northwestern white-tailed deer or northern Rocky Mountains white-tailed deer
  • O. v. osceola (24)– Florida coastal white-tailed deer
  • O. v. rothschildi (26)– (Coiba Island, Panama)
  • O. v. seminolus (27)– Florida white-tailed deer
  • O. v. sinaloae (28)– (southern Mexico)
  • O. v. taurinsulae (29)– Bulls Island white-tailed deer (Bulls Island, South Carolina)
  • O. v. texanus (30)– Texas white-tailed deer
  • O. v. thomasi (31)– (southern Mexico)
  • O. v. toltecu (32)– (southern Mexico to El Salvador)
  • O. v. venatorius (35)– Hunting Island white-tailed deer (Hunting Island, South Carolina)
  • O. v. veraecrucis (36)– (eastern coastal Mexico)
  • O. v. virginianus (37)– Virginia white-tailed deer or southern white-tailed deer
  • O. v. yucatanesis (38)– (northern Yucatán, Mexico)

South America

  • O. v. cariacou (3)– (French Guiana and northern Brazil)
  • O. v. curassavicus (8)– (Curaçao)
  • O. v. goudotii (10)– (Colombia (Andes) and western Venezuela)
  • O. v. gymnotis (11)– South American white-tailed deer (northern half of Venezuela, including Venezuela's Llanos region)
  • O. v. margaritae (16)– (Margarita Island)
  • O. v. nemoralis (20)– Nicaraguan white-tailed deer (Gulf of Mexico to Suriname in South America; further restricted from Honduras to Panama)
  • O. v. peruvianus (25)– South American white-tailed deer or Andean white-tailed deer (most southerly distribution in Peru and possibly Bolivia)
  • O. v. tropicalis (33)– Peru and Ecuador (possibly Colombia)
  • O. v. ustus (34)– Ecuador (possibly southern Colombia and northern Peru)

Description

Doe in September in Peace River, Alberta, Canada; between summer and winter coats
O. v. nelsoni fawn about two weeks old

The white-tailed deer's coat is a reddish-brown in the spring and summer, and turns to a grey-brown throughout the fall and winter. The white-tailed deer can be recognized by the characteristic white underside to its tail. It raises its tail when it is alarmed to warn the predator that it has been detected.[9]

Female with tail in alarm posture

An indication of a deer's age is the length of the snout and the color of the coat, with older deer tending to have longer snouts and grayer coats.

A population of white-tailed deer in New York is entirely white except for the nose and hooves – not albino – in color. The former Seneca Army Depot in Romulus, New York, has the largest known concentration of white deer. Strong conservation efforts have allowed white deer to thrive within the confines of the depot.

The white-tailed deer's horizontally slit pupil allows for good night vision and color vision during the day. Whitetails process visual images at a much more rapid rate than humans and are better at detecting motion in low-light conditions.[10]

Size and weight

The white-tailed deer is highly variable in size, generally following both Allen's rule[11] and Bergmann's rule[11] that the average size is larger farther away from the equator. North American male deer (also known as a buck) usually weigh 68 to 136 kg (150 to 300 lb),[12] but mature bucks over 180 kg (400 lb) have been recorded in the northernmost reaches of their native range, namely Minnesota, Ontario, and Manitoba. In 1926, Carl J. Lenander Jr. took a white-tailed buck near Tofte, Minnesota, that weighed 183 kg (403 lb) after it was field-dressed (internal organs and blood removed) and was estimated at 232 kg (511 lb) when alive.[13] The female (doe) in North America usually weighs from 40 to 90 kg (88 to 198 lb). White-tailed deer from the tropics and the Florida Keys are markedly smaller-bodied than temperate populations, averaging 35 to 50 kg (77 to 110 lb), with an occasional adult female as small as 25 kg (55 lb).[14] White-tailed deer from the Andes are larger than other tropical deer of this species and have thick, slightly woolly-looking fur. Length ranges from 95 to 220 cm (37 to 87 in), including a tail of 10 to 37 cm (3.9 to 14.6 in), and the shoulder height is 53 to 120 cm (21 to 47 in).[15][16] Including all races, the average summer weight of adult males is 68 kg (150 lb) and is 45.3 kg (100 lb) in adult females. It is among the largest deer species in North America, and the largest in South America.[17]

Deer have dichromatic (two-color) vision with blue and yellow primaries;[18] humans normally have trichromatic vision. Thus, deer poorly distinguish the oranges and reds that stand out so well to humans.[19] This makes it very convenient to use deer-hunter orange as a safety color on caps and clothing to avoid accidental shootings during hunting seasons.

Antlers

Males regrow their antlers every year. About one in 10,000 females also has antlers, although this is usually associated with freemartinism.[20] Bucks without branching antlers are often termed "spikehorn", "spiked bucks", "spike bucks", or simply "spikes/spikers". The spikes can be quite long or very short. Length and branching of antlers are determined by nutrition, age, and genetics. Rack growth tends to be very important from late spring until about a month before velvet sheds. Healthy deer in some areas that are well-fed can have eight-point branching antlers as yearlings (1.5 years old).[21] Although antler size typically increases with age, antler characteristics (e.g., number of points, length, or thickness of the antlers) are not good indicators of buck age, in general, because antler development is influenced by the local environment. The individual deer's nutritional needs for antler growth is dependent on the diet of the deer, particularly protein intake. Good antler-growth nutritional needs (calcium) and good genetics combine to produce wall trophies in some of their range.[22] Spiked bucks are different from "button bucks" or "nubbin' bucks", that are male fawns and are generally about six to nine months of age during their first winter. They have skin-covered nobs on their heads. They can have bony protrusions up to a 10 mm (12 in) in length, but that is very rare, and they are not the same as spikes.

Antlers begin to grow in late spring, covered with a highly vascularised tissue known as velvet. Bucks either have a typical or atypical antler arrangement. Typical antlers are symmetrical and the points grow straight up off the main beam. Atypical antlers are asymmetrical and the points may project at any angle from the main beam. These descriptions are not the only limitations for typical and atypical antler arrangement. The Boone and Crockett or Pope and Young scoring systems also define relative degrees of typicality and atypicality by procedures to measure what proportion of the antlers is asymmetrical. Therefore, bucks with only slight asymmetry are scored as "typical". A buck's inside spread can be from 8–60 cm (3–25 in). Bucks shed their antlers when all females have been bred, from late December to February.

Ecology

White-tailed deer are generalists and can adapt to a wide variety of habitats.[23] The largest deer occur in the temperate regions of North America. The northern white-tailed deer (O. v. borealis), Dakota white-tailed deer (O. v. dacotensis), and northwest white-tailed deer (O. v. ochrourus) are some of the largest animals, with large antlers. The smallest deer occur in the Florida Keys and in partially wooded lowlands in the Neotropics.

Although most often thought of as forest animals depending on relatively small openings and edges, white-tailed deer can equally adapt themselves to life in more open prairie, savanna woodlands, and sage communities as in the Southwestern United States and northern Mexico. These savanna-adapted deer have relatively large antlers in proportion to their body size and large tails. Also, a noticeable difference exists in size between male and female deer of the savannas. The Texas white-tailed deer (O. v. texanus), of the prairies and oak savannas of Texas and parts of Mexico, are the largest savanna-adapted deer in the Southwest, with impressive antlers that might rival deer found in Canada and the northern United States. Populations of Arizona (O. v. couesi) and Carmen Mountains (O. v. carminis) white-tailed deer inhabit montane mixed oak and pine woodland communities.[24] The Arizona and Carmen Mountains deer are smaller, but may also have impressive antlers, considering their size. The white-tailed deer of the Llanos region of Colombia and Venezuela (O. v. apurensis and O. v. gymnotis) have antler dimensions similar to the Arizona white-tailed deer.

In some western regions of North America, the white-tailed deer range overlaps with those of the mule deer. White-tail incursions in the Trans-Pecos region of Texas have resulted in some hybrids. In the extreme north of the range, their habitat is also used by moose in some areas. White-tailed deer may occur in areas that are also exploited by elk (wapiti) such as in mixed deciduous river valley bottomlands and formerly in the mixed deciduous forest of eastern United States. In places such as Glacier National Park in Montana and several national parks in the Columbian Mountains (Mount Revelstoke National Park) and Canadian Rocky Mountains, as well as in the Yukon Territory (Yoho National Park and Kootenay National Park), white-tailed deer are shy and more reclusive than the coexisting mule deer, elk, and moose.

Central American white-tailed deer prefer tropical and subtropical dry broadleaf forests, seasonal mixed deciduous forests, savanna, and adjacent wetland habitats over dense tropical and subtropical moist broadleaf forests. South American subspecies of white-tailed deer live in two types of environments. The first type, similar to the Central American deer, consists of savannas, dry deciduous forests, and riparian corridors that cover much of Venezuela and eastern Colombia.[25] The other type is the higher elevation mountain grassland/mixed forest ecozones in the Andes Mountains, from Venezuela to Peru. The Andean white-tailed deer seem to retain gray coats due to the colder weather at high altitudes, whereas the lowland savanna forms retain the reddish brown coats. South American white-tailed deer, like those in Central America, also generally avoid dense moist broadleaf forests.

Since the second half of the 19th century, white-tailed deer have been introduced to Europe.[26] A population in the Brdy area remains stable today.[27] In 1935, white-tailed deer were introduced to Finland. The introduction was successful, and the deer have recently begun spreading through northern Scandinavia and southern Karelia, competing with, and sometimes displacing, native species. The 2020 population of some 109,000 deer originated from four animals provided by Finnish Americans from Minnesota.[28][29]

Diet

White-tailed deer eat large amounts of food, commonly eating legumes and foraging on other plants, including shoots, leaves, cacti (in deserts), prairie forbs,[30] and grasses. They also eat acorns, fruit, and corn. Their multi-chambered stomachs allow them to eat some foods humans cannot, such as mushrooms (even those that are toxic to humans), and poison ivy. Their diets vary by season according to the availability of food sources. They also eat hay, grass, white clover, and other foods they can find in a farmyard. Though almost entirely herbivorous, white-tailed deer have been known to opportunistically feed on nesting songbirds, field mice, and birds trapped in mist nets, if the need arises.[31] When additional amounts of minerals such as calcium are needed in their diet, they can resort to osteophagy, chewing on bones of dead animals.[32] A grown deer can eat around 900 kg (2,000 lb) of vegetable matter annually. A population of around 8 deer per square kilometre (20 /sq mi) can start to destroy the forest environment in their foraging area.[33]

Their diet consists mostly of woody shoots, stems, and leaves of woody plants as well as grasses, cultivated crops, nuts, berries, and wildflowers. The items they feed on are not generally abundant in mature forests and are mostly found at "edges".[34] Edges are described as a "mosaic of vegetation types that create numerous interwoven 'edges' where their respective boundaries intersect" and provide optimum cover for browsers such as the white-tailed deer.[35] White-tailed deer can easily thrive in suburban areas, as a combination of increased safety from some predators (including human hunting), high quality and abundance of foods in home gardens, city parks, open farmland, and other factors all create landscapes with an abundance of edge habitat.

The white-tailed deer is a ruminant, which means it has a four-chambered stomach. Each chamber has a different and specific function that allows the deer to eat a variety of different foods, digesting it at a later time in a safe area of cover. The stomach hosts a complex set of microbes that change as the deer's diet changes through the seasons. If the microbes necessary for digestion of a particular food (e.g., hay) are absent, it will not be digested.[36] Utilizing foregut fermentation, the fermented ingesta (known as cud) is regurgitated and chewed again,[37][38] to mix it with saliva and reduce the particle size. Smaller particle size allows for increased nutrient absorption and the saliva is important because it provides liquid for the microbial population, recirculates nitrogen and minerals, and acts as a buffer for the rumen pH.[39]

Predators

There are several natural predators of white-tailed deer, with wolves, cougars, American alligators, jaguars (in the American southwest, Mexico, and Central and South America) and humans being the most effective natural predators. Aside from humans, these predators frequently pick out easily caught young or infirm deer (which is believed to improve the genetic stock of a population), but can and do take healthy adults of any size. Bobcats, Canada lynx, grizzly and American black bears, wolverines, and packs of coyotes usually prey mainly on fawns. Bears may sometimes attack adult deer, while lynxes, coyotes, and wolverines are most likely to take adult deer when the ungulates are weakened by harsh winter weather.[15] Many scavengers rely on deer as carrion, including New World vultures, raptors, red and gray foxes, and corvids. Few wild predators can afford to be picky and any will readily consume deer as carrion. Records exist of American crows and common ravens attempting to prey on white-tailed deer fawns by pecking around their face and eyes, though no accounts of success are given.[40] Occasionally, both golden and bald eagles may capture deer fawns with their talons.[41] In one case, a golden eagle was filmed in Illinois unsuccessfully trying to prey on a large mature white-tailed deer.[42]

White-tailed deer typically respond to the presence of potential predators by breathing very heavily (also called blowing) and fleeing. When they blow, the sound alerts other deer in the area. As they run, the flash of their white tails warns other deer. This especially serves to warn fawns when their mother is alarmed.[43] Most natural predators of white-tailed deer hunt by ambush, although canids may engage in an extended chase, hoping to exhaust the prey. Felids typically try to suffocate the deer by biting the throat. Cougars and jaguars will initially knock the deer off balance with their powerful forelegs, whereas the smaller bobcats and lynxes will jump astride the deer to deliver a killing bite. In the case of canids and wolverines, the predators bite at the limbs and flanks, hobbling the deer, until they can reach vital organs and kill it through loss of blood. Bears, which usually target fawns, often simply knock down the prey and then start eating it while it is still alive.[44][45] Alligators snatch deer as they try to drink from or cross bodies of water, grabbing them with their powerful jaws and dragging them into the water to drown.[46]

Most primary natural predators of white-tailed deer have been essentially extirpated in eastern North America, with a very small number of reintroduced critically endangered red wolves, around North Carolina and a small remnant population of Florida panthers, a subspecies of the cougar. Gray wolves, the leading cause of deer mortality where they overlap, co-occur with whitetails in northern Minnesota, Wisconsin, Michigan, and most of Canada.[43] This almost certainly plays a role in the overpopulation issues with this species.[43] Coyotes, widespread and with a rapidly expanding population, are often the only major nonhuman predator of the species in the Eastern U.S., besides an occasional domestic dog.[43] In some areas, American black bears are also significant predators.[44][45] In north-central Pennsylvania, black bears were found to be nearly as common predators of fawns as coyotes.[47] Bobcats, still fairly widespread, usually only exploit deer as prey when smaller prey is scarce.[48] Discussions have occurred regarding the possible reintroduction of gray wolves and cougars to sections of the eastern United States, largely because of the apparent controlling effect they have through deer predation on local ecosystems, as has been illustrated in the reintroduction of wolves to Yellowstone National Park and their controlling effect on previously overpopulated elk.[49] However, due to the heavy urban development in much of the Eastern U.S., and fear for livestock and human lives, such ideas have ultimately been rejected by local communities and/or by government services and have not been carried through.[50][51][52]

In areas where they are heavily hunted by humans, deer run almost immediately from people and are quite wary even where not heavily hunted.

White-tailed deer can jump very far.

White-tailed deer can run faster than their predators and have been recorded sprinting at speeds of 60 km (40 mi) per hour and sustaining speeds of 50 km (30 mi) per hour over distances of 5–6 km (3–4 mi);[53] this ranks them amongst the fastest of all deer, alongside the Eurasian roe deer. They can also jump 3 m (9 ft) high and up to 9 m (30 ft) forward. When shot at, a white-tailed deer will run at high speeds with its tail down. If frightened, the deer will hop in a zig-zag with its tail straight up. If the deer feels extremely threatened, however, it may choose to attack, charging the person or predator posing the threat, using its antlers or, if none are present, its head to fight off its target.

Forest alteration

In certain parts of eastern North America, high deer densities have caused large reductions in plant biomass, including the density and heights of certain forest wildflowers, tree seedlings, and shrubs. Although they can be seen as a nuisance species, white-tailed deer also play an important role in biodiversity.[54][55] At the same time, increases in browse-tolerant grasses and sedges and unpalatable ferns have often accompanied intensive deer herbivory.[56] Changes to the structure of forest understories have, in turn, altered the composition and abundance of forest bird communities in some areas.[57] In regions of intermediate density, deer activity has also been shown to increase herbaceous plant diversity, particularly in disturbed areas, by reducing competitively dominant plants;[58] and to increase the growth rates of important canopy trees, perhaps by increased nutrient inputs into the soil.[59]

In northeastern hardwood forests, high-density deer populations affect plant succession, particularly following clear-cuts and patch cuts. In succession without deer, annual herbs and woody plants are followed by commercially valuable, shade-tolerant oak and maple. The shade-tolerant trees prevent the invasion of less commercial cherry and American beech, which are stronger nutrient competitors, but not as shade tolerant. Although deer eat shade-tolerant plants and acorns, this is not the only way deer can shift the balance in favor of nutrient competitors. Deer consuming earlier-succession plants allows in enough light for nutrient competitors to invade. Since slow-growing oaks need several decades to develop root systems sufficient to compete with faster-growing species, removal of the canopy prior to that point amplifies the effect of deer on succession. High-density deer populations possibly could browse eastern hemlock seedlings out of existence in northern hardwood forests;[60] however, this scenario seems unlikely, given that deer browsing is not considered the critical factor preventing hemlock re-establishment at large scales.[61]

Ecologists have also expressed concern over the facilitative effect high deer populations have on invasions of exotic plant species. In a study of eastern hemlock forests, browsing by white-tailed deer caused populations of three exotic plants to rise faster than they do in the areas which are absent of deer. Seedlings of the three invading species rose exponentially with deer density, while the most common native species fell exponentially with deer density, because deer were preferentially eating the native species. The effects of deer on the invasive and native plants were magnified in cases of canopy disturbance.[62]

Population and controls

The white-tailed deer population in North America has declined by several million since 2000, but as of 2017 is considered healthy and is approximately equal to the historical pre-colonization white-tailed population on the continent.[63] The species has rebounded considerably after being overhunted nearly to extinction in the late 1800s and very early 1900s.[63] By contrast, the species' closest cousins (blacktail deer and mule deer) have seen their populations cut by more than half in North America after peaking in 1960 and have never regained their pre-colonization numbers.[63] In the 21st century, the loss of natural predators has been more than offset by the ongoing loss of natural habitat to human development, and changes to logging operations.[63]

Several methods have been developed to curb the population of white-tailed deer in suburban areas where they are perceived as overabundant, and these can be separated into lethal and nonlethal strategies. Most common in the U.S. is the use of extended hunting as population control, as well as a way to provide meat for humans.[64] In Maryland and many other states, a state agency sets regulations on bag limits and hunting in the area depending on the deer population levels assessed.[65] Hunting seasons may fluctuate in duration, or restrictions may be set to affect how many deer or what type of deer can be hunted in certain regions. For the 2015–2016 white-tailed deer-hunting season, some areas allowed only the hunting of antlerless white-tailed deer. These included young bucks and females, encouraging the culling of does which would otherwise contribute to increasing populations via offspring production.[64]

A more targeted yet more expensive[66] removal strategy than public hunting is a method referred to as sharpshooting. Sharpshooting can be an option when the area inhabited by the deer is unfit for public hunting. This strategy may work in areas close to human populations, since it is done by professional marksmen, and requires a submitted plan of action to the city with details of the time and location of the action, as well as number of deer to be culled.[66] Another controversial method involves trapping the deer in a net or other trap, and then administering a chemical euthanizing agent or extermination by firearm. A main issue in questioning the humaneness of this method is the stress that the deer endure while trapped and awaiting extermination.[66]

Nonlethal methods include contraceptive injections, sterilization, and translocation of deer.[67] While lethal methods have municipal support as being the most effective in the short term, some opponents of this view suggest that extermination has no significant impact on deer populations.[68] Opponents of contraceptive methods point out that fertility control cannot provide meat and proves ineffective over time as populations in open-field systems move about. Concerns are voiced that the contraceptives have not been adequately researched for the effect they could have on humans. Fertility control also does nothing to affect the current population and the effects their grazing may be having on the forest plant make-up.[69]

Translocation has been considered overly costly for the little benefit it provides. Deer experience high stress and are at high risk of dying in the process, putting into question its humaneness.[70] Another concern regarding translocation is the possible spreading of chronic wasting disease to unaffected deer populations and concerns about exposure to human populations.[71]

In addition to the danger of deer-vehicle collisions the National Agricultural Statistics Service (NASS) reported that the estimated loss in field crops, nuts, fruits, and vegetables in 2001 was near $765 million.[72]

Behavior

Males compete for the opportunity of breeding females. Sparring among males determines a dominance hierarchy.[73] Bucks attempt to copulate with as many females as possible, losing physical condition, since they rarely eat or rest during the rut. The general geographical trend is for the rut to be shorter in duration at increased latitude. Many factors determine how intense the "rutting season" will be; air temperature is a major one. Any time the temperature rises above 40 °F (4 °C), the males do much less traveling looking for females, else they will be subject to overheating or dehydrating. Another factor for the strength of rutting activity is competition. If numerous males are in a particular area, then they compete more with the females. If fewer males or more females are present, then the selection process will not need to be as competitive.

Reproduction

Females enter estrus, colloquially called the rut, in the autumn, normally in late October or early November, triggered mainly by the declining photoperiod. Sexual maturation of females depends on population density, as well as the availability of food.[74] Young females often flee from an area heavily populated with males. Some does may be as young as six months when they reach sexual maturity, but the average age of maturity is 18 months.[75] Copulation consists of a brief copulatory jump.[76][77]

Females give birth to one to three spotted young, known as fawns, in mid-to-late spring, generally in May or June. Fawns lose their spots during the first summer and weigh from 20 to 35 kg (44 to 77 lb) by the first winter. Male fawns tend to be slightly larger and heavier than females. For the first four weeks, fawns are hidden in vegetation by their mothers, who nurse them four to five times a day. This strategy keeps scent levels low to avoid predators. After about a month, the fawns[78] are then able to follow their mothers on foraging trips. They are usually weaned after 8–10 weeks, but cases have been seen where mothers have continued to allow nursing long after the fawns have lost their spots (for several months, or until the end of fall) as seen by rehabilitators and other studies. Males leave their mothers after a year and females leave after two.

Bucks are generally sexually mature at 1.5 years old and begin to breed even in populations stacked with older bucks.

Communication

White-tailed deer have many forms of communication involving sounds, scent, body language, and marking. In addition to the blowing as mentioned above in the presence of danger, all white-tailed deer can produce audible noises unique to each animal. Fawns release a high-pitched squeal, known as a bleat, to call out to their mothers.[79] This bleat deepens as the fawn grows until it becomes the grunt of the mature deer, a guttural sound that attracts the attention of any other deer in the area. A doe makes maternal grunts when searching for her bedded fawns.[79] Bucks also grunt, at a pitch lower than that of the doe; this grunt deepens as the buck matures. In addition to grunting, both does and bucks also snort, a sound that often signals an imminent threat. Mature bucks also produce a grunt-snort-wheeze pattern, unique to each animal, that asserts its dominance, aggression, and hostility.[79] Another way white-tailed deer communicate is through the use of their white tail. When spooked, it will raise its tail to warn the other deer in the immediate area.

Marking

White-tailed deer possess many glands that allow them to produce scents, some of which are so potent they can be detected by the human nose. Four major glands are the preorbital, forehead, tarsal, and metatarsal glands. Secretions from the preorbital glands (in front of the eye) were thought to be rubbed on tree branches, but research suggests this is not so. Scent from the forehead or sudoriferous glands (found on the head, between the antlers and eyes) is used to deposit scent on branches that overhang "scrapes" (areas scraped by the deer's front hooves before rub-urination). The tarsal glands are found on the upper inside of the hock (middle joint) on each hind leg. The scent is deposited from these glands when deer walk through and rub against vegetation. These scrapes are used by bucks as a sort of "sign-post" by which bucks know which other bucks are in the area, and to let does know a buck is regularly passing through the area—for breeding purposes. The scent from the metatarsal glands, found on the outside of each hind leg, between the ankle and hooves, may be used as an alarm scent. The scent from the interdigital glands, which are located between the hooves of each foot, emit a yellow waxy substance with an offensive odor. Deer can be seen stomping their hooves if they sense danger through sight, sound, or smell; this action leaves an excessive amount of odor for warning other deer of possible danger.[80]

Throughout the year, deer rub-urinate, a process during which a deer squats while urinating so the urine will run down the insides of the deer's legs, over the tarsal glands, and onto the hair covering these glands. Bucks rub-urinate more frequently during the breeding season.[81] Secretions from the tarsal gland mix with the urine and bacteria to produce a strong-smelling odor.[82] During the breeding season, does release hormones and pheromones that tell bucks a doe is in heat and able to breed. Bucks also rub trees and shrubs with their antlers and heads during the breeding season, possibly transferring scent from the forehead glands to the tree, leaving a scent other deer can detect.[83]

Sign-post marking (scrapes and rubs) is a very obvious way white-tailed deer communicate.[83] Although bucks do most of the marking, does visit these locations often. To make a rub, a buck uses his antlers to strip the bark off small-diameter trees, helping to mark his territory and polish his antlers. To mark areas they regularly pass through, bucks make scrapes. Often occurring in patterns known as scrape lines, scrapes are areas where a buck has used his front hooves to expose bare earth. They often rub-urinate into these scrapes, which are often found under twigs that have been marked with scent from the forehead glands.

Hunting

White-tailed deer have long been hunted as game, for pure sport and for their commodities, and is probably the most hunted native big game species in the Americas. In Mesoamerica, white-tailed deer (Odocoileus virginianus) were hunted from very early times. Rites and rituals in preparation for deer hunting and celebration for an auspicious hunt are still practiced in the area today. Ancient hunters ask their gods for permission to hunt, and some deer rites take place in caves.[84]

Venison, or deer meat, is a nutritious form of lean animal protein.[85] In some areas where their populations are very high, white-tailed deer are considered a pest, and hunting is used as a method to control them.

In 1884, one of the first hunts of white-tailed deer in Europe was conducted in Opočno and Dobříš (Brdy Mountains area), in what is now the Czech Republic. In the same era, white-tailed deer were hunted to near extinction in North America, but numbers have since rebounded to approximate pre-colonization levels.[63] In the United States, whitetail hunting is far more popular in some states than others. The top five states for whitetail hunter concentrations are all in the Northeast and Midwest (Pennsylvania, Rhode Island, New York, Wisconsin, and Ohio).[86] The Northeast in particular has twice the hunter density of the Midwest and Southeast and ten times that of the West.[86]

Since whitetail deer is very adaptable, inhabiting diverse regions ranging from tropical rain forests to high-altitude mountain chains of the Andes Mountains at more than 13,000 feet, different hunting methods as well as types of guns and ammo may be used. Most common cartridges used include the .243 Winchester, .308 Winchester, .25-06 Remington, .270 Winchester, 7mm Remington Magnum, .30-06 Springfield, .300 Winchester Magnum and 12 gauge shotshells.[87] Due to the whitetail deer's frame and weight, cup and core bullets are the most recommended for taking clean, ethical shots.

Sport hunting for whitetail deer is a way of conservation of natural habitats as well as a population management.

Human interactions

Fawn being kept as a pet in a farm near Cumaral, Colombia

By the early 20th century, commercial exploitation and unregulated hunting had severely depressed deer populations in much of their range.[88] For example, by about 1930, the U.S. population was thought to number about 300,000.[89] After an outcry by hunters and conservation ecologists, commercial exploitation of deer became illegal and conservation programs along with regulated hunting were introduced. In 2005, estimates put the deer population in the United States at around 30 million.[90] Conservation practices have proved so successful, in parts of their range, the white-tailed deer populations currently far exceed their cultural carrying capacity and the animal may be considered a nuisance.[91][92] A reduction in non-human predators (which normally cull young, sick, or infirm specimens) has undoubtedly contributed to locally abundant populations.

At high population densities, farmers can suffer economic damage by deer feeding on cash crops, especially in corn and orchards. It has become nearly impossible to grow some crops in some areas unless very burdensome deer-deterring measures are taken. Deer are excellent fence-jumpers, and their fear of motion and sounds meant to scare them away is soon dulled. Timber harvesting and forest clearance have historically resulted in increased deer population densities,[93][94] which in turn have slowed the rate of reforestation following logging in some areas. High densities of deer can have severe impacts on native plants and animals in parks and natural areas; however, deer browsing can also promote plant and animal diversity in some areas.[95][96] Deer can also cause substantial damage to landscape plants in suburban areas, leading to limited hunting or trapping to relocate or sterilize them. In parts of the Eastern US with high deer populations and fragmented woodlands, deer often wander into suburban and urban habitats that are less than ideal for the species.

Farming

In New Zealand, the United States, and Canada, white-tailed deer are kept as livestock, and are extensively as well as intensively farmed for their meat, antlers, and pelts. The industry for farming white-tailed deer has grown significantly in the past two decades. In recent years, sales of white-tailed deer has generated up to $44 million in revenue. They are a good business venture because they have a high fertility rate and long reproductive life, can tolerate all weather, can be raised on land that is not suitable for agriculture and offer many by-products that can be sold. The North-American white-tail deer industry is split between breeding farms and hunting ranches. While some people care about the by-products produced by the deer, some people just care for the pursuit of a hunt. In the United States alone, around 13-14 million hunting licenses are sold every year. This could be a very profitable industry, especially considering the invasiveness of this species and the rate they have shown they are able to reproduce. However, this industry could have great repercussions on the ecosystem the farms are placed in because overpopulation of deer causes damage to local fauna.[97]

Deer–vehicle collisions

Car with major damage from striking a white-tailed deer in Wisconsin

Motor vehicle collisions with deer are a serious problem in many parts of the animal's range, especially at night and during rutting season, causing injuries and fatalities among both deer and humans. Vehicular damage can be substantial in some cases.[98] In the United States, such collisions increased from 200,000 in 1980 to 500,000 in 1991.[99] By 2009, the insurance industry estimated 2.4 million deer–vehicle collisions had occurred over the past two years, estimating damage cost to be over 7 billion dollars and 300 human deaths. Despite the alarming high rate of these accidents, the effect on deer density is still quite low. Vehicle collisions of deer were monitored for two years in Virginia, and the collective annual mortality did not surpass 20% of the estimated deer population.[100]

Many techniques have been investigated to prevent roadside mortality. Fences or road under- or over- passes have been shown to decrease deer-vehicle collisions, but are expensive and difficult to implement on a large scale.[101][102] Roadside habitat modifications could also successfully decrease the number of collisions along roadways.[102] An essential procedure in understanding factors resulting in accidents is to quantify risks, which involves the driver's behavior in terms of safe speed and ability to observe the deer. Some have suggested that reducing speed limits during the winter months when deer density is exceptionally high would likely reduce deer-vehicle collisions, but this may be an impractical solution.[103]

Diseases

Another issue that exists with high deer density is the spreading of infectious diseases. Increased deer populations lead to increased transmission of tick-borne diseases, which pose a threat to human health, to livestock, and to other deer. Deer are the primary host and vector for the adult black-legged tick, which transmits the Lyme disease bacterium to humans.[104] Lyme disease is the most common vector-borne disease in the country with confirmed cases, according to 2019 CDC data, in virtually every state in the U.S. with the highest incidence levels in the states from Maine to Virginia, Minnesota, and Wisconsin. In 2019 the number of confirmed and probable cases totaled about 35,000.[105] Furthermore, the incidence of Lyme disease seems to reflect deer density in the eastern United States, which suggests a strong correlation. White-tailed deer also serve as intermediate hosts for many diseases that infect humans through ticks, such as Rocky Mountain spotted fever.[99][100] Newer evidence suggests the white-footed mouse is the most significant vector.[106][107]

SARS-CoV-2

Blood samples gathered by USDA researchers in 2021 also showed that 40% of sampled white-tailed deer demonstrated evidence of SARS-CoV-2 antibodies, with the highest percentages in Michigan, at 67%, and Pennsylvania, at 44%.[108] A later study by Penn State University and wildlife officials in Iowa showed that up to 80 percent of Iowa deer sampled from April 2020 through January 2021 had tested positive for active SARS-CoV-2 infection, rather than solely antibodies from prior infection. This data, confirmed by the National Veterinary Services Laboratory, alerted scientists to the possibility that white-tailed deer had become a natural reservoir for the coronavirus, serving as a potential "variant factory" for eventual retransmission back into humans.[109] An Ohio State University study further showed that humans had transmitted SARS-CoV-2 to white-tailed deer on at least six separate occasions and that deer possessed six mutations that were uncommon in humans at the time of the study.[110] Infected deer can shed virus via nasal secretions and feces for five to six days and frequently engage in activities conductive to viral spread, such as sniffing food intermingled with waste, nuzzling noses, polygamy, and the sharing of salt licks.[111] Canadian researchers uncovered an entirely new SARS-CoV-2 variant within a November–December 2021 study of Ontario white-tailed deer. The new COVID variant had also infected a person who had close contact with local deer, potentially marking the first instance of deer-to-human transmission.[112][113]

Cultural significance

Odocoileus virginianus skull, part of an exhibition on the cultural artifacts of the Cora people of Western Mexico.

In the U.S., the species is the state animal of Arkansas,[114] Georgia,[115] Illinois,[116] Michigan,[103] Mississippi,[117] Nebraska,[103] New Hampshire,[118] Ohio,[103] Pennsylvania, and South Carolina,[119] the game animal of Oklahoma, and the wildlife symbol of Wisconsin. The white-tailed deer is also the inspiration of the professional basketball team the Milwaukee Bucks. The profile of a white-tailed deer buck caps the coat of arms of Vermont and can be seen in the flag of Vermont and in stained glass at the Vermont State House. It is the national animal of Honduras and Costa Rica and the provincial animal of Canadian Saskatchewan and Finnish Pirkanmaa. It appears on the reverse side of the Costa Rican 1,000 colón note. The 1942 Disney film adaptation of Bambi, famously changed Bambi's species from the novel's roe deer into a white-tailed deer.

Climate change

Migration patterns

Climate change is affecting the white-tailed deer by changing their migration patterns and increasing their population size.[120][121] This species of deer is restricted from moving northward due to cold harsh winters.[122][120][123][124] Consequently, as climate change warms up the Earth, these deer are allowed to migrate further north which will result in the populations of the white-tailed deer increasing.[121][122][120] Between 1980 and 2000 in a study by Dawe and Boutin, presence of white-tailed deer in Alberta, Canada was driven primarily by changes in the climate.[121] Populations of white-tailed deer have also moved anywhere from 50 to 250 km north of the eastern Alberta study site. Another study by Kennedy-Slaney, Bowman, Walpole, and Pond found that if our CO2 emissions remained the same, global warming resulting from the increased greenhouse gases in our atmosphere will allow white-tailed deer to survive further and further north by 2100.[122] This study also showed that an increase in deer populations will affect populations of other species.

Food web

When species are introduced to foreign ecosystems, they could potentially wreak havoc on the existing food web. For example, when the deer moved north in Alberta, gray wolf populations increased.[121] This butterfly effect was also demonstrated in Yellowstone National Park when the rivers changed because wolves were re-introduced to the ecosystem. It is also possible that the increasing white-tailed deer populations could result in them becoming an invasive species for various plants in Alberta, Canada.[121]

Disease

However, there are also negative effects resulting from climate change. The species is vulnerable to diseases that are more prevalent in the summer.[120] Insects carrying these diseases are usually killed during the first snowfall. However, as time goes on, they will be able to live longer than they used to meaning the deer are at higher risk of getting sick. It is possible that this will increase the deers' mortality rate from disease.[125] Examples of these diseases are hemorrhagic disease (HD), epizootic hemorrhagic disease and bluetongue viruses, which are transmitted by biting midges.[122] The hotter summers, longer droughts, and more intense rains create the perfect environment for the midges to thrive in.[126] Ticks also thrive in warmer weather heat results in faster development in all of their life stages.[126] 18 different species of tick infest white-tailed deer in the United States alone. Ticks are parasitic to white-tailed deer transmit diseases causing irritation, anemia, and infections.[126]

See also

References

  1. ^ Gallina, S. and Lopez Arevalo, H. (2016). "Odocoileus virginianus". IUCN Red List of Threatened Species. 2016: e.T42394A22162580. doi:10.2305/IUCN.UK.2016-2.RLTS.T42394A22162580.en. Retrieved November 19, 2021.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ "IUCN Red List maps". Explore and discover Red List species ranges and observations.
  3. ^ "Flora and Fauna of Culebra". islaculebra.com. Retrieved July 12, 2021.{{cite web}}: CS1 maint: url-status (link)
  4. ^ "Establishment of the Invasive White-tailed Deer in Portland, Jamaica" (PDF). jamaicachm.org.jm. Archived from the original (PDF) on March 4, 2016. Retrieved September 30, 2014.
  5. ^ "White-tailed Deer (Odocoileus virginianus)". www.arthurgrosset.com.
  6. ^ Gavin, Thomas A.; May, Bernie (1988). "Taxonomic Status and Genetic Purity of Columbian White-Tailed Deer". The Journal of Wildlife Management. 52 (1): 1–10. doi:10.2307/3801048. JSTOR 3801048 – via JSTOR.
  7. ^ "White-tailed Deer Management". Texas Parks and Wildlife Department. Retrieved September 1, 2021.{{cite web}}: CS1 maint: url-status (link)
  8. ^ "Odocoileus virginianus". www.fs.fed.us. Retrieved June 8, 2020.
  9. ^ Bildstein, Keith L. (May 1983). "Why White-Tailed Deer Flag Their Tails". The American Naturalist. 121 (5): 709–715. doi:10.1086/284096. JSTOR 2460873. S2CID 83504795.
  10. ^ "New deer knowledge from the nation's largest deer research conference". National Deer Association. March 8, 2017. Retrieved February 8, 2021.
  11. ^ a b "North American White-tailed Deer" (PDF). www.whitetailsunlimited.com.
  12. ^ "White-tailed Deer - Odocoileus virginianus - NatureWorks". nhpbs.org.
  13. ^ "The Outdoor Life Book of World Records". Outdoor Life. September 18, 2007. Retrieved February 20, 2011.
  14. ^ "White-tailed deer and red brocket deer of Costa Rican Fauna". 1-costaricalink.com. Archived from the original on December 30, 2010. Retrieved February 20, 2011.
  15. ^ a b "ADW: Odocoileus virginianus: Information". Animaldiversity.ummz.umich.edu. February 13, 2011. Retrieved February 20, 2011.
  16. ^ Boitani, Luigi, Simon & Schuster's Guide to Mammals. Simon & Schuster/Touchstone Books (1984), ISBN 978-0-671-42805-1
  17. ^ [1] (2011). Archived June 20, 2012, at the Wayback Machine
  18. ^ VerCauteren, Kurt C. & Michael J. Pipas (2003). "A review of color vision in white-tailed deer". Wildlife Society Bulletin. 31 (3): 684–691.
  19. ^ FWC, Deer colorblind to orange, but if you glow ... Archived October 13, 2016, at the Wayback Machine, Wakulla.com, February 23, 2009. This is a report of
    G. H. Jacobs, J. F. Deegan, J. Neitz, B. P. Murphy, K. V. Miller and R. L. Marchinton, "Electrophysiological measurements of spectral mechanisms in the retinas of two cervids: white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama)", Journal of Comparative Physiology A, volume 174, number 5, pages 551–557, 1994.
  20. ^ Wislocki, G.B. (1954). "Antlers in Female Deer, with a Report of Three Cases in Odocoileus". Journal of Mammalogy. 35 (4): 486–495. doi:10.2307/1375571. JSTOR 1375571.
  21. ^ "Understanding Spike Buck Harvest" (PDF). Texas Parks and Wildlife Department. Retrieved February 20, 2011.
  22. ^ "The Management of Spike Bucks in a White-Tailed Deer Population" (PDF). Texas Parks and Wildlife Department. Retrieved February 20, 2011.
  23. ^ Christian Alejandro, Delfin Alfonso (2010). "Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications". Therya. 1 (1): 41–68. doi:10.12933/therya-10-5.
  24. ^ Folliott, P. F. and Gallina, S. (eds). (1981). Deer biology, habitat requirements and Management in Western North America. Instituto de Ecología, A. C., México, D.F
  25. ^ Brokx, P. A. (1984). White-tailed deer of South America. In: L.K. Halls (ed.), Ecology and Management of the White-Tailed Deer, pp. 525–546. Stackpole Company, Harrisburg, PA.
  26. ^ Erhardová-Kotrlá, B. (1971). The occurrence of Fascioloides magna (Bassi, 1875) in Czechoslovakia. Academia, Prague, 155 pp.
  27. ^ "Biolib-Czech Republic, Odocoileus virginianus;". Biolib.cz. Retrieved February 20, 2011.
  28. ^ "Valkohäntäpeuran kasvu pysähtyi". Natural Resources Institute of Finland. Retrieved June 20, 2020.
  29. ^ "White-tailed deer in Finland: From 5 to 100,000 in 80 years". YLE. July 8, 2018. Retrieved June 20, 2020.
  30. ^ "WHITE TAILED DEER FOOD HABITS AND PREFERENCES IN THE CROSS TIMBERS AND PRAIRIES REGION OF TEXAS". Retrieved November 16, 2015.
  31. ^ Pietz, Pamela J; Granfors, Diane A (2000). "White-tailed Deer (Odocoileus virginianus) Predation on Grassland Songbird Nestlings". The American Midland Naturalist. 144 (2): 419–422. doi:10.1674/0003-0031(2000)144[0419:WTDOVP]2.0.CO;2. S2CID 86132120.
  32. ^ Morera, Brayan; Montalvo, Víctor; Sáenz-Bolaños, Carolina; Cruz-Díaz, Juan C.; Fuller, Todd K.; Carrillo, Eduardo (July 21, 2022). "Osteophagia of sea turtle bones by white-tailed deer (Odocoileus virginianus) in Santa Rosa National Park, northwestern Costa Rica". Neotropical Biology and Conservation. 17 (2): 143–149. doi:10.3897/neotropical.17.e87274. eISSN 2236-3777. S2CID 250967137.
  33. ^ Mance, Dave, III (October 18, 2017). "Hearts and minds". The Chronicle. Barton, Vermont. pp. 23A. Retrieved October 27, 2017.
  34. ^ "White-tailed Deer Biology".
  35. ^ An evaluation of deer management options (PDF). Northeast Deer Technical Committee. 2009.
  36. ^ Nelson, Richard. Heart and Blood: Living with Deer in America, Chap. 1
  37. ^ "Rumination: The process of foregut fermentation".
  38. ^ "Ruminant Digestive System" (PDF).
  39. ^ Rickard, Tony (2002). Dairy Grazing Manual. MU Extension, University of Missouri-Columbia. pp. 7–8.
  40. ^ Kilham, Lawrence (1990). The American Crow and Common Raven Texas A&M University Press. ISBN 0890964661
  41. ^ Ferguson-Lees, J.; Christie, D. (2001). Raptors of the World. London: Christopher Helm. ISBN 978-0-7136-8026-3.
  42. ^ "Golden Eagle attacks White-tailed Deer at Nachusa Grasslands!". Ilbirds.com. Archived from the original on September 21, 2013. Retrieved September 20, 2013.
  43. ^ a b c d Smith, Winston Paul (November 6, 1991). "Odocoileus virginianus" (PDF). The American Society of Mammalogists. pp. 1–13. Archived from the original (PDF) on June 20, 2012. Retrieved September 22, 2011.
  44. ^ a b Mathews, N. E.; Porter, W. F. (1988). "Black bear predation on white-tailed deer neonates in the central Adirondacks". Canadian Journal of Zoology. 66 (5): 1241–1242. doi:10.1139/z88-179.
  45. ^ a b Ozoga, J. J.; Clute, R.K. (1988). "Mortality rates of marked and unmarked fawns". Journal of Wildlife Management. 52 (3): 549–551. doi:10.2307/3801608. JSTOR 3801608.
  46. ^ "Conservationreport.com". Conservationreport.com. Retrieved September 20, 2013.
  47. ^ Mulhollem, Jeff (December 17, 2001). "Penn State Study Shows Bears Are Major Predators Of Fawns". Retrieved March 25, 2017.
  48. ^ Labisky, Ronald F.; Boulay, Margaret C. (1998). "Behaviors of Bobcats Preying on White-tailed Deer in the Everglades". The American Midland Naturalist. 139 (2): 275–281. doi:10.1674/0003-0031(1998)139[0275:bobpow]2.0.co;2. S2CID 85199402.
  49. ^ "Wolves of Yellowstone - Yellowstone National Park (U.S. National Park Service)". Nps.gov. Retrieved September 20, 2013.
  50. ^ "Reintroduction of Wolves". Apnmag.com. Archived from the original on September 27, 2013. Retrieved September 20, 2013.
  51. ^ "Northeast Region, U.S. Fish and Wildlife Service - Gray Wolf". Fws.gov. Archived from the original on June 5, 2013. Retrieved September 20, 2013.
  52. ^ "Big Cat Tales - NYS Dept. of Environmental Conservation". Dec.ny.gov. Archived from the original on September 21, 2013. Retrieved September 20, 2013.
  53. ^ A. Dagg and A. Vos (1968). "Fast gaits of pecoran species". Journal of Zoology. 155 (4): 499–506. doi:10.1111/j.1469-7998.1968.tb03065.x. Retrieved November 26, 2022.
  54. ^ Augustine, DJ; Frelich, LE (1998). "Effects of White-Tailed Deer on Populations of an Understory Forb in Fragmented Deciduous Forests". Conservation Biology. 12 (5): 995–1004. doi:10.1046/j.1523-1739.1998.97248.x. S2CID 56087946.
  55. ^ Cote, S.D.; Rooney, T.P.; Tremblay, J.; Dussault, C.; Waller, D.M. (2004). "Ecological impacts of deer overabundance". Annual Review of Ecology, Evolution, and Systematics. 35: 113–47. doi:10.1146/annurev.ecolsys.35.021103.105725.
  56. ^ Rooney, T.P. (2009). "High white-tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground-layer vegetation". Plant Ecology. 202: 103–111. doi:10.1007/s11258-008-9489-8. S2CID 23469753.
  57. ^ McShea, W.J.; Rappole, J.H. (2000). "Managing the abundance and diversity of breeding bird populations through manipulation of deer populations". Conservation Biology. 14 (4): 1161–1170. doi:10.1046/j.1523-1739.2000.99210.x. S2CID 84327644.
  58. ^ Royo, Alejandro A.; Collins, Rachel; Adams, Mary Beth; Kirschbaum, Chad; Carson, Walter P. (2010). "Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity". Ecology. 91 (1): 93–105. doi:10.1890/08-1680.1. PMID 20380200. S2CID 23890288.
  59. ^ Lucas, Richard W.; Salguero-Gómez, Roberto; Cobb, David B.; Waring, Bonnie G.; Anderson, Frank; McShea, William J.; Casper, Brenda B. (2013). "White-tailed deer (Odocoileus virginianus) positively affect the growth of mature northern red oak (Quercus rubra) trees". Ecosphere. 4 (7): art84. doi:10.1890/ES13-00036.1.
  60. ^ McShea, W.J. (1997). The Science of Overabundance: Deer Ecology and Population Management. Washington, DC: Smithsonian Institution Press. pp. 201–223, 249–279. ISBN 978-1-58834-062-7.
  61. ^ Mladenoff, D.J.; Stearns, F. (1993). "Easter hemlock regeneration and deer browsing in the northern great lakes region: a re-examination and model simulation". Conservation Biology. 7 (4): 889–900. doi:10.1046/j.1523-1739.1993.740889.x.
  62. ^ Eschtruth, E.C.; J.J. Battles (2008). "Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore". Conservation Biology. 23 (2): 388–399. doi:10.1111/j.1523-1739.2008.01122.x. PMID 19183209. S2CID 17053305.
  63. ^ a b c d e "Decline of Deer Populations". DeerFriendly.com. Retrieved March 11, 2021.
  64. ^ a b Kammin, Laura. "Population Control". Living with White Tailed Deer in Illinois. University of Illinois Extension. Archived from the original on March 17, 2016. Retrieved May 27, 2016.
  65. ^ "2015–2016 White Tailed Deer Seasons and Bag Limits". Maryland Guide to Hunting & Trapping. Maryland Department of Natural Resources. Archived from the original on May 20, 2016. Retrieved May 27, 2016.
  66. ^ a b c The City of Bloomington. "Deer: Lethal Approaches". Archived from the original on June 9, 2017. Retrieved March 11, 2021.
  67. ^ The City of Bloomington. "Commonly Discussed Management Options". Archived from the original on June 8, 2016. Retrieved May 27, 2016.
  68. ^ The Humane Society of the United States. "Wildlife Fertility Control". Controlling Deer Populations Humanely. Retrieved May 27, 2016.
  69. ^ Kammin, Laura. "Other Control Methods". Living with White Tailed Deer in Illinois. Archived from the original on March 17, 2016. Retrieved May 27, 2016.
  70. ^ State of Connecticut. "White-Tailed Deer". Department of Energy and Environmental Protection. Retrieved May 27, 2016.
  71. ^ "Chronic Wasting Disease and Potential Transmission to Humans". Centers for Disease Control and Prevention, Emerging Infectious Diseases, 2004. Accessed March 11, 2021.
  72. ^ "Oh deer! Deer damage and what farmers can do about it". AgFuse - Agricultural Social Network.
  73. ^ Ditchkoff, S. S.; Lochmiller, Robert L.; Masters, Ronald E.; Hoofer, Steven R.; Van Den Bussche, Ronald A. (2001). "Major-Histocompatibility-Complex-Associated Variation In Secondary Sexual Traits Of White-Tailed Deer (Odocoileus virginianus): Evidence For Good-Genes Advertisement". Evolution. 55 (3): 616–625. doi:10.1111/j.0014-3820.2001.tb00794.x. PMID 11327168. S2CID 10418779.
  74. ^ "Forest Foods Deer Eat," Department of Natural Resources website". Department of Natural Resources — State of Michigan. 2008. Retrieved February 18, 2011.
  75. ^ "Mass Audubon". Mass Audubon (Protecting the Nature of Massachusetts). Retrieved January 20, 2016.
  76. ^ Warren, R. J.; et al. (1978). "Reproductive behaviour of captive white-tailed deer". Animal Behaviour. 26: 179–183. doi:10.1016/0003-3472(78)90017-9. S2CID 53148507.
  77. ^ David M. Shackleton; Royal British Columbia Museum (1999). Hoofed Mammals of British Columbia. UBC Press. ISBN 978-0-7748-0728-9.
  78. ^ "Deer Fact Sheet | Georgia DNR - Wildlife Resources Division". September 5, 2015. Archived from the original on September 5, 2015.
  79. ^ a b c Atkeson, Thomas D.; Marchinton, R. Larry; Miller, Karl V. (1988). "Vocalizations of White-tailed Deer". American Midland Naturalist. 120 (1): 194–200. doi:10.2307/2425899. JSTOR 2425899.
  80. ^ "Whitetail Buck Scrapes". bowsite.com.
  81. ^ Alexy, Karen J.; Gassett, Jonathan W.; Osborn, David A.; Miller, Karl V. (2001). "White-Tailed Deer Rubs and Scrapes: Spatial, Temporal and Physical Characteristics and Social Role". Wildlife Society Bulletin. 29 (3): 873–878.
  82. ^ Osborn, David A., et al. "Morphology of the white-tailed deer tarsal gland." Acta Theriologica 45.1 (2000): 117-122.
  83. ^ a b Kile, Terry L.; Marchinton, R. Larry (1977). "White-Tailed Deer Rubs and Scrapes: Spatial, Temporal and Physical Characteristics and Social Role". American Midland Naturalist. 97 (2): 257–266. doi:10.2307/2425092. JSTOR 2425092.
  84. ^ Benson, Elizabeth P. "Deer." In David Carrasco (ed). The Oxford Encyclopedia of Mesoamerican Cultures. : Oxford University Press, 2001.
  85. ^ Aidoo, Kofi E.; Haworth, Richard J. P. (1995). "Nutritional and chemical composition of farmed venison". Journal of Human Nutrition and Dietetics. 8 (6): 441–446. doi:10.1111/j.1365-277X.1995.tb00339.x. ISSN 0952-3871.
  86. ^ a b Kip Adams. "Hunter Density Across the U.S.". National Deer Association, January 14, 2013. Accessed March 12, 2021.
  87. ^ Boddington, Craig (August 29, 2022). "Best Old and New Deer Cartridges". www.rifleshooter.com.
  88. ^ Richard E. McCabe and Thomas R. McCabe (1984). Of Slings and Arrows: An Historical Retrospective. In Lowell K. Halls (ed.), White-tailed Deer Ecology and Management (Washington: Wildlife Management Institute).
  89. ^ Joel M. Lerner, "Right plants (and fences) can keep deer at bay" Archived October 19, 2013, at the Wayback Machine, The Columbus Dispatch, July 21, 2009. Accessed December 27, 2012.
  90. ^ Mark Johnson, Deer eating away at forests nationwide, The Associated Press, January 18, 2005. Accessed December 27, 2012.
  91. ^ Sinclair, A. R. E. (1997). Carrying capacity and the overabundance of deer: a framework for management.
  92. ^ Mcshea, W. J., Underwood, H. B., Rappole, J. H. (1997). The Science Of Overabundance: Deer Ecology and Population Management. WA: Smithsonian Institution Press. pp.380–394.
  93. ^ Mattfeld, George F. (1984). Northeastern hardwood and spruce-fir forests. In: Halls, Lowell K., ed. White-tailed deer: ecology and management. Harrisburg, PA: Stackpole Books: 305–330.
  94. ^ Whitney, G.G. (1990). "The history and status of the hemlock-northern hardwood forests of the Allegheny Plateau". Journal of Ecology. 78 (2): 443–458. doi:10.2307/2261123. JSTOR 2261123.
  95. ^ Côté, SD; Rooney, TP; Tremblay, JP; Dussault, C; Waller, DM (2004). "Ecological impacts of deer overabundance". Annual Review of Ecology, Evolution, and Systematics. 35: 113–147. doi:10.1146/annurev.ecolsys.35.021103.105725.
  96. ^ Greenwald, KR; Petit, LJ; Waite, TA (2008). "Indirect effects of a keystone herbivore elevate local animal diversity". The Journal of Wildlife Management. 72 (6): 1318–1321. doi:10.2193/2007-491. S2CID 85626175.
  97. ^ Brooks, James W. (October 26, 2015). "White-tailed Deer Production". PennState Extension.
  98. ^ Warning to Motorists: Fall Is Peak Season for Deer-Vehicle Collisions, Insurance Information Institute, October 1, 2009
  99. ^ a b Côté, Steeve D.; Rooney, Thomas P.; Tremblay, Jean-Pierre; Dussault, Christian; Waller, Donald M. (2004). "Ecological Impacts of Deer Overabundance". Annual Review of Ecology, Evolution, and Systematics. 35 (1): 113–147. doi:10.1146/annurev.ecolsys.35.021103.105725.
  100. ^ a b McShea, WJ (2012). "Ecology and management of white-tailed deer in a changing world". Annals of the New York Academy of Sciences. 1249 (1): 45–56. Bibcode:2012NYASA1249...45M. doi:10.1111/j.1749-6632.2011.06376.x. PMID 22268688. S2CID 2895403.
  101. ^ Meisingset, Erling L; Loe, Leif E; Brekkum, Øystein; Mysterud, Atle (2014). "Targeting mitigation efforts: The role of speed limit and road edge clearance for deer–vehicle collisions". The Journal of Wildlife Management. 78 (4): 679–688. doi:10.1002/jwmg.712.
  102. ^ a b Found, Rob; Boyce, Mark S. (2011). "Predicting deer–vehicle collisions in an urban area". Journal of Environmental Management. 92 (10): 2486–2493. doi:10.1016/j.jenvman.2011.05.010. PMID 21700381.
  103. ^ a b c d Shearer, Benjamin F. & Barbara S. Shearer. State Names, Seals, Flags, and Symbols: A Historical Guide. Westport, CT: Greenwood, 2002. 234.
  104. ^ Tackling Ticks That Spread Lyme Disease, Agricultural Research magazine, March 1998
  105. ^ "Lyme Disease Maps: Most Recent Year | Lyme Disease | CDC". www.cdc.gov. May 20, 2021. Retrieved February 9, 2022.
  106. ^ Levi, T.; Keesing, F.; Oggenfuss, K.; Ostfeld, R. S. (2015). "Accelerated phenology of blacklegged ticks under climate warming". Philosophical Transactions of the Royal Society B: Biological Sciences. 370 (1665): 20130556. doi:10.1098/rstb.2013.0556. PMC 4342961. PMID 25688016.
  107. ^ "Tick control program reveals high level of infection in white-footed mice". phys.org.
  108. ^ Fine Maron, Dina (August 2, 2021). "Wild U.S. deer found with coronavirus antibodies". National Geographic. Archived from the original on August 2, 2021. Retrieved August 3, 2021.
  109. ^ Jacobs, Andrew (November 2, 2021). "Widespread Coronavirus Infection Found in Iowa Deer, New Study Says". The New York Times. Archived from the original on November 2, 2021. Retrieved November 5, 2021.
  110. ^ Bush, Evan (January 2, 2022). "Covid is rampant among deer, research shows". NBC News. Archived from the original on January 2, 2022. Retrieved January 2, 2022.
  111. ^ Anthes, Emily; Imbler, Sabrina (February 7, 2022). "Is the Coronavirus in Your Backyard?". The New York Times. Archived from the original on February 7, 2022. Retrieved February 7, 2022.
  112. ^ Miranda, Gabriela (March 3, 2022). "New COVID variant found in deer shows signs of possible deer-to-human transmission". USA Today. Archived from the original on March 5, 2022. Retrieved March 5, 2022.
  113. ^ Pickering, Bradley; Lung, Oliver; Maguire, Finlay; Kruczkiewicz, Peter; Kotwa, Jonathon; Buchanan, Tore; Gagnier, Marianne; Guthrie, Jennifer; Jardine, Claire; Marchand-Austin, Alex; Massé, Ariane; McClinchey, Heather; Nirmalarajah, Kuganya; Aftanas, Patryk; Blais-Savoie, Juliette; Chee, Hsien-Yao; Chien, Emily; Yim, Winfield; Banete, Andra; Griffin, Bryan; Yip, Lily; Goolia, Melissa; Suderman, Matthew; Pinette, Mathieu; Smith, Greg; Sullivan, Daniel; Rudar, Josip; Vernygora, Oksana; Adey, Elizabeth; Nebrokski, Michelle; Goyette, Guillaume; Finzi, Andrés; Laroche, Geneviève; Ariana, Ardeshir; Vahkal, Brett; Côté, Marceline; McGeer, Allison; Nituch, Larissa; Mubareka, Samira; Bowman, Jeff (November 10, 2022). "Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission". Nature Microbiology. 7 (12): 2011–2024. doi:10.1038/s41564-022-01268-9. PMC 9712111. PMID 36357713. S2CID 253458102.
  114. ^ "State Symbols". The Traveler's Guide To Arkansas For Kids. Arkansas Secretary of State. Retrieved September 2, 2011.
  115. ^ Allen, David G. (May 19, 2015). "White-Tailed Deer Named State Mammal of Georgia". State of Georgia. Archived from the original on January 29, 2016. Retrieved January 23, 2016.
  116. ^ "List of State Mammals | State Symbols USA". statesymbolsusa.org. April 23, 2014. Retrieved January 18, 2021.
  117. ^ Shearer, Benjamin F. & Barbara S. Shearer. State Names, Seals, Flags, and Symbols: A Historical Guide. Westport, CT: Greenwood, 2002. 235.
  118. ^ "White-tailed Deer State Animal | State Symbols USA". statesymbolsusa.org. September 19, 2014. Retrieved October 17, 2019.
  119. ^ "White-tailed Deer State Animal | State Symbols USA". statesymbolsusa.org. September 27, 2014. Retrieved October 17, 2019.
  120. ^ a b c d Hushaw, Jennifer; Balch, Si; Walberg, Eric (March 31, 2016). "Part II: Species Highlights" (PDF). Climate Change and Wildlife.
  121. ^ a b c d e Dawe, Kimberly; Boutin, Stan (August 18, 2016). "Climate change is the primary driver of white‐tailed deer (Odocoileus virginianus) range expansion at the northern extent of its range; land use is secondary". Ecology and Evolution. 6 (18): 6435–6451. doi:10.1002/ece3.2316. PMC 5058518. PMID 27777720.
  122. ^ a b c d Kennedy-Slaney, Liam; Bowman, Jeff; Walpole, Aaron; Pond, Bruce (June 2018). "Northward bound: The distribution of white-tailed deer in Ontario under a changing climate". Wildlife Research. 45 (3): 220–228. doi:10.1071/WR17106. S2CID 91070436.
  123. ^ Post, Eric; Stenseth, Nils (July 1998). "Large-Scale Climatic Fluctuation and Population Dynamics of Moose and White-Tailed Deer". Journal of Animal Ecology. 67 (4): 537–543. doi:10.1046/j.1365-2656.1998.00216.x. JSTOR 2647275.
  124. ^ LeDee, Olivia; Hagell, Suzanne; Martin, Karl; MacFarland, David; Meyer, Micheal; Paulios, Andrew; Ribic, Christine; Sample, David; Van Deelen, Timothy (2013). "A Preliminary Assessment" (PDF). Climate Change Impacts on Wisconsin's Wildlife. Archived from the original (PDF) on October 20, 2020. Retrieved April 19, 2019.
  125. ^ Hoving, Christopher; Lee, Yu; Badra, Peter; Klatt, Brian (2013). Changing Climate, Changing Wildlife: A Vulnerability Assessment of 400 Species of Greatest Conservation Need and Game Species in Michigan (PDF).
  126. ^ a b c "Will Climate Change Change Deer? (Deer-Forest Study)". Deer-Forest Study (Penn State University). Retrieved April 19, 2019.
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

White-tailed deer: Brief Summary

provided by wikipedia EN
Male O. v. nelsoni with antlers in velvet

The white-tailed deer (Odocoileus virginianus), also known commonly as the whitetail and the Virginia deer, is a medium-sized species of deer native to North America, Central America, and South America as far south as Peru and Bolivia, where it predominately inhabits high mountain terrains of the Andes. It has also been introduced to New Zealand, all the Greater Antilles in the Caribbean (Cuba, Jamaica, Hispaniola, and Puerto Rico), and some countries in Europe, such as the Czech Republic, Finland, France, Germany, Romania and Serbia. In the Americas, it is the most widely distributed wild ungulate.

In North America, the species is widely distributed east of the Rocky Mountains as well as in southwestern Arizona and most of Mexico, except Lower California. It is mostly displaced by the black-tailed or mule deer (Odocoileus hemionus) from that point west except for mixed deciduous riparian corridors, river valley bottomlands, and lower foothills of the northern Rocky Mountain region from Wyoming west to eastern Washington and eastern Oregon and north to northeastern British Columbia and southern Yukon, including in the Montana valley and foothill grasslands. The westernmost population of the species, known as the Columbian white-tailed deer, was once widespread in the mixed forests along the Willamette and Cowlitz River valleys of western Oregon and southwestern Washington, but current numbers are considerably reduced, and it is classified as near-threatened. This population is separated from other white-tailed deer populations.

Texas is home to the most white-tailed deer of any U.S. state or Canadian province, with an estimated population of 5.3 million. High populations of white-tailed deer exist in the Edwards Plateau of central Texas. Michigan, Minnesota, Iowa, Mississippi, Missouri, New Jersey, Illinois, Wisconsin, Maryland, New York, North Dakota, Ohio, and Indiana also boast high deer densities. The conversion of land adjacent to the Canadian Rockies to agriculture use and partial clear-cutting of coniferous trees, resulting in widespread deciduous vegetation, has been favorable to the white-tailed deer and has pushed its distribution to as far north as Yukon. Populations of deer around the Great Lakes have expanded their range northwards, also due to conversion of land to agricultural use, with local caribou, elk, and moose populations declining.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Blankavosta cervo ( Esperanto )

provided by wikipedia EO

La blankavosta cervo (Odocoileus virginianus), ankaŭ konata kiel Virginia cervo, estas mezgranda cervo trovebla en la plej granda parto de Usono (krom Alasko), suda Kanado, Meksiko, Centra Ameriko kaj Sud-Ameriko tiel sude ĝis Peruo. Ĝi estas plej ofte trovata oriente de la Kordilero. Ĝi tamen mankas en la plej granda parto de la okcidenta Usono, kvankam iuj ankoraŭ vivas en la norda Rok-Montaro de okcidenta Usono kaj Kanado kaj en la Valo Williamette kaj sur la Kolumbia delto de Oregono kaj sudokcidenta Vaŝingtonio. Iuj gregoj de blank-vostaj cervoj ankoraŭ loĝas en la montaj arbaroj de Arizono, Nov-Meksiko, kaj okcidenta Teksaso.

Hunter with buck.jpg

En 1934 blankavosta cervo estis transportita ankaŭ al Finnlando, kie ĝi nun vivas en la suda parto de la lando.

La neotropisa cervolaŭsmuŝo, Lipoptena mazamae, estas komuna ektoparazito de la Blankavosta cervo en sudorienta Usono.

Vidu ankaŭ

Arbaroj de norda-centra Rokmontaro
Grandfolia fago
Malaltebenaĵaj arbaroj de Sankt-Laŭrenca Golfo
Malaltebenaĵaj arbaroj oriente de Grandaj Lagoj
Majaa Biosfera Rezervejo
Novanglaj-akadiaj arbaroj
license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Blankavosta cervo: Brief Summary ( Esperanto )

provided by wikipedia EO

La blankavosta cervo (Odocoileus virginianus), ankaŭ konata kiel Virginia cervo, estas mezgranda cervo trovebla en la plej granda parto de Usono (krom Alasko), suda Kanado, Meksiko, Centra Ameriko kaj Sud-Ameriko tiel sude ĝis Peruo. Ĝi estas plej ofte trovata oriente de la Kordilero. Ĝi tamen mankas en la plej granda parto de la okcidenta Usono, kvankam iuj ankoraŭ vivas en la norda Rok-Montaro de okcidenta Usono kaj Kanado kaj en la Valo Williamette kaj sur la Kolumbia delto de Oregono kaj sudokcidenta Vaŝingtonio. Iuj gregoj de blank-vostaj cervoj ankoraŭ loĝas en la montaj arbaroj de Arizono, Nov-Meksiko, kaj okcidenta Teksaso.

Hunter with buck.jpg

En 1934 blankavosta cervo estis transportita ankaŭ al Finnlando, kie ĝi nun vivas en la suda parto de la lando.

La neotropisa cervolaŭsmuŝo, Lipoptena mazamae, estas komuna ektoparazito de la Blankavosta cervo en sudorienta Usono.

license
cc-by-sa-3.0
copyright
Vikipedio aŭtoroj kaj redaktantoj
original
visit source
partner site
wikipedia EO

Odocoileus virginianus ( Spanish; Castilian )

provided by wikipedia ES

El venado cola blanca, capasurí,[2]ciervo cola blanca, ciervo de Virginia, venado de Virginia o venado gris (Odocoileus virginianus) es una especie de mamífero artiodáctilo de la familia de los cérvidos. Vive en diferentes ecosistemas de América, desde los canadienses, en la región subártica, pasando por los bosques secos de las laderas montañosas de México, las selvas húmedas tropicales de América Central y del Sur, hasta los bosques secos ecuatoriales del norte del Perú y otras áreas boscosas sudamericanas.[3]​ Se alimenta de arbustos y hierbas. Es muy perseguido por los cazadores en toda su área de distribución, pero no se considera en riesgo. En algunas regiones sus poblaciones han aumentado debido a la escasez de depredadores. El 28 de junio de 1993 el Congreso Nacional de la República de Honduras instituyó al venado de cola blanca como símbolo nacional de la fauna de este país.[4]​ Así mismo, Odocoileus virginianus fue declarado símbolo patrio de la República de Costa Rica el 2 de mayo de 1995.

Descripción

 src=
Cría.

El manto es rojizo en primavera y verano, y de gris a marrón en invierno. Así mismo, en las zonas tropicales, en las tierras bajas y cálidas, es de coloración ocrácea (amarillenta) o rojiza, y en las tierras altas y frías es de color pardo grisáceo.[5]​ La punta de la cola es blanca, lo que le sirve para batirla como señal de alarma.

Presenta dimorfismo sexual. En Norteamérica los machos pesan entre 60 y 160 kg, y las hembras entre 40 y 105 kg. Incluida la cola, miden entre 1,60 y 2,20 m de largo, y tienen una alzada de entre 80 cm y 1 m.[6][7]​ Los ejemplares tropicales son de menor tamaño, pesan menos y generalmente no sobrepasan los 60 kg.[8][9]

Los machos presentan cornamentas ramificadas e inclinadas hacia atrás, que de adultos y según la edad alcanzan entre 8 y 64 cm desde la base y se renuevan cada año, en el invierno, después del apareamiento.

Comportamiento

Las hembras están en celo durante la segunda mitad del otoño. Los machos compiten por ellas y se enfrentan en combates uno contra otro. Un macho copula con cuantas hembras le es posible. Tras siete meses de gestación[10]​ nacen desde una hasta tres crías.[11]

El territorio del venado de Virginia varía entre 59 y 804 hectáreas.[12]​ Posee glándulas odoríferas alrededor de los ojos, en la frente y en las patas, las que conjuntamente con la orina utiliza para comunicarse, marcar el territorio, atraer al sexo opuesto y como señal de peligro.[7][11]​ Cuando se siente amenazado, corre con la cola levantada para ponerse a cubierto, se cree que el destello blanco actúa como señal visual de alarma para otros ciervos.[7]

De hábitos crepusculares, los ciervos de cola blanca pueden encontrarse en grupos desde dos hasta quince individuos. Las unidades sociales básicas son la hembra-cría, los grupos de machos juveniles y los machos solitarios en la época reproductiva.[13]

Alimentación

El venado de cola blanca es rumiante y herbívoro. Busca entre la vegetación para consumir hojas, brotes, frutos y semillas, así como setas: una razón de su capacidad de adaptación a diferentes hábitats boscosos (la diversidad de materias vegetales de las que puede alimentarse). Además durante algunas épocas del año pueden incluir en su dieta alimentos como las bayas de árboles pequeños y arbustos, bellotas, hongos, y algunos tipos de frutas dulces que estén disponibles.

Subespecies

Han sido reconocidas treinta y ocho subespecies,[14]​ entre las cuales están:

  • Odocoileus virginianus borealis (Miller 1900) – este de Canadá y noreste de Estados Unidos.
  • Odocoileus virginianus dacotensis (Goldman & Kellog 1940)Dakota del Norte y del Sur, Nebraska, Wyoming y suroeste de Canadá.
  • Odocoileus virginianus virginianus (Zimmermann, 1780)Virginia.
  • Odocoileus virginianus macrourus (Rafinesque 1817)Kansas.
  • Odocoileus virginianus mcilhennyi (Miller 1928) – isla Avery, Luisiana.
  • Odocoileus virginianus taurinsulae (Goldman & Kellog 1940) – isla de Bull, Carolina del Sur.
  • Odocoileus virginianus osceola (Banqs 1896) – costas de Florida.
  • Odocoileus virginianus seminolus (Goldman & Kellog 1940) – interior de Florida.
  • Odocoileus virginianus clavium (Barbour & G. M. Allen, 1922)cayos de la Florida y Cuba.
  • Odocoileus virginianus ochrourus (V. Bailey 1932)Montañas Rocosas.
  • Odocoileus virginianus leucurus (Douglas, 1829)río Columbia, estados de Oregón y Washington.
  • Odocoileus virginianus couesi (Coues & Yarrow 1875)Arizona, sureste de California, Nuevo México y noroeste de México.
  • Odocoileus virginianus texanus (Mearns 1898)Texas, Oklahoma, sureste de Colorado y Nuevo México.
  • Odocoileus virginianus carminis (Goldman & Kellog 1940) – norte de México.
  • Odocoileus virginianus miquihuanensis (Goldman & Kellog 1940) – centro de México.
  • Odocoileus virginianus mexicanus (Gmelin 1788)Puebla y Morelos, México
  • Odocoileus virginianus acapulcensis (Caton 1877) – sur de México.
  • Odocoileus virginianus veraecrucis (Goldman & Kellog 1940) – oriente de México.
  • Odocoileus virginianus thomasi (Merriam 1898)Oaxaca y Chiapas, México.
  • Odocoileus virginianus yucatanensis (Hays 1872)Yucatán, México.
  • Odocoileus virginianus nelson (Merriam 1898)Guatemala.
  • Odocoileus virginianus truei (Merriam 1898)Centroamérica.
  • Odocoileus virginianus chiriquensis (J.A. Allen 1910)Panamá.
 src=
Hembra de O. v. rothschildi.
  • Odocoileus virginianus rothschildi (Thomas 1902)Coiba, Panamá.
  • Odocoileus virginianus curassavicus (Hummelink, 1940) – valles y llanuras del norte de Colombia, y Curazao.
  • Odocoileus virginianus goudotii (Gay & Gervais 1849)zona andina de Colombia y Venezuela.
  • Odocoileus virginianus margaritae (Osgood 1910)isla de Margarita, Venezuela.
  • Odocoileus virginianus apurensis (Brokx, 1972)llanos colombo-venezolanos y noroeste de la Amazonia.
  • Odocoileus virginianus ustus (Trouessart, 1913) – zona andina de Ecuador y Perú, sur de Colombia.
  • Odocoileus virginianus tropicalis (Cabrera 1918) – región del Pacífico en Colombia y Perú.
  • Odocoileus virginianus peruvianus (Gray 1874)Andes del Perú.
  • Odocoileus virginianus gymnotis (Wergmann 1833) – Venezuela, Guyana y Surinam.
  • Odocoileus virginianus cariacou (Boddaert 1784)Guayana Francesa y norte de Brasil.

Las subespecies suramericanas se distinguen claramente de las norteamericanas por divergencias genéticas, cornamenta menor, ausencia de glándula metatarsal y menor peso y tamaño corporal.[15]​ Por ello algunos expertos han propuesto clasificarlas en dos especies diferentes y dar a la especie suramericana el nombre de Odocoileus cariacou Boddaert.[9][16]

Como se ha encontrado que pese a la menor área geográfica que ocupan, la diferenciación interna entre sí de los venados venezolanos excede la del conjunto de las subespecies de venados norteamericanos, se ha propuesto incluso que deberían separarse varias especies suramericanas y especialmente Odocileus margaritae Osgood, notoriamente más pequeña y en peligro de extinción.[17]

Se ha propuesto, además, clasificar al venado de páramo de la cordillera de Mérida (Venezuela) como Odocoileus lasiotis (Osgood 1910), en todo caso diferente de la subespecie Odocileus virginianus goudotii de los Andes colombianos, dentro de la cual se encuentra clasificado, y de la que se distingue por tener un pelaje más largo y suelto, con coloración gris oscura con tonalidades pardas, y por no presentar hundimiento en la región frontal del rostro, seguido por una abrupta elevación de la caja craneana, característica de Odocileus virginianus goudotii y Odocileus virginianus margaritae.[17][18][19]

También se ha propuesto clasificar las catorce subespecies de venado de cola blanca de México en tres grupos con base en la distribución geográfica y los diferentes tipos de vegetación,[20]​ los cuales son:

  1. Ecorregión I Noreste, que incluye a O. v. texanus, O. v. miquihuanensis y O. v. carminis, habitando principalmente los matorrales xerófitos.
  2. Ecorregión II Pacífico y Central, que incluye a O. v. couesi, O. v. mexicanus, O. v. sinaloae, O. v. oaxacensis y O. v. acapulcensis, las cuales ocurren principalmente en bosques templados de pino-encino y selvas tropicales secas.
  3. Ecorregión III Golfo y Sureste, que incluye a O. v. veraecrucis, O. v. thomasi, O. v. toltecus, O. v. nelsoni, O. v. truei y O. v. yucatanensis, asociadas principalmente con bosques tropicales lluviosos y subcaducifolios.

Además durante algunas épocas del año pueden incluir en su dieta alimentos como las bayas de los árboles pequeños y arbustos, bellotas, hongos y algunos tipos de frutas que estén disponibles.

En la cultura popular

A partir del año 2011, el Venado Cola Blanca aparece retratado en el reverso de los billetes de ₡1.000 de Costa Rica, país donde fue declarado Símbolo Nacional.

Referencias

  1. Gallina, S. & López Arévalo, H. (2008). «Odocoileus virginianus». Lista Roja de especies amenazadas de la UICN 2013.1 (en inglés). ISSN 2307-8235. Consultado el 24 de septiembre de 2013.
  2. http://ecobiosis.museocostarica.go.cr/recursos/zoologia/biologiacultural/venado/el_venado.aspx
  3. López-Arévalo, Hugo y Andrés González-Hernández 2006 Venado sabanero Odocoileus virginianus; Libro rojo de Mamíferos de Colombia: 114.
  4. Lo mejor de la fauna de Honduras, otro símbolo nacional. La Prensa, 15 de agosto de 2013.
  5. Cabrera A. 1918. "Sobre los Odocoileus de Colombia"; "Boletín de la Real Sociedad Española de Historia Natural" 18: 300-307.
  6. ADW: Odocoileus virginianus: Information
  7. a b c Michels, T.R., "The Whitetail Addicts Manual", Creative Publishing 2007, ISBN 978-1-58923-344-7
  8. White-tailed deer and red brocket deer of Costa Rican Fauna
  9. a b González-H. A. (2001) "Análisis de la variabilidad fenotípica de una población de Odocoileus virginianus (Zimmermann, 1780) ante las condiciones ambientales del parque nacional Natural el Tuparro, Departamento del Vichada, Colombia". Bogotá: Universidad Nacional.
  10. Brokx P.A. 1984. "South America" En:Halls Lowell K.(ed) White-Tailed Deer: Ecology and management: 525-546.
  11. a b Halls, Lowell K. 1984. White-tailed Deer: Ecology and Management: A Wildlife Management Institute Book, Stackpole Books.
  12. Matallana C. L. 2001. Propuesta de corredores biológicos entre el parque nacional Chingaza y el parque nacional Natural Sumapaz (Cordillera Oriental Colombia).Bogotá, Colombia.
  13. Ojasti J. 1996. Utilización de la fauna Silvestre en América Latina: situación y perspectivas para un manejo sostenible Guía FAO Conservación 25: 248. Organización de las Naciones Unidad para la Agricultura y la Alimentación. Roma, Italia.
  14. Baker, Rollin A. 1984. "Origin, classification, and distribution". En: Halls, Lowell K. (ed.) White-tailed deer: ecology and management: 1-18.
  15. Smith M. H., Branan W. V., Marchinton R. L., Johns P. E., Wooten M. C. 1986. "Genetic and morphologic comparisons of Red Brocket, Brown Brocket, and White Tailed-Deer"; Journal of Mammalogy 67 (1): 103-111.
  16. Méndez-Arocha, J. L. 1955. "El nombre científico de los venados caramudos o caramerudos venezolanos"; Memoria de la Sociedad de Ciencias Naturales La Salle 15: 133-136.
  17. a b Molinari, Jesús 2007. "Variación geográfica en los venados de cola blanca (Cervidae, Odocoileus) de Venezuela, con énfasis en O. margaritae, la especie enana de la Isla de Margarita"; Memoria de la Fundación La Salle de Ciencias Naturales 167: 29-72.
  18. Molina, Misael 1996. "Revisión taxonómica de los Odocoileus (Mammalia, Artiodactyla, Cervidae) de Venezuela, con aportes a la historia natural y conservación del venado de páramo". Tesis de Licenciatura en Biología, Universidad de Los Andes, Mérida, Venezuela.
  19. Molina, M. Y J. Molinari 1999. "Taxonomy of Venezuelan white-tailed deer (Odocoileus, Cervidae, Mammalia), based on cranial and mandibular traits"; Canadian Journal of Zoology 77: 632-645.
  20. Mandujano, S., C. A. Delfín-Alfonso y S. Gallina. 2010. Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications. Therya 1: 41-68.
  • Gallina, C., S. Mandujano, J. Bello, H. López-Fernández y M. Weber. (2010.). Neotropical cervidology: Biology and medicine of Latin American deer.
  • White-tailed deer Odocoileus virginianus (Zimmermann, 1780). Pp. 101-118, In: Duarte, J. M. B. and González. S. (eds.), . Jaboticabal, Brazil: Funep and Gland, Switzerland, IUCN. 393 pp.

Véase también

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Odocoileus virginianus: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

El venado cola blanca, capasurí,​ ciervo cola blanca, ciervo de Virginia, venado de Virginia o venado gris (Odocoileus virginianus) es una especie de mamífero artiodáctilo de la familia de los cérvidos. Vive en diferentes ecosistemas de América, desde los canadienses, en la región subártica, pasando por los bosques secos de las laderas montañosas de México, las selvas húmedas tropicales de América Central y del Sur, hasta los bosques secos ecuatoriales del norte del Perú y otras áreas boscosas sudamericanas.​ Se alimenta de arbustos y hierbas. Es muy perseguido por los cazadores en toda su área de distribución, pero no se considera en riesgo. En algunas regiones sus poblaciones han aumentado debido a la escasez de depredadores. El 28 de junio de 1993 el Congreso Nacional de la República de Honduras instituyó al venado de cola blanca como símbolo nacional de la fauna de este país.​ Así mismo, Odocoileus virginianus fue declarado símbolo patrio de la República de Costa Rica el 2 de mayo de 1995.

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Valgesaba-pampahirv ( Estonian )

provided by wikipedia ET

Valgesaba-pampahirv (Odocoileus virginianus) on hirvlaste sugukonda kuuluv sõraline.

Valgesaba-pampahirv, keda kutsutakse ka Virginia pampahirveks, pärineb Põhja-Ameerikast. Ta on levinud Põhja-ja Kesk-Ameerikas ning kohati Lõuna-Ameerikas. Võõrliigina elab Kariibi mere saartel, kuid ka mõnel pool Euroopas, sealhulgas Soomes ja Uus-Meremaal. Valgesaba-pampahirved introdutseeriti 1934. aastal Soome, mille lõunapoolses osas on neist kujunenud suur populatsioon. Lisaks leidub neid peale loomaaedade ja hirvefarmide väikeste asurkondadena Tšehhis, Serbias ja Horvaatias.[1][2]

Valgesaba-pampahirv on lähisuguluses mustsaba-hirvega.[3]

Nende keskmine eluiga on looduses 2–3 aastat. Harva elavad nad looduses üle 10 aasta. Vangistuses võivad nad elada kuni 20 aastat.[4]

Nad elavad perekondlikes seltsingutes ning talvel suuremates, kuni 25-liikmelistes karjades.

Valgesaba-pampahirved on väga kohatruud ning sageli võib neid näha suurematel lagendikel ja metsaservadel, mille läheduses on põllulapid.

Ohu korral valgesaba-pampahirved enamasti põgenevad, kuid nad võivad ka hoiatavalt maapinda trampida ja norsatavaid hääli teha. Joostes hoiavad nad saba püsti ning sabapiirkonna valge "sabapeegel" muutub nähtavaks.[2]

Välimus

Valgesaba-pampahirvel on punakaspruun karvastik. Kõht, kael, kõrvade sisemus kui ka silmade ning koonuümbrus on valge. Nad on pisut suuremad kui kabehirved ja natuke väiksemad kui punahirved. Nende saba ülapool on pruunikas, allosa aga valge.

Nende sarvedel on 3–4 krooni ning igal aastal detsembris heidetakse sarved maha.

Nende sõrgade jälg on pikk ja kitsas ning sarnaneb kabehirve jäljega. Sammupikkus on umbes 90 cm ja galopis võib jälgede vahe olla 180 cm või rohkemgi.[2]

Mõõtmed

Valgesaba-pampahirve õlakõrgus on 90–105 cm, kaal 50–135 kg, tüvepikkus ligikaudu 115–170 cm, sabapikkus 15–30 cm, sõrgade jälg on ligikaudu 7 cm pikk ja 4 cm lai.[2]

Paljunemine

Valgesaba-pampahirv paaritub üks kord aastas. Paaritumisperiood ulatub oktoobrist detsembrini ning tiinus kestab 6 ja pool kuud. Nooremad emahirved sünnitavad tavaliselt ühe vasika, vanemad emahirved sünnitavad 2 või koguni 3 vasikat. Vasikad on kõndimisvõimelised kohe pärast sündimist.[5]

Toitumine

Valgesaba-pampahirved eelistavad hõredaid lehtmetsi ja niitusid, kuid otsivad toitu sageli ka põldudelt. Nad söövad lilli, marju, seeni, lehtpuude lehti ja kasvusid, kuid võivad närida ka okaspuid. Samuti võivad nad aedu külastades süüa õunu.[2]

Viited

  1. Valgesaba-pampahirv , 16. veebruar 2019.
  2. 2,0 2,1 2,2 2,3 2,4 Olsen, Lars Henrik. 2012. "Loomade ja lindude märgid ja jäljed. Tallinn: TEA kirjastus.
  3. Valgesaba-pampahirv , 16. veebruar 2019.
  4. Valgesaba-pampahirv, 03. juuni 2019.
  5. Valgesaba-pampahirv , 03. juuni 2019.
license
cc-by-sa-3.0
copyright
Vikipeedia autorid ja toimetajad
original
visit source
partner site
wikipedia ET

Valgesaba-pampahirv: Brief Summary ( Estonian )

provided by wikipedia ET

Valgesaba-pampahirv (Odocoileus virginianus) on hirvlaste sugukonda kuuluv sõraline.

Valgesaba-pampahirv, keda kutsutakse ka Virginia pampahirveks, pärineb Põhja-Ameerikast. Ta on levinud Põhja-ja Kesk-Ameerikas ning kohati Lõuna-Ameerikas. Võõrliigina elab Kariibi mere saartel, kuid ka mõnel pool Euroopas, sealhulgas Soomes ja Uus-Meremaal. Valgesaba-pampahirved introdutseeriti 1934. aastal Soome, mille lõunapoolses osas on neist kujunenud suur populatsioon. Lisaks leidub neid peale loomaaedade ja hirvefarmide väikeste asurkondadena Tšehhis, Serbias ja Horvaatias.

Valgesaba-pampahirv on lähisuguluses mustsaba-hirvega.

Nende keskmine eluiga on looduses 2–3 aastat. Harva elavad nad looduses üle 10 aasta. Vangistuses võivad nad elada kuni 20 aastat.

Nad elavad perekondlikes seltsingutes ning talvel suuremates, kuni 25-liikmelistes karjades.

Valgesaba-pampahirved on väga kohatruud ning sageli võib neid näha suurematel lagendikel ja metsaservadel, mille läheduses on põllulapid.

Ohu korral valgesaba-pampahirved enamasti põgenevad, kuid nad võivad ka hoiatavalt maapinda trampida ja norsatavaid hääli teha. Joostes hoiavad nad saba püsti ning sabapiirkonna valge "sabapeegel" muutub nähtavaks.

license
cc-by-sa-3.0
copyright
Vikipeedia autorid ja toimetajad
original
visit source
partner site
wikipedia ET

Orein buztanzuri ( Basque )

provided by wikipedia EU

Orein buztanzuria edo virginiar oreina (Odocoileus virginianus) Odocoileus generoko animalia da. Artiodaktiloen barruko Capreolinae azpifamilia eta Cervidae familian sailkatuta dago.

Azpiespezieak

Orein buztanzuriak 38 azpiespezie ditu[3]:

  • Odocoileus virginianus borealis (Miller 1900) - ekialdeko Kanada eta ipar-ekialdeko Estatu Batuak.
  • Odocoileus virginianus dacotensis (Goldman & Kellog 1940) - Ipar Dakota, Hego Dakota, Nebraska, Wyoming eta ipar-mendebaldeko Kanada.
  • Odocoileus virginianus virginianus (Zimmermann, 1780) - Virginia.
  • Odocoileus virginianus macrourus (Rafinesque 1817) - Kansas.
  • Odocoileus virginianus mcilhennyi (Miller 1928) - Avery uhartea, Luisiana.
  • Odocoileus virginianus taurinsulae (Goldman & Kellog 1940) - Bull uhartea, Hego Carolina.
  • Odocoileus virginianus osceola (Banqs 1896) - Floridako kostaldea.
  • Odocoileus virginianus seminolus (Goldman & Kellog 1940) - Floridako barnealdea.
  • Odocoileus virginianus clavium (Barbour & G. M. Allen, 1922) - hegoaldeko Florida eta Kuba.
  • Odocoileus virginianus ochrourus (V. Bailey 1932) - Mendi Harritsuak.
  • Odocoileus virginianus leucurus (Douglas, 1829) - Columbia ibaia, Oregon eta Washington.
  • Odocoileus virginianus couesi (Coues & Yarrow 1875) - Arizona, hego-ekialdeko Kalifornia, Mexiko Berria eta ipar-mendebaldeko Mexiko.
  • Odocoileus virginianus texanus (Mearns 1898) - Texas, Oklahoma, hego-ekialdeko Colorado eta Mexiko Berria.
  • Odocoileus virginianus carminis (Goldman & Kellog 1940) - iparraldeko Mexiko.
  • Odocoileus virginianus miquihuanensis (Goldman & Kellog 1940) - erdialdeko Mexiko.
  • Odocoileus virginianus mexicanus (Gmelin 1788) - Puebla, Mexiko.
  • Odocoileus virginianus acapulcensis (Caton 1877) - hegoaldeko Mexiko.
  • Odocoileus virginianus veraecrucis (Goldman & Kellog 1940) - ekialdeko Mexiko.
  • Odocoileus virginianus thomasi (Merriam 1898) - Oaxaca eta Chiapas, Mexiko.
  • Odocoileus virginianus yucatanensis (Hays 1872) - Yucatan, Mexiko.
  • Odocoileus virginianus nelson (Merriam 1898) - Guatemala.
  • Odocoileus virginianus truei (Merriam 1898) - Erdialdeko Amerika.
  • Odocoileus virginianus chiriquensis (J.A. Allen 1910) - Panama.
  • Odocoileus virginianus rothschildi (Thomas 1902) - Coiba, Panama.
  • Odocoileus virginianus curassavicus (Hummelink, 1940) - Kolonbia eta Curaçao.
  • Odocoileus virginianus goudotii (Gay & Gervais 1849) - Kolonbia eta Venezuelako Andeak.
  • Odocoileus virginianus margaritae (Osgood 1910) - Margarita uhartea, Venezuela.
  • Odocoileus virginianus apurensis (Brokx, 1972) - ipar-ekialdeko Amazonia.
  • Odocoileus virginianus ustus (Trouessart, 1913) - Ekuadorreko Andeak eta hegoaldeko Kolonbia.
  • Odocoileus virginianus tropicalis (Cabrera 1918) - mendebaldeko Kolonbia.
  • Odocoileus virginianus peruvianus (Gray 1874) - Peruko Andeak.
  • Odocoileus virginianus gymnotis (Wergmann 1833) - Venezuela, Guyana eta Surinam.
  • Odocoileus virginianus cariacou (Boddaert 1784) - Guyana Frantsesa eta iparraldeko Brasil.

Erreferentziak

  1. (Ingelesez)Mammals - full taxonomy and Red List status Ugaztun guztien egoera 2008an
  2. Zimmermann (1780) 2 Geogr. Gesch. Mensch. Vierf. Thiere 129. or..
  3. Baker, Rollin A. (1984) Origin, classification, and distribution White-tailed deer: ecology and management.

Ikus, gainera

(RLQ=window.RLQ||[]).push(function(){mw.log.warn("Gadget "ErrefAurrebista" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://eu.wikipedia.org/wiki/Berezi:Gadgetaku003E.");});
license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Orein buztanzuri: Brief Summary ( Basque )

provided by wikipedia EU

Orein buztanzuria edo virginiar oreina (Odocoileus virginianus) Odocoileus generoko animalia da. Artiodaktiloen barruko Capreolinae azpifamilia eta Cervidae familian sailkatuta dago.

license
cc-by-sa-3.0
copyright
Wikipediako egileak eta editoreak
original
visit source
partner site
wikipedia EU

Valkohäntäpeura ( Finnish )

provided by wikipedia FI

Valkohäntäpeura (valkohäntäkauris, Odocoileus virginianus) on Amerikasta kotoisin oleva, peurojen alaheimoon kuuluva hirvieläinlaji. Se elää ihmisen siirtämänä vieraslajina ainakin Karibialla, Suomessa, Tšekissä ja Uudessa-Seelannissa. Laji tuotiin Suomeen 1930- ja 1940-luvuilla, ja nykyisin se on alueellisesti tärkeä riistaeläin. Luontaisella esiintymisalueellaan valkohäntäpeurasta tunnetaan kymmeniä alalajeja, jotka poikkeavat toisistaan ulkonäöltään ja kooltaan.

Nimet ja luokittelu

 src=
Keynvalkohäntäpeura[4] (O. v. clavium) Floridassa.

Luontaisella elinalueellaan Pohjois- ja Etelä-Amerikassa valkohäntäpeura jaetaan yhteensä 38 eri alalajiin.[3] Kolmea venezuelalaista alalajia on toisinaan pidetty erillisinä lajeina.[3] Valkohäntäpeuran lähin sukulaislaji on muulipeura eli mustahäntäpeura (Odocoileus hemionus), jonka kanssa se muodostaa Odocoileus-suvun.[3][5]

Lajista on aiemmin käytetty suomenkielistä nimeä laukonpeura ensimmäisten maahan tuotujen yksilöiden sijoituspaikkana olleen Laukon kartanon mukaan.[6] Nisäkäsnimistötoimikunta ehdotti vuonna 2008, että valkohäntäpeuran nimeksi vaihdettaisiin valkohäntäkauris, ja peura-nimen käyttö rajoitettaisiin peuran suvun (Rangifer) jäseniin.[7][8] Ehdotettu nimenmuutos ei ole saavuttanut suurta kannatusta, koska valkohäntäpeura on nimenä vakiintunut Suomeen, ja sitä käytetään myös lainsäädännössä.[9] On myös pelätty, että ehdotettu nimi aiheuttaisi sekaannusta metsäkauriiseen,[10][vanhentunut linkki] jonka kanta Suomessa on viime vuosina kasvanut voimakkaasti. Suomen Metsästäjäliitto on suositellut, että lajista käytettäisiin edelleen metsästyslain mukaista nimeä valkohäntäpeura.[10] Suomen kielen asiantuntijat, kuten suomen kielen lautakunta, ovat yleisellä tasolla suhtautuneet kielteisesti vakiintuneiden nimien muuttamiseen.[11] Toisaalta vuonna 2010 Pirkanmaan liiton maakuntahallitus muutti maakuntaeläimensä nimen teksteissä valkohäntäpeurasta valkohäntäkauriiksi nimistötoimikunnan ehdotuksen mukaisesti.[12]

Piirteet

Ulkonäkö ja koko

 src=
Valkohäntäpeuranaaras Ontariossa, Kanadassa.

Amerikassa valkohäntäpeurat ovat hieman eri värisiä alalajista ja elinympäristöstä riippuen.[1] Tummimmat peurat elävät kosteilla ja metsäisillä seuduilla, vaaleimmat kuivilla ja aukeilla alueilla ja punertavimmat trooppisissa ympäristöissä.[1] Suomessa elävä Pohjois-Amerikan itärannikon alalaji on väritykseltään kesällä punertavanruskea. Syksyllä sen punertavuus vähenee[5] ja talvisin kylkien ja selän normaalisti ruskea karvapeite saa harmahtavia sävyjä. Maha ja jalkojen sisäsivut ovat valkeat, samoin kuin noin 30 cm pitkän hännän alapuoli ja peräpeili, nenän ja silmien ympärykset sekä kurkku ja alaleuka.[1][13] Tummien kylkien ja vaalean vatsan väriero on selvärajainen.[13] Vasat ovat nuorena valkopilkullisia, mutta pilkut häviävät 3–4 kuukauden iässä.[1] Amerikassa valkohäntäpeura saatetaan sekoittaa hyvin samannäköiseen muulipeuraan. Muulipeuralla on kuitenkin suuremmat korvat ja eri värinen häntä, minkä lisäksi lajien urosten sarvet ovat muodoltaan erilaiset.[14] Lajit voidaan tunnistaa myös juoksutyyliensä perusteella: muulipeuran loikkiessa sen kaikki jalat kohoavat ja laskeutuvat yhtäaikaisesti, kun taas valkohäntäpeura ponnistaa hyppyyn takajaloillaan ja laskeutuu maahan etujaloillaan.[14]

Valkohäntäpeurauroksilla on monihaaraiset, kaarevapiikkiset ja sisään- ja eteenpäin kaartuvat sarvet.[15][5] Ne säilyvät päässä niin kauan kuin naaraat ovat kiimassa, mutta yleensä ne putoavat joulukuun lopun tai tammikuun aikana. Kasvavissa sarvissa on aluksi ohut, nukkamainen nahkapeite, joka myöhemmin irtoaa[5] kun urokset keloavat puita ja oksia sarvillaan ennen kiima-ajan alkamista.

Kooltaan valkohäntäpeura on hirveä paljon pienempi, mutta metsäkaurista suurempi. Täysikasvuisen yksilön ruumiinpituus on 150–180 cm, säkäkorkeus 90–105 cm ja paino 70–140 kg.[5] Koska koko kuitenkin vaihtelee alalajin mukaan, mainitut mitat ovat tyypillisiä vain suurimmille alalajeille, kuten Suomessakin esiintyvälle O. v. borealis-muodolle. Amerikassa elävien pienimpien alalajien yksilöt painavat vain noin 20 kg.[5] Urokset kasvavat huomattavasti suuremmiksi kuin naaraat. Suomessa täysikasvuisen naaraan teuraspaino on noin 35–40 kg, kun uroksella se vaihtelee yleensä 45–75 kilon välillä, mutta vanhat yksilöt voivat olla painavampiakin.

Äänet

Valkohäntäpeura on varsin hiljainen eläin, mutta vaaratilanteissa se voi päästää voimakkaita suhahduksia muita varottaakseen. Kiima-aikana uros päästää korahtelevia ääniä. Myös naaraat ja vasat ääntelevät pitääkseen tuntuman toisiinsa. Niiden ääntely on samanlaista kuin urosten, mutta ääni on pehmeämpi.


Levinneisyys

 src=
Valkohäntäpeuran alalajien levinneisyydet Pohjois-Amerikassa. Värien merkitykset on listattu tiedostosivulle, joka avautuu kuvaa klikkaamalla.
 src=
Alalajien levinneisyydet Etelä-Amerikassa.

Valkohäntäpeuran luontainen levinneisyys Amerikassa ulottuu Kanadan Luoteisterritorioista ja Yukonin territoriosta Yhdysvaltojen ja Meksikon kautta Brasilian pohjoisosiin, Boliviaan ja Peruun asti.[3] Pohjois-Amerikassa laji puuttuu Kalifornian ja Länsi-Coloradon väliseltä kuivalta alueelta.[3] Laji on runsastunut Pohjois-Amerikassa metsien raivaamisen[16] ja saalistajien vähenemisen[1] ansiosta. Alun perin kanta oli vain noin puoli miljoonaa, mutta 1980-luvulle mennessä se oli kasvanut yli 12 miljoonaan yksilöön.[16] Nykyisin pelkästään Yhdysvalloissa arvioidaan elävän noin 15 miljoonaa valkohäntäpeuraa.[14] Runsautensa ja laajan levinneisyytensä ansiosta laji on IUCN:n uhanalaisuusluokituksessa arvioitu elinvoimaiseksi.[1] Muutamaa yksittäistä populaatiota ja alalajia, kuten Floridan Key Islandilla elävää pienikokoista keynvalkohäntäpeuraa (Odocoileus virginianus clavium),[4] pidetään kuitenkin uhanalaisina.[3] Guatemalalaiset populaatiot on mainittu CITES-sopimuksen III-liitteessä,[1] joten niillä käytävä kauppa on paikallisesti rajoitettua.

Eri alalajit ja niiden levinneisyysalueet ovat Amerikassa osittain sekoittuneet lukuisten siirtoistutusten takia.[5] Eniten on siirrelty Minnesotan seudulta kotoisin olevan O. v. borealis-alalajin yksilöitä, jotka ovat lajinsa suurimpia edustajia.[5] Suomeenkin tuodut valkohäntäpeurat olivat peräisin Minnesotasta, ja edustivat siten todennäköisesti tätä samaa suurikokoista ja pohjoisiin oloihin sopeutunutta alalajia.[5]

Istutettuja valkohäntäpeurakantoja elää myös lajin luontaisen levinneisyysalueen ulkopuolella ainakin Karibialla, Uudessa-Seelannissa, Suomessa ja Tšekissä,[3] joidenkin lähteiden mukaan myös Slovakiassa.[1] Metsästykautena 2010–2011 Tšekissä arvioitiin elävän 411 valkohäntäpeuraa, joista saaliiksi saatiin 45 yksilöä.[17] Suomesta Ähtärin eläinpuistosta on sen jälkeen siirretty 14 valkohäntäpeuraa Tšekkiin, jotta sikäläisen populaation geeniperimä monipuolistuisi.[18] Lajin siirtoistutuksia on toteutettu myös Kuubassa sekä Karibianmeren Curaçaolla ja Yhdysvaltain Neitsytsaarilla, mutta niiden onnistumisista ei ole tietoa.[3]

Esiintyminen Suomessa

Suomen valkohäntäpeurakanta on saanut alkunsa Minnesotaan muuttaneiden amerikansuomalaisten lahjasta entiselle kotimaalleen.[15] Siirtolaisten maastalähdön aikoihin Suomessa ei elänyt juuri lainkaan luonnonvaraisia hirvieläimiä, sillä metsäpeurat oli metsästetty sukupuuttoon, hirvikanta näytti olevan kokemassa saman kohtalon[5] eikä metsäkauris ollut vielä levittäytynyt sinne. Yhdysvalloissa sen sijaan eli useita hirvieläinlajeja, joista valkohäntäpeura oli yleisin.[5] Siksi Minnesotan siirtolaiset perustivat vuonna 1932 erityisen peurakomitean, jonka tavoitteeksi tuli saada valkohäntäpeurasta Suomeen uusi riistalaji.[5] Syksyllä 1934 komitea oli saanut hankittua laivalla tapahtuvaa kuljetusta varten kahdeksan peuranvasaa, joista puolet oli uroksia ja puolet naaraita.[5] Yksi uros kuitenkin kuoli jo ennen laivamatkaa, ja kaksi menehtyi laivassa.[5] Helsingin satamaan selvisi hengissä yksi uros ja neljä naarasta,[5] jotka 8. syyskuuta 1934 saapuivat perille Vesilahden Laukon kartanon maille perustettuun tarhaan.[19] Ensimmäiset suomalaiset vasat syntyivät toukokuussa 1937.[19] Maaliskuussa 1938 peurat karkasivat aitauksestaan, eikä urosta enää saatu kiinni.[19] Tällöin tarhassa jäljellä olleet kolme naarasta ja niiden kaksi urosvasaa päädyttiin laskemaan vapauteen.[19] Kannan geneettisen perimän laajentamiseksi Suomeen tuotiin vielä muutamia valkohäntäpeurayksilöitä lisää vuonna 1948.[5] Lentokonematkalle lähti tuolloin joko kuusi tai kahdeksan yksilöä (puolet kumpaakin sukupuolta), mutta niistä 2–3 ehti kuolla ennen Laukossa tapahtunutta vapauttamista.[5] Kanta oli alkanut kasvaa nopeasti jo ennen tätä jatkoistutusta, sillä vuonna 1948 sen kooksi laskettiin noin sata yksilöä ja metsästyksen aloittamisvuonna 1962 tuhat yksilöä.[5] Metsästys ei hidastanut runsastumista, vaan vuonna 1968 peurojen määräksi arvioitiin jo neljä tuhatta.[15] Määrä kasvoi nopeasti varsinkin 1970-luvun alussa[5] ja oli suurimmillaan saman vuosikymmenen lopulla, jolloin talvikannaksi arvioitiin noin 25 000 yksilöä.[15] Valkohäntäpeurojen metsästystä alettiin tehostaa, ja siihenastisena ennätysvuonna 1980 kaadettiin lähes 15 000 yksilöä.[5] Tuon huippujakson jälkeen kantaa on säännöstelty metsästyksellä[5]; se kävi alimmillaan noin 15 000 yksilössä,[15] mutta nyttemmin kannan on annettu kasvaa. Leviämistä rajoittaa luonnollisesti lumipeitteen paksuus[13] ja ravinnon saatavuus, mutta maan itä- ja pohjoisosissa myös suuret yhtenäiset metsäalueet ja vesistöt[5]. 2000-luvulla peurakantaa on pienentänyt ilveskannan kasvu, joka etenkin vahvoilla peura-alueilla on ollut huomattavan nopeaa. Myös peuran käyttäytymisessä on havaittu muutoksia – se ei tule niin helposti ruokintapaikoille, jonka tienoilla ilvekset odottavat – ja saalismäärät ovat osin senkin vuoksi pienentyneet.

Nykyisin valkohäntäpeuraa tavataan yleisimmin VaasaJyväskyläKotka-linjan lounaispuolella[20], ja satunnaisemmin pohjoisempanakin. Oulun seudulla on jo pitkään ollut erillinen esiintymä[5][15]. Ahvenanmaalle laji ei ole tiettävästi levinnyt.[5] Metsästäjien arvion mukaan valkohäntäpeurakanta oli vuoden 2017 metsätyskauden jälkeen noin 67 000 yksilöä, mutta Luonnonvarakeskusen arvion mukaan Suomessa voisi olla jopa 98 000 valkohäntäpeuraa.[21] Vaikka koko Suomen nykyinen valkohäntäpeurakanta polveutuu vain muutamasta yksilöstä[12] se on säilynyt terveenä ja välttynyt sisäsiittoisuuden ongelmilta.

Valkohäntäpeuran siirtämiseen mantereelta toiselle sisältyi huomaamaton riski, joka olisi voinut olla kohtalokas Suomen hirvikannalle. Pohjois-Amerikassa valkohäntäpeura on hirvieläimillä loisivan Pneumostrongylus tenuis -sukkulamadon pääisäntä.[5] Loinen ei ole peuroille haitallinen, sen sijaan hirvellä jo muutama yksilö riittää aiheuttamaan keskushermostoon vakavia kudosvaurioita.[5] Amerikassa tämä paikoitellen hyvin yleinen loinen oletettavasti vähentää hirvien määriä niillä alueilla, joilla elää paljon valkohäntäpeuroja.[5] Sukkulamatoja ei ole löydetty Suomesta, mahdollisesti syynä on niiden väli-isänniksi soveltuvien kotilolajien puuttuminen.[5] Valkohäntäpeuran on arveltu voivan kilpailla uuden elialueensa alkuperäisten hirvieläinten, hirven ja metsäkauriin, kanssa ravinnosta, sillä näiden lajien ravintostrategiat ovat keskenään samankaltaiset.[22]

Suomalaiset valkohäntäpeurat ovat vähitellen levittäytymässä Ruotsiin ja Venäjälle. Ruotsissa tehtiin ensimmäinen havainto lajista vuonna 2008, jolloin Tornionlaakson Juoksengissa ammuttiin yksi urospuolinen yksilö.[23] Ruotsin ja Norjan viranomaiset eivät haluaisi lajin leviävän maidensa alueille.[22] Suomesta peräisin olevien valkohäntäpeurojen on havaittu vierailleen myös Venäjän puolella.[22]

 src=
Valkohäntäpeuroja metsässä Appalakkien Blue Ridge Mountains -vuoristossa, Yhdysvaltojen itärannikolla.

Elinympäristö

Amerikassa valkohäntäpeuran eri alalajit elävät hyvin monenlaisissa olosuhteissa ja ympäristöissä subtrooppisista metsistä hyvin kuiville alueille ja sademetsistä Keski-Amerikan savanneille.[1] Lajia tavataan myös ihmisen läheisyydessä maaseudulla ja asutuksen läheisyydessä.[1] Suomessa laji asustaa mieluimmin viljelyksiin rajoittuvissa lehti- ja sekametsissä ja purojen ja peltojen laidoilla. Se suosii aukkoisia ja pensastoisia lehto- ja kangasmaita. Jos se voi valita, se karttelee suuria havumetsäalueita. Kesäisin se suosii ruokailualueinaan luonnonympäristöjä ja keväisin ja syksyisin vastaavasti peltoja ja puutarhoja.[13] Talvisin valkohäntäpeura muuttaa erillisille talvilaitumille, usein suurten kuusikoiden lähistölle[13] ja asumattomien järvien rannoille, joissa lunta on vähemmän kuin muualla[13].

Niillä Amerikan seuduilla, joilla elää sekä valkohäntä- että muulipeuroja, valkohäntäpeurat suosivat alavien maiden kosteita puronvarsia ja muulipeurat vastaavasti kuivia ylänkömaita.[14]

Elintavat

 src=
Pelästynyt valkohäntäpeura nostaa häntänsä pystyyn.

Käyttäytyminen

Kesällä valkohäntäpeura elelee yksin, mutta talvireviireillä ne oleskelevat pienissä 4–8 yksilön laumoissa. Niillä on ympäristön laadusta riippuen 40–500 hehtaarin laajuinen reviiri, jota ei kuitenkaan puolusteta aktiivisesti.[1] Valkohäntäpeura on yöeläin, mutta liikkuu myös päivisin.

Valkohäntäpeura nostaa häntänsä ylös silloin, kun se havaitsee jotakin epäilyttävää, tuntee itsensä uhatuksi tai kiihtyneeksi tai kun se pakenee. Tällöin pitkän hännän valkoinen alapuoli ja sen alta paljastuva vaalea peräpeili toimivat kauas näkyvänä varoitusmerkkinä.[24] Lauman jäsen varoittaa muita peuroja tömäyttämällä etusorkkaansa terävästi maahan. Hännän ajoittainen heilauttaminen ruokaillessa on tarkoitettu pitämään laumaa koossa.

Amerikassa valkohäntäpeuroilla on monia luontaisia vihollisia puumasta suteen ja harmaakarhuun. Paikallisille ilveslajeille, punailvekselle ja kanadanilvekselle, ne ovat kuitenkin luonnonoloissa liian suuria saaliseläimiksi[5]. Sen sijaan Suomen oloissa valkohäntäpeurat kerääntyvät talvisin joukoittain ruokintapaikkojen äärelle ja ovat siksi helpohkoa saalista euraasialaiselle ilvekselle, josta on tullut niiden merkittävin saalistaja uudella elinalueella.[5]

Ravinto

 src=
Emo ja vasa ruokailemassa.

Valkohäntäpeura aterioi herättyään ensi kerran aamunsarastuksen aikoihin ja toistamiseen illalla, ja jatkaa ruokailua usein yöhön asti. Sen ravinto koostuu monenlaisista kasveista ja kasvinosista, kuten heinistä, ruohoista, varvuista, pensaiden ja puiden lehdistä, viljanjyvistä, tammenterhoista, marjoista ja omenoista sekä sienistä[14][13]. Erityisesti se pitää maitohorsmasta.[24] Amerikan ankarilla aavikkoilmaston alueilla valkohäntäpeura elää erilaisilla kaktuksilla ja jukilla. Sokerintuotantoalueilla sokerijuurikas on paikoin merkittävä osa syksyn ja alkutalven ravintoa. Talvisin männyn ja varsinkin katajan neulasilla ja vuosikasvaimilla sekä pihlajan, haavan ja pajujen oksilla on ravinnossa suuri osuus.[15][13] Se myös kaivaa lumen alta ruohoja, mustikan ja puolukan varpuja ja jäkälää.[24][15]

Paksu, yli puolimetrinen lumikerros haittaa valkohäntäpeurojen liikkumista ja luontaista ravinnonhankintaa.[5][15] Pienisorkkaisilla jaloilla ei ruoan kaivu lumesta onnistu. Lisäksi eläimet pyrkivät talvisin kerääntymään suuriin laumoihin, jotka helposti kuluttavat pienen alueen ravintovarat loppuun[5]. Suomessa ne selviävätkin talvisin paljolti metsästäjien suorittaman riistaruokinnan avulla.[15] Ruokintaan käytetään eniten omenia ja juureksia kuten perunaa, porkkanaa ja punajuurta sekä viljaa, heinää ja lehtikerppuja. 1990-luvulla suoritettujen kyselyjen ja laskentojen perusteella Suomessa on keskimäärin yksi ruokintapaikka kolmea peuraa kohden.

 src=
Valkohäntäpeuran vasa.

Lisääntyminen ja elinikä

Valkohäntäpeuran kiima-aika on yleisimmin loppusyksyllä ja alkutalvella marras[15]-joulukuussa, mutta siinä esiintyy suurta vaihtelua. Joskus naaras saattaa olla kiimassa jopa maaliskuussa. Kiiman aikana uros kerää ympärilleen useita naaraita haaremiksi, jota se puolustaa muita uroksia vastaan[15]. Naaras synnyttää toukokuun lopulla tai kesäkuussa[15] 1–2, joskus jopa 3 vasaa.[13] Hyvissä laidunoloissa kaksivasaisuus on tyypillistä.[15][13] Aluksi vasat pysyttelevät paikoillaan jossakin heinikon kätköissä, kunnes muutaman viikon ikäisinä alkavat seurata emoaan.[5] Emo imettää niitä neljän kuukauden ikäisiksi asti. Ensimmäisenä elinvuotenaan naaras- ja urosvasat selviytyvät yhtä todennäköisesti, mutta sen jälkeen naaraat säilyvät uroksia selvästi useammin hengissä. Metsästyspaine kohdistuu voimakkaammin uroksiin kuin naaraisiin. Naaraat myös elävät vanhemmiksi kuin urokset.

Valkohäntäpeura saavuttaa luonnossa vain harvoin yli 10 vuoden elinikää.[25] Vanhin tunnettu lajin yksilö eli vankeudessa lähes 22-vuotiaaksi.[25]

 src=
Michiganilainen metsästäjä saaliinsa äärellä.

Loiset

Valkohäntäpeurassa on todettu esiintyvän Filarioidea-sukkulamatoloisiin kuuluvaa Rumenfilaria andersoni -imusuonimatoa. Se voi kasvaa jopa 20 senttiä pitkäksi ja tuottaa alle neljännesmillin pituisia toukkia isäntänsä verenkiertoon. Toukkia voi olla jopa tuhansia millilitrassa verta. Suomessa havaittiin 2000-luvulla, että valkohäntäpeuralla hyvin yleistä loista tavataan jonkin verran myös hirvissä, poroissa pohjoisinta Lappia myöten sekä hyvin runsaasti metsäpeuroissa. Lajia ei aiemmin ole tavattu Euroopassa. Loinen leviää kantajasta toiseen hyönteisten imemän veren mukana. Tiettävästi R. andersoni ei ole levinnyt ihmiseen. Paistetun lihan välityksellä loinen ei voi levitä.[26]

R. andersoni ei ilmeisesti juurikaan haittaa alkuperäistä isäntälajiaan valkohäntäpeuraa. Loinen aiheuttaa kuitenkin ainakin silmin nähtäviä muutoksia imusuonten ympärillä. Poroilla sen on havaittu aiheuttavan ihomuutoksia.[26]

Valkohäntäpeura ja ihminen

Luontaisella levinneisyysalueellaan Amerikassa valkohäntäpeuroista on paikoitellen paljon haittaa maanviljelylle ja metsänkasvatukselle, koska ne syövät pelloilta viljelyskasveja ja taimikoista puiden taimia.[5] Suomessa vastaavat ongelmia ei ole ollut merkittävissä määrin. Esimerkiksi mäntytaimikoille valkohäntäpeura on vähemmän haitallinen kuin hirvi, koska se ei mielellään ruokaile taimikoissa eikä myöskään katko taimien latvoja.[5] Vahinkoja on uudella elinalueella syntynyt lähinnä puutarhoissa ja erikoisviljelmillä, kun peurat ovat syöneet muun muassa mansikoita ja sokerijuurikkaita.[5][13] Runsastunut kanta on kuitenkin lisännyt liikenteessä sattuvien hirvieläinkolarien määrää, ja paikoitellen valkohäntäpeura on merkittävin hirvieläinonnettomuuksien aiheuttaja.[22]

Valkohäntäpeura on Suomessa riistaeläin,[27]sen runsastumisen takia metsästysaikaa pidennettiin vuodesta 2017 alkaen, muualla kuin Lapin maakunnassa, valkohäntäpeuraa saa metsästää vahtimalla syyskuun 1. päivästä syyskuun viimeistä lauantaita edeltävään päivään. Normaali metsästysaika koko maassa, myös ajavaa koiraa käyttäen, alkaa syyskuun viimeisenä lauantaina ja päättyy tammikuun 31. päivä. 2018 metsästysaikaa pidennettiin edelleen ja sallittiin valkohäntäpeuran metsästys ilman koiraa vielä helmikuun 1. -15. päivään. Metsästys on sallittu vain riistakeskuksen myöntämällä pyyntiluvalla. Metsästyskaudelle 1.9.2018-15.2.2019 myönnettiin 44291 pyyntilupaa. [28]

Suomessa valkohäntäpeura on Pirkanmaan maakunnan nimikkoeläin.[12] Luontaisella esiintymisalueellaan Kanadassa se on puolestaan Saskatchewanin provinssin tunnuseläin[29] ja on kuvattu provinssin vaakunaan.[30]

Lähteet

  1. a b c d e f g h i j k l Gallina, S. & Lopez Arevalo, H.: Odocoileus virginianus IUCN Red List of Threatened Species. Version 2014.2. 2008. International Union for Conservation of Nature, IUCN, Iucnredlist.org. Viitattu 26.7.2014. (englanniksi)
  2. a b Integrated Taxonomic Information System (ITIS): Odocoileus virginianus (TSN 180699) itis.gov. Viitattu 18.11.2010. (englanniksi)
  3. a b c d e f g h i Wilson, Don E. & Reeder, DeeAnn M. (toim.): Odocoileus virginianus Mammal Species of the World. A Taxonomic and Geographic Reference (3rd ed). 2005. Bucknell University. Viitattu 18.11.2010. (englanniksi)
  4. a b Koivisto, Ilkka; Sarvala, Maija; Liukko, Ulla-Maija (toim.): Maailman uhanalaiset eläimet 3. Nisäkkäät, Matelijat, s. 108. Weilin+Göös, 1991. ISBN 951-35-4689-6.
  5. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Nummi, Petri: Suomeen istutetut riistaeläimet, s. 26–29. Julkaisusarjan 9. osa, 2. uudistettu painos. Helsinki: Helsingin yliopisto, Maatalous- ja Metsäeläintieteen Laitos, 1988. ISBN 951-45-4760-8.
  6. Ahola, Veikko; Kuhlman, Irmeli; Luotio, Jorma (toim.): Tietojätti 2000: tietosanakirja A–Ö. (hakusanat "Laukko" ja "valkohäntäpeura"). Jyväskylä: Gummerus, 2000. ISBN 951-20-5809-X.
  7. Nisäkäsnimistötoimikunta: Maailman nisäkkäiden suomenkieliset nimet (vahvistamaton ehdotus nisäkkäiden nimiksi) luomus.fi. 2008. Viitattu 18.11.2010.
  8. Ora, Ulla: Kuusipeura onkin täpläkauris (tallennettu versio Internet Archivessa) esaimaa.fi. 24.10.2007. Etelä-Saimaa. Viitattu 26.8.2012.
  9. Esiintyy muun muassa metsästyslaissa ja -asetuksessa, Finlex haku
  10. a b Metsästäjäliitto suosittaa käyttämään yhä perinteistä peura-nimeä 22.1.2009. Suomen Metsästäjäliitto. Viitattu 9.12.2011. [vanhentunut linkki]
  11. Suomen kielen lautakunta: Maailman nisäkkäiden suomenkieliset nimet: Suomen kielen lautakunnan kannanotto Kotus.fi. 20.11.2008. Kotimaisten kielten tutkimuskeskus. Viitattu 18.10.2011.
  12. a b c Pirkanmaan liitto www.pirkanmaa.fi [vanhentunut linkki]
  13. a b c d e f g h i j k Halkka, Antti; Miettinen, Kaarina ym.: Kotimaan luonto-opas, s. 369. Porvoo: WSOY, 1994. ISBN 951-0-19804-8.
  14. a b c d e Encyclopedia of Life: Odocoileus virginianus (luettu 19.11.2010) (englanniksi)
  15. a b c d e f g h i j k l m n Nuorteva, Pekka; Henttonen, Heikki: Eläimiä värikuvina: Nisäkkäät, matelijat, sammakkoeläimet, s. 107–108. Porvoo: WSOY, 1989. ISBN 951-0-13603-4.
  16. a b Järvinen, Olli; Miettinen, Kaarina: Sammuuko suuri suku? – Luonnon puolustamisen biologiaa, s. 191. Vantaa: Suomen luonnonsuojelun tuki Oy, 1987. ISBN 951-9381-20-1.
  17. Saksalainen metsästysalan lehti Jäger 5/2012, s. 70.
  18. Ähtärin eläinpuistosta valkohäntäpeuroja Tšekkiin Helsingin Sanomat 14.4.2014.
  19. a b c d Haukkovaara, Olli: Valkohäntäpeura (Odocoileus virginianus) [vanhentunut linkki] (Teos Internet Archivessa) Valkeakosken seudun nisäkkäät. www.myrsky.com/vsn. Omakustanne. 1991. Viitattu 18.11.2010.
  20. Valkohäntäkauris luontoportti.com. Viitattu 5.10.2017.
  21. Valkohäntäpeuroja on nyt enemmän kuin koskaan Satakunnan Kansa. 3.7.2018. Alma Media. Viitattu 3.7.2018.
  22. a b c d Ehdotus kansalliseksi vieraslajistrategiaksi (pdf) (s. 132) mmm.fi. 2011. Maa- ja metsätalousministeriö. Viitattu 18.10.2011.
  23. Thulin, Carl-Gustaf & Ericsson, Göran: Vitsvanshjort nyligen påträffad i Sverige (pdf) http://www.cfw.nu. 2009. Centrum för vilt- och fiskforskning. Viitattu 18.10.2011. (ruotsiksi)
  24. a b c Keski-Suomen nisäkkäitä: Valkohäntäpeura Ksml.fi. Keskisuomalainen. Viitattu 17.2.2011. [vanhentunut linkki]
  25. a b Longevity, ageing, and life history of Odocoileus virginianus (englanniksi) Luettu 18.11.2010
  26. a b Kivipelto, Arja: Peura toi riesan poroille. Helsingin Sanomat 23.12.2015, s. B14–B15.
  27. Metsästyslaki 28.6.1993/615 §5 Luettu 5.3.2011
  28. RKTL: Nisäkässaalis 2005–2010 Luettu 9.12.2011
  29. Saskatchewan's Provincial Animal Ops.gov.sk.ca. 2010. Government of Saskatchewan. Viitattu 18.2.2011. (englanniksi)
  30. Saskatchewan Coat of Arms Ops.gov.sk.ca. 2010. Government of Saskatchewan. Viitattu 18.2.2011. (englanniksi)

Kirjallisuutta

  • Vikberg, Pentti & Moilanen, Pekka: Valkohäntäpeura : elintavat, metsästys, riistanhoito. Keuruu: Otava, 1986. ISBN 951-1-08928-5.
  • Kairikko, Juha K. & Ruola, Jaakko: Valkohäntäpeura. Jyväskylä: Suomen metsästäjäliitto (Gummerus), 2004. ISBN 951-96244-5-7.

Aiheesta muualla

license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Valkohäntäpeura: Brief Summary ( Finnish )

provided by wikipedia FI

Valkohäntäpeura (valkohäntäkauris, Odocoileus virginianus) on Amerikasta kotoisin oleva, peurojen alaheimoon kuuluva hirvieläinlaji. Se elää ihmisen siirtämänä vieraslajina ainakin Karibialla, Suomessa, Tšekissä ja Uudessa-Seelannissa. Laji tuotiin Suomeen 1930- ja 1940-luvuilla, ja nykyisin se on alueellisesti tärkeä riistaeläin. Luontaisella esiintymisalueellaan valkohäntäpeurasta tunnetaan kymmeniä alalajeja, jotka poikkeavat toisistaan ulkonäöltään ja kooltaan.

license
cc-by-sa-3.0
copyright
Wikipedian tekijät ja toimittajat
original
visit source
partner site
wikipedia FI

Cerf de Virginie ( French )

provided by wikipedia FR

Odocoileus virginianusChevreuil, Chevreuil de Virginie, Cariacou

Le cerf de Virginie (Odocoileus virginianus), couramment appelé biche des palétuviers[1] en Guyane et chevreuil[2] au Québec, en Louisiane et dans les régions canadiennes francophones, est un cervidé originaire d'Amérique (du Canada au Brésil). Il a été introduit dans de nombreux autres pays tels que la Finlande, l'ancienne Tchécoslovaquie ou encore la Nouvelle-Zélande.

Le cerf de Virginie est l'un des grands mammifères les plus communs de l'Amérique, considéré officiellement comme symbole national de la faune au Costa Rica et au Honduras.

Description

Cet animal peut mesurer jusqu'à deux mètres de long et un mètre au garrot. Un mâle normal pèse entre 60 et 90 kg, mais on peut en trouver pesant jusqu'à 160 kg. La femelle pèse normalement de 40 à 60 kg. Les mâles âgés de plus d'un an ont des bois qui se développent chaque année, à partir de la fin du printemps. Ces bois atteignent leur taille maximale en fin d'été, et persistent jusqu'à l'hiver suivant. La gestation de la femelle peut durer de 205 à 216 jours (sept mois). Il en existe une sous-espèce naine : le cerf des Keys (Odocoileus virginianus clavium)

Alimentation

Il se nourrit de gousses, d'herbes, de cactus et de fruits. Son estomac lui permet de se nourrir de certaines espèces toxiques pour l'être humain dont le sumac grimpant ou certains champignons.

Répartition

Il vit principalement à l'est des montagnes Rocheuses, dans les forêts, marais et clairières.

Dans la partie occidentale de son habitat, il peut côtoyer le cerf hémione, une espèce très proche.

Comportement

Le cerf de Virginie devient plus téméraire en automne (surtout en novembre, saison du rut) alors que la nourriture se fait plus rare. Il se nourrit principalement de végétaux et de petits fruits.

Reproduction

L'âge de la maturation sexuelle dépend à la fois de la densité de population et de l'accès à la nourriture. Lorsque les conditions sont favorables, les femelles peuvent atteindre la maturité sexuelle et commencer à s'accoupler dès l'âge de six ou sept mois et donner naissance à un faon de six à sept mois plus tard.

Les portées comptent de un à trois petits, pesant de deux à quatre kilogrammes à la naissance. Chez les jeunes biches, la portée est souvent simple, en particulier lorsqu’il s'agit de leur première portée. Si l'hiver a été particulièrement rude, ou bien que la population se situe sur un territoire pauvre en nourriture, les portées compteront rarement plus d'un petit.

Les naissances ont le plus fréquemment lieu à la fin mai et au début juin, quoiqu'elles puissent s'étendre sur une période allant de la fin mars jusqu'au début août pour les accouplements précoces ou tardifs.

Les mâles deviennent matures en moyenne à la moitié de leur deuxième année, quoique peu d'entre eux aient la chance de se reproduire à cet âge, en raison de la forte compétition avec les autres mâles au moment du rut.

Dynamique des populations

Aux États-Unis, on estime qu'à la suite d'une gestion restauratoire des populations, la population américaine de cerf de Virginie est passée d'environ 300 000 individus vers 1930 à 30 millions aujourd'hui[Quand ?], soit une multiplication par 100, ce qui a notamment pu profiter aux tiques, lesquelles diffusent la maladie de Lyme.

C'est une espèce qui a su également profiter de certains espaces périurbains.

État des populations, menaces

Cet animal est vulnérable à la fragmentation écologique de ses habitats, parce qu'il doit se déplacer entre ses aires hivernales et estivale et car il traverse souvent des routes sans craindre les voitures, et sa présence n'est pas partout indiquée par un panneau ; chaque année de nombreux décès par accidents de la route impliquent une collision entre animal et véhicule[3]. En Amérique du Nord, notamment, depuis quelques décennies des mesures conservatoires (ex : écoducs et sautoirs permettent de limiter le nombre de collisions impliquant le cerf notamment lors de ses migrations[4],[5].

Il est sensible à une encéphalopathie spongiforme transmissible due à un prion pathogène (maladie proche de celle de la vache folle), dite Chronic wasting disease et à d'autres maladies touchant les cervidés.

Suivi sanitaire

Dans plusieurs pays, conformément à l'approche One Health promue par l'Organisation mondiale de la santé (OMS) et l'OIE, le gibier fait régulièrement l’objet d'un suivi éco-épidémiologique.

Il se fait surtout à partir de cadavres trouvés in situ et d’animaux tués à la chasse (alors échantillonnés dans les abattoirs, boucheries, et plus rarement en supermarché)[6] ; Les cerfs sont particulièrement suivis en Amérique du Nord, car porteurs de la tuberculose bovine et surtout - depuis quelques décennies - la CWD (maladie débilitante chronique, une maladie à prion proche de maladie de la vache folle, mais qui ne semble pas toucher l’Homme à ce jour)[6].

Le cerf de Virginie : nouvelle espèce réservoir du virus de la COVID ?

En 2021 et 2022, des études ont mis en évidence « une infection généralisée chez le cerf de Virginie (Odocoileus virginianus) en Amérique du Nord, avec des centaines d'animaux infectés dans 24 États américains et plusieurs provinces canadiennes »[6]. Ceci a des implications écoépidémiologiques importantes pour le virus SARS-CoV-2 responsable de la pandémie de COVID-19 : il pourrait persister à long terme, continuer à évoluer chez les cerfs, puis possiblement réapparaitre chez l'Homme (car dans un « système à plusieurs hôtes réservoirs »[7], il peut avoir un avantage sélectif : il ne disparait pas au cas où il disparaîtrait chez l'un des réservoirs individuels[8]). Le Cerf de Virginie est la première espèce sauvage chez laquelle une transmission du SARS-CoV-2 entre animaux vivant en liberté a été documentée[6]. L’infection semble asymptomatique, mais le cerf pourrait propager le virus à d'autres animaux (sauvages ou du bétail) plus vulnérables[6].

« Le fait que les animaux deviennent un réservoir viral, servant de source récalcitrante d'épidémies et élevant potentiellement de nouvelles variantes » inquiète les chercheurs, dont certains pensent que « le variant Omicron, hautement infectieux, a passé du temps dans un réservoir animal avant d'apparaître chez l’Homme »[6].

Vulnérabilité du Cerf de Virginie au virus SARS-CoV-2

En 2021, on sait que la protéine du récepteur ACE2 (cible du virus sur les cellules de l’organisme qu’il infecte) et chez le Cerf de Virginie similaire à celle de l'Homme.

Ce cerf a été expérimentalement infecté (cf. publication de janvier 2021, faite par des chercheurs du Département américain de l'agriculture (USDA) après inoculation nasale de faons captifs, qui ont ensuite (entre 3 et 5 jours après l'infection) émis le virus dans leur mucus nasal et leurs excréments ; ils ont aussi pu propager l'infection à d'autres faons, y compris dans des enclos adjacents[9]. D'autres ongulés, tels que les vaches, les moutons et les chèvres n'y sont pas sensibles[6]. Le cerf de Virginie semble aussi pouvoir être « réinfecté » par un autre variant du virus (phénomène décrit par Kuchipudi à partir d'échantillons faits en décembre et janvier 2022 (un cerf avait des anticorps contre Omicron, mais aussi contre le variant Delta)[10].

Et en mars 2022, dans l’ouest du pays — dans l'Utah, une autre espèces (Cerf mulet ; Odocoileus hemionus) a aussi été testée positive au SARS-CoV-2. Au début avril 2020, aucune autre espèces de cervidé ne semble avoir été observée porteuse du virus.

Et, curieusement, en 2022, en Autriche et Allemagne où des chevreuils (Capreolus capreolus), des cerfs élaphes (Cervus elaphus) et des daims (Dama dama) ont été testés pour le virus, ils semblent tous épargnés, même dans les zoos[11]… alors que « Toutes les données sur les récepteurs ACE2 suggèrent que les espèces de cerfs européens devraient être aussi sensibles que les cerfs de Virginie »[6].

Symptômes

Les premières études n'ont pas détecté de signe clinique notable. Une rhinite, une atténuation marquée de l'épithélium respiratoire de la trachée, une bronchite et, dans certains cas, une bronchiolite ont néanmoins été observées lors d'inoculations expérimentales de cerfs de Virginie[12]. En 2022, on ignore encore si les cerfs sauvages peuvent présentent des symptômes en cas d'infection ; répondre à cette question exigerait des études longitudinales statistiquement beaucoup plus puissantes (pour rappel, près des trois quarts des cas humains testés positifs au SRAS-CoV-2 — par RT-PCR — étaient asymptomatiques)[13].

Prévalence du virus chez le Cerf de Virginie

En Amérique du Nord, en 2021 et 2022, des variants du SARS-COV-2 circulent abondamment chez le Cerf de Virginie. Et ils « reflètent généralement ceux qui se propagent chez les humains proches. Des études suggèrent aussi que le SARS-CoV-2 dans la nature pourrait déjà explorer de nouvelles voies d'évolution grâce à des mutations du virus »[6].

385 échantillons sanguins de cerfs de Virginie prélevés de janvier à mars 2021 ont été étudiés dans le cadre normal de la surveillance des maladies de la faune dans l'Illinois, du Michigan, de l'État de New York et de Pennsylvanie : 40 % d'entre eux contenaient des anticorps anti-SRAS-CoV-2 (résultat publié en préimpression en juillet 2021)[6]. Il fallait encore vérifier que ces anticorps ne provenaient pas d’infections par d’autres coronavirus chez les cerfs[6].
L'effort d'échantillonnage a donc été amplifié, et étendu à une grande partie de l'Amérique du Nord.

À partir de décembre 2020, les test PCR ont commencé à être positifs (ex. : en 2021, dans l’Ohio, 129 cerfs étaient positifs pour l'ARN viral du SRAS-CoV-2 sur 360 animaux échantillonnés entre janvier et mars 2021)[6]. En Iowa 33 % de 283 ganglions lymphatiques rétropharyngés de cerfs échantillonnés entre avril 2020 et janvier 2021 étaient également positifs pour le SRAS-CoV-2 (surtout en novembre-décembre 2020, période coïncidant avec celle d'un pic épidémiologique humain[8]. Dans l’Ohio, plus de 50% des génomes viraux séquencés chez le cerf de Virginie étaient les mêmes que ceux trouvés chez les humains malades de la COVID-19 dans cet État.
Le virus « humain » semble s’être propagé chez les cerfs à au moins six reprises, et les mutations observées chez les cerfs montrent que l'infection se propageait rapidement entre cerfs[6],[14].

Des cerfs infectés ont ensuite été trouvés dans 24 des 30 États américains où un échantillonnage a été signalé, mais aussi au Québec[15], en Ontario[16], au Saskatchewan, dans le Manitoba, au Nouveau-Brunswick et en Colombie-Britannique, bien que les taux de séropositivité au Canada aient été plus faible, à 1-6 %. Fin décembre 2021, des chercheurs découvrent que le variant hautement transmissible d'Omicron a contaminé des cerfs de Virginie vivant à Staten Island (l'un des cinq arrondissements de la ville de New York)[10]. En Ontario, dès novembre-décembre 2021, dans un travail publié en préimpression de février 2021 des chercheurs décelaient et signalaient des signes d'évolution à long terme du virus chez le cerf de Virginie[16].

Sex-ratio

Les mâles sont plus touchés par le virus que les femelles, comme c'est le cas avec l'encéphalopathie des cervidés et de la tuberculose, probablement car les mâles ont un domaines vital plus grand, se déplacent plus, et ont plus de contacts avec d'autres cerfs lors de la saison de reproduction (automne-hiver). Une autre raison est la dynamique propre aux groupes sociaux de cerfs célibataires mâles[17], qui forment des groupes lâches de deux à six individus se touchant et se lèchant souvent, alors que les cerfs matriarcaux vivent avec leur harde de femelles et leurs faons[6].

Hypothèses explicatives

Proximité avec l'Homme

Le Cerf de Virginie approche souvent l'Homme ; il est aussi élevé pour sa viande, et des lieux de réhabilitation accueillent des faons orphelins. Les cerfs captifs ont souvent des contacts avec l’Homme et parfois avec des cerfs sauvages, ils peuvent aussi s’enfuir ou être relâchés dans la nature, mais selon Vanessa Hale « il n'y a probablement pas assez de contacts directs dans aucun de ces scénarios pour expliquer les centaines de cas détectés jusqu'à présent, sans parler des innombrables autres qui n'ont tout simplement pas été enregistrés »[14].

Des cerfs pourraient s’infecter en enfonçant leur museau dans des masques jetés ou en mangeant des végétaux contaminés et/ou en buvant de l’eau contaminé par l’Homme.

Rôle de l'égrainage et de la chasse ?

On a aussi constaté, « notamment, après le pic de cas humains de novembre 2020 dans l'Iowa » que les infections de cerfs par le SRAS-CoV-2 ont coïncidé « avec le début de l'hiver et le pic de la saison de chasse au cerf »[18].

L'agrainage apporté par les chasseurs qui nourrissent et appâtent ainsi les cerfs, pourrait être l'une sources humaines de virus, et il favorise le regroupement d'animaux normalement éparpillés[14] (situation connue pour être propice à la contagion inter-individus)[8].

Ainsi, lors de la deuxième semaine de janvier 2021, en fin de saison de chasse régulière, les cinq échantillons de RPLN de cerfs récoltés étaient tous positifs pour l'ARN du SRAS-CoV-2[8].

Et durant les 7 dernières semaines (du 23 novembre 2020 à la fin de la saison de chasse le 10 janvier 2021), 80 des 97 échantillons de RPLN de cerfs de tout l'État (82,5 %) étaient positifs pour le SRAS-CoV- 2 ARN[8].

Un nombre élevé de copies d'ARN viral a souvent été retrouvé dans les échantillons de ganglions de cerfs (allant de 2,7 copies à 2,3 × 106 copies par millilitre), suggérant que de nombreux cerfs avaient probablement une charge virale élevée[8].

Vecteurs de contagion ?

On sait que le virus infectieux est présent dans les excréments des animaux infectés (homme y compris) et qu'il a aussi une certaine capacité persistance dans l'eau (au moins une semaine quand la charge virale est importante)[19], et que les eaux usées contiennent souvent de l'ARN viral mais on n’y a pas trouvé le virus lui-même et on trouve des cerfs contaminés loin des lieux habités[20]. Enfin, le vison d'Amérique et/ou peut-être le chat sauvage pourraient aussi être des intermédiaires[6]. Ces modes d’infection peuvent co-exister[6], faisant craindre que le cerf puisse devenir un réservoir du SRAS-CoV-2 et une source possible d'épidémies récurrentes chez d'autres animaux (humains y compris), tout comme le chameau est devenu un réservoir naturel du coronavirus MERS-CoV-2. Dans ce, le SRAS-CoV-2 pourrait muter et se recombiner avec d'autres coronavirus dangereux pour d'autres animaux partageant des pâturages avec des cerfs (vaches, moutons, chèvres...)[6].

Mobilité du Cerf de Virginie

Le cerf de Virginie vit sur quelques kilomètres carrés presque toute l’année, mais au moment de la reproduction (octobre - février), ils se déplacent plus (de quelques dizaines de km à une centaine de 100 kilomètres parfois. Quand il y a beaucoup de neige plusieurs groupes peuvent cohabiter dans des zones mieux protégées en Forêt (autre occasion de contagions inter-individus et inter-groupes)[6].

Origine humaine des infections de cerfs ?

Début 2021, les parents viraux les plus proches des virus infectant les cerfs de Virginie étaient ceux trouvés chez de personnes du Michigan près d'un an plus tôt ; le virus circule donc depuis de mois chez les cerfs, et note la virologue canadienne Mubareka, et comme ceci a pu être démontré avec un échantillonnage très clairsemé, il semble que d'autres choses se passent dans la faune sauvage. Ainsi, une préimpression de février 2021 fait état de variants Alpha et Delta du SARS-CoV-2 trouvés chez des cerfs en Pennsylvanie en novembre 2021[21].

Les génomes Alpha y étaient distincts de ceux trouvés chez l'homme et ont été trouvés des mois après que Delta soit devenu prédominant chez l'Homme, évoquant une évolution indépendante du variant Alpha au sein de la population de cervidés. On soupçonne aussi que dans un cas au moins, c'est le cerf qui a pu infecter un humain et non l'inverse (sans le sud-ouest de l’Ontario)[6].

Si ce phénomène est courant, le virus pourrait ne pas s'estomper, mais continuer à longtemps circuler tout en évoluant[6]. En mars 2021, l'USDA a été mission (avec 300 millions de dollars de subvention) pour enquêter sur les animaux sensibles au SRAS-CoV-2, dont en échantillonnant des cerfs durant la saison de chasse 2022-2023 dans au moins 27 États[6]. Et des inoculations expérimentales doivent montrer si les variants telles que Omicron et Delta se comportent différemment chez le cerf de Virginie, et quels autres animaux sauvages elles peuvent infecter (dont cerf mulet et wapiti, deux autres cervidés)[6].

Sous-espèces

Au sein d'une vaste métapopulation nord-américaine, on peut distinguer 38 sous-espèces de l'odocoileus virginianus.

Systématique

Nomenclature et étymologie

Le cerf de Virginie possède plusieurs noms vernaculaires, soit chevreuil, chevreuil de Virginie et cariacou[22]. Le terme « chevreuil » pour désigner le cerf de Virginie est attesté depuis 1613 par Samuel de Champlain. À cause de la confusion que cela porte avec le chevreuil (Capreolus capreolus), le langage de spécialité (nomenclature zoologique) lui préfère « cerf de Virginie ». Le terme chevreuil est cependant grandement généralisé dans toutes les variétés du français en Amérique du Nord. Il est aussi couramment utilisé en littérature québécoise et canadienne française depuis l'époque de la Nouvelle-France. Certains[Qui ?] considèrent que « chevreuil » devrait être utilisé comme générique français pour désigner le genre Odocoileus et d'utiliser « chevreuil de Virginie » comme terme spécialisé pour désigner l'espèce, ce qui aurait pour avantage de concilier l'usage courant avec l'usage spécialisé[2].

Bien que dans plusieurs ouvrages, le terme cariacou est désigné comme étant un synonyme de cerf de virginie, cariacou ne désigne que quelques sous-espèces vivant en Amérique du Sud, particulièrement Odocoileus virginianus cariacou[2].

Selon l'Office québécois de la langue française, le terme chevreuil est préférable à cerf pour ce qui est de la restauration, puisque celui-ci est un terme générique et peut donc prêter à confusion. Notamment avec le Wapiti aussi appelé « cerf du Canada ». Dans ce contexte nord-américain, il est préférable d'utiliser chevreuil, qui est sans équivoque et utilisé couramment[2].

Notes et références

  1. « Poster faune de Guyane - mammifères intégralement protégés » [PDF], sur oncfs.gouv.fr, Office national de la chasse et de la faune sauvage (consulté le 16 octobre 2013).
  2. a b c et d « Cerf de Virginie », Le Grand Dictionnaire terminologique, Office québécois de la langue française
  3. Labadie, R. (2010). Étude et prévention des accidents de la route impliquant le cerf de Virginie dans l'ouest-de-la-Montérégie. Library and Archives Canada= Bibliothèque et Archives Canada, Ottawa
  4. De Bellefeuille, S. et M. Poulin (2004) Mesures de mitigation visant à réduire le nombre de collisions routières avec les cervidés. Ministère des Transports, Québec, 117 p.
  5. Anthony P. Clevenger et Nigel Waltho, « Factors Influencing the Effectiveness of Wildlife Underpasses in Banff National Park, Alberta, Canada », Conservation Biology, vol. 14, no 1,‎ février 2000, p. 47–56 (ISSN et , DOI , lire en ligne, consulté le 29 avril 2022)
  6. a b c d e f g h i j k l m n o p q r s t u et v (en) Smriti Mallapaty, « COVID is spreading in deer. What does that mean for the pandemic? », Nature, vol. 604, no 7907,‎ 28 avril 2022, p. 612–615 (ISSN et , DOI , lire en ligne, consulté le 29 avril 2022)
  7. Mark E. J. Woolhouse, Louise H. Taylor et Daniel T. Haydon, « Population Biology of Multihost Pathogens », Science, vol. 292, no 5519,‎ 11 mai 2001, p. 1109–1112 (ISSN et , DOI , lire en ligne, consulté le 29 avril 2022)
  8. a b c d e et f (en) Suresh V. Kuchipudi, Meera Surendran-Nair, Rachel M. Ruden et Michele Yon, « Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer », Proceedings of the National Academy of Sciences, vol. 119, no 6,‎ 8 février 2022, e2121644119 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 29 avril 2022)
  9. (en) Mitchell V. Palmer, Mathias Martins, Shollie Falkenberg et Alexandra Buckley, « Susceptibility of White-Tailed Deer (Odocoileus virginianus) to SARS-CoV-2 », Journal of Virology, vol. 95, no 11,‎ 10 mai 2021, e00083–21 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 29 avril 2022)
  10. a et b (en) Kurt J. Vandegrift, Michele Yon, Meera Surendran-Nair et Abhinay Gontu, Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer, Microbiology, 7 février 2022 (PMID , PMCID , DOI , lire en ligne)
  11. Andres Moreira-Soto, Christian Walzer, Gábor Á. Czirják et Martin H. Richter, « Serological Evidence That SARS-CoV-2 Has Not Emerged in Deer in Germany or Austria during the COVID-19 Pandemic », Microorganisms, vol. 10, no 4,‎ 30 mars 2022, p. 748 (ISSN , DOI , lire en ligne, consulté le 29 avril 2022)
  12. Konner Cool, Natasha N. Gaudreault, Igor Morozov et Jessie D. Trujillo, Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer, 16 août 2021 (lire en ligne)
  13. Daniel P. Oran et Eric J. Topol, « The Proportion of SARS-CoV-2 Infections That Are Asymptomatic », Annals of Internal Medicine, vol. 174, no 5,‎ mai 2021, p. 655–662 (ISSN et , DOI , lire en ligne, consulté le 29 avril 2022)
  14. a b et c (en) Vanessa L. Hale, Patricia M. Dennis, Dillon S. McBride et Jacqueline M. Nolting, « SARS-CoV-2 infection in free-ranging white-tailed deer », Nature, vol. 602, no 7897,‎ 17 février 2022, p. 481–486 (ISSN et , PMID , PMCID , DOI , lire en ligne, consulté le 29 avril 2022)
  15. (en) Jonathon D. Kotwa, Ariane Massé, Marianne Gagnier et Patryk Aftanas, « First detection of SARS-CoV-2 infection in Canadian wildlife identified in free-ranging white-tailed deer (Odocoileus virginianus) from southern Québec, Canada », biorxiv, Microbiology,‎ 21 janvier 2022 (DOI , lire en ligne, consulté le 29 avril 2022)
  16. a et b (en) Bradley Pickering, Oliver Lung, Finlay Maguire et Peter Kruczkiewicz, Highly divergent white-tailed deer SARS-CoV-2 with potential deer-to-human transmission, Microbiology, 25 février 2022 (DOI , lire en ligne)
  17. Daniel J O’Brien, Stephen M Schmitt, Jean S Fierke et Stephanie A Hogle, « Epidemiology of Mycobacterium bovis in free-ranging white-tailed deer, Michigan, USA, 1995–2000 », Preventive Veterinary Medicine, vol. 54, no 1,‎ mai 2002, p. 47–63 (ISSN , DOI , lire en ligne, consulté le 29 avril 2022)
  18. Figure 1 : Courbe épidémique montrant les cas hebdomadaires de SARS-CoV-2 (pour 100 000) chez l'homme et la variation mensuelle de la positivité du SARS-CoV-2 chez les cerfs de Virginie dans l'Iowa. Le diagramme figure notamment Le moment du premier échantillon positif identifié chez le cerf de Virginie le 28 septembre 2020 et le début et la fin de la saison de chasse au cerf de Virginie le 19 septembre 2020 et le 10 janvier 2021, respectivement pour le cerf et le Cerf de Virginie
  19. Aaron Bivins, Justin Greaves, Robert Fischer et Kwe Claude Yinda, « Persistence of SARS-CoV-2 in Water and Wastewater », Environmental Science & Technology Letters, vol. 7, no 12,‎ 7 octobre 2020, p. 937–942 (ISSN et , DOI , lire en ligne, consulté le 29 avril 2022)
  20. Kay Bernard, Angela Davis, Ian M. Simpson et Vanessa L. Hale, « Detection of SARS-CoV-2 in urban stormwater: An environmental reservoir and potential interface between human and animal sources », Science of The Total Environment, vol. 807,‎ février 2022, p. 151046 (ISSN , DOI , lire en ligne, consulté le 29 avril 2022)
  21. (en) Andrew D. Marques, Scott Sherrill-Mix, John K. Everett et Hriju Adhikari, Evolutionary Trajectories of SARS-CoV-2 Alpha and Delta Variants in White-Tailed Deer in Pennsylvania, Infectious Diseases (except HIV/AIDS), 19 février 2022 (DOI , lire en ligne)
  22. Jacques Prescott et Pierre Richard, Mammifères du Québec et de l'Est du Canada, Waterloo, Éditions Michel Quintin, 1996, 399 p. (ISBN 2-89435-081-3), p. 246–248

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Cerf de Virginie: Brief Summary ( French )

provided by wikipedia FR

Odocoileus virginianus • Chevreuil, Chevreuil de Virginie, Cariacou

Le cerf de Virginie (Odocoileus virginianus), couramment appelé biche des palétuviers en Guyane et chevreuil au Québec, en Louisiane et dans les régions canadiennes francophones, est un cervidé originaire d'Amérique (du Canada au Brésil). Il a été introduit dans de nombreux autres pays tels que la Finlande, l'ancienne Tchécoslovaquie ou encore la Nouvelle-Zélande.

Le cerf de Virginie est l'un des grands mammifères les plus communs de l'Amérique, considéré officiellement comme symbole national de la faune au Costa Rica et au Honduras.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Fia earrbhán Guatamalach ( Irish )

provided by wikipedia GA

Ainmhí is ea an fia earrbhán Guatamalach.


Ainmhí
Is síol ainmhí é an t-alt seo. Cuir leis, chun cuidiú leis an Vicipéid.
Má tá alt níos forbartha le fáil i dteanga eile, is féidir leat aistriúchán Gaeilge a dhéanamh.


license
cc-by-sa-3.0
copyright
Údair agus eagarthóirí Vicipéid
original
visit source
partner site
wikipedia GA

Cervo de cola branca ( Galician )

provided by wikipedia gl Galician

O cervo de cola branca (Odocoileus virginianus), tamén chamado cervo de Virxinia, é unha especie de mamífero artiodáctilo da familia dos cérvidos que se atopa en diferentes tipos de bosques de América, dende os canadenses, na rexión subártica, pasando polos bosques secos das ladeiras montañosas de México, as selvas húmidas tropicais de América Central e do Sur, até os bosques secos ecuatoriais do norte do Perú e outras áreas boscosas suramericanas.[2]

O 28 de xuño de 1993, o Congreso Nacional da República de Honduras instituíu ó cervo de cola branca como símbolo nacional da fauna do país.[3] Asemade, tamén foi declarado símbolo patrio da República de Costa Rica o 2 de maio de 1995.

Notas

  1. Gallina, S. & Lopez Arevalo, H. "{{{taxon}}}". Lista Vermella de especies ameazadas. (en inglés). Unión Internacional para a Conservación da Natureza.
  2. López-Arévalo, Hugo y Andrés González-Hernández 2006 Venado sabanero Odocoileus virginianus; Libro rojo de Mamíferos de Colombia: 114.
  3. Lo mejor de la fauna de Honduras, otro símbolo nacional. La Prensa, 15 de agosto de 2013.

Véxase tamén

Bibliografía

  • Gallina, C., S. Mandujano, J. Bello, H. López-Fernández e M. Weber. (2010.). Neotropical cervidology: Biology and medicine of Latin American deer.
  • White-tailed deer Odocoileus virginianus (Zimmermann, 1780). Pp. 101-118, In: Duarte, J. M. B. and González. S. (eds.), . Jaboticabal, Brazil: Funep and Gland, Switzerland, IUCN. 393 pp.
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Cervo de cola branca: Brief Summary ( Galician )

provided by wikipedia gl Galician

O cervo de cola branca (Odocoileus virginianus), tamén chamado cervo de Virxinia, é unha especie de mamífero artiodáctilo da familia dos cérvidos que se atopa en diferentes tipos de bosques de América, dende os canadenses, na rexión subártica, pasando polos bosques secos das ladeiras montañosas de México, as selvas húmidas tropicais de América Central e do Sur, até os bosques secos ecuatoriais do norte do Perú e outras áreas boscosas suramericanas.

O 28 de xuño de 1993, o Congreso Nacional da República de Honduras instituíu ó cervo de cola branca como símbolo nacional da fauna do país. Asemade, tamén foi declarado símbolo patrio da República de Costa Rica o 2 de maio de 1995.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia gl Galician

Bjelorepi jelen ( Croatian )

provided by wikipedia hr Croatian

Bjelorepi jelen (latinski: Odocoileus virginianus) je jelen podrijetlom iz SAD-a, Kanade, Meksika, Srednje i Južne Amerike, te s krajnjeg juga Perua. Također je uvezen u Novi Zeland tu u neke zemlje Europe, kao što su Finska, Češka i Srbija. U Sjevernoj i Južnoj Americi je najrašireniji divlji papkar.

Jelensko krzno je crvenkasto-smeđe boje u proljeće i ljeto, a pretvara se u sivo-smeđe tijekom jeseni i zime. Jelen se može prepoznati po karakterističnoj bijeloj donjoj strani repa, koji služi kao signal za uzbunu tijekom opasnosti. Postoji populacija bjelorepih jelena u državi New York koji su u potpunosti bijeli.

Bjelorepi jeleni su vrlo promjenjive veličine, prema Bergmannu je pravilo da prosječna veličina veća dalje od ekvatora. Mužjaci sjevernoameričkog jelena obično teže od 60 do 130 kg, ali u rijetkim slučajevima, može težiti više od 159 kg.[1]

Ženka u Sjevernoj Americi obično teži 40 do 90 kg. Jeleni iz tropskih krajeva i Florida Keysa su znatno manji u prosjeku od 35 do 50 kg. Jeleni u Andma su veći od drugih te imaju gustu dlaku koja izgleda kao krzno. Duljina varira od 95 do 220 cm, uključujući i rep od 10 do 36,5 cm , a visina u lopaticama je od 53 do 120 cm.

Bjelorepi jelen jede različite vrste hrane, najčešće jede mahunarke, izbojke s drveća, lišće, kaktus i trave. Oni također jedu žir, voće i kukuruz. Njihov poseban želudac omogućuje im da jedu neku hranu koju ljudi ne mogu, kao što su gljive i otrovni bršljan. Njihova prehrana ovisi o sezoni prema raspoloživosti izvora hrane. Također jedu sijeno, trave, bijelu djetelinu i drugu hranu koja se može naći u seoskim dvorištima.

Podvrste

 src=
O. v. truei, ženka, Kostarika
Tri primjerka O. v. borealis, New Hampshire
Abecedni popis podvrsta:[2][3]
 src=
Raspon, Središnja i Južna Amerika

Izvori

  1. The Outdoor Life Book of World Records. Outdoor Life pristupljeno 20. siječnja 2011.
  2. White-tailed deer, Mammals Species of the World. 3rd. ed.
  3. Cervidae, Deer's Life


Crystal 128 babelfish.svg Nedovršeni članak Bjelorepi jelen koji govori o životinjama treba dopuniti. Dopunite ga prema pravilima Wikipedije.

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije
original
visit source
partner site
wikipedia hr Croatian

Bjelorepi jelen: Brief Summary ( Croatian )

provided by wikipedia hr Croatian

Bjelorepi jelen (latinski: Odocoileus virginianus) je jelen podrijetlom iz SAD-a, Kanade, Meksika, Srednje i Južne Amerike, te s krajnjeg juga Perua. Također je uvezen u Novi Zeland tu u neke zemlje Europe, kao što su Finska, Češka i Srbija. U Sjevernoj i Južnoj Americi je najrašireniji divlji papkar.

Jelensko krzno je crvenkasto-smeđe boje u proljeće i ljeto, a pretvara se u sivo-smeđe tijekom jeseni i zime. Jelen se može prepoznati po karakterističnoj bijeloj donjoj strani repa, koji služi kao signal za uzbunu tijekom opasnosti. Postoji populacija bjelorepih jelena u državi New York koji su u potpunosti bijeli.

Bjelorepi jeleni su vrlo promjenjive veličine, prema Bergmannu je pravilo da prosječna veličina veća dalje od ekvatora. Mužjaci sjevernoameričkog jelena obično teže od 60 do 130 kg, ali u rijetkim slučajevima, može težiti više od 159 kg.

Ženka u Sjevernoj Americi obično teži 40 do 90 kg. Jeleni iz tropskih krajeva i Florida Keysa su znatno manji u prosjeku od 35 do 50 kg. Jeleni u Andma su veći od drugih te imaju gustu dlaku koja izgleda kao krzno. Duljina varira od 95 do 220 cm, uključujući i rep od 10 do 36,5 cm , a visina u lopaticama je od 53 do 120 cm.

Bjelorepi jelen jede različite vrste hrane, najčešće jede mahunarke, izbojke s drveća, lišće, kaktus i trave. Oni također jedu žir, voće i kukuruz. Njihov poseban želudac omogućuje im da jedu neku hranu koju ljudi ne mogu, kao što su gljive i otrovni bršljan. Njihova prehrana ovisi o sezoni prema raspoloživosti izvora hrane. Također jedu sijeno, trave, bijelu djetelinu i drugu hranu koja se može naći u seoskim dvorištima.

license
cc-by-sa-3.0
copyright
Autori i urednici Wikipedije
original
visit source
partner site
wikipedia hr Croatian

Odocoileus virginianus ( Italian )

provided by wikipedia IT

Il cervo dalla coda bianca o cervo della Virginia (Odocoileus virginianus) è un mammifero artiodattilo appartenente alla famiglia dei Cervidi.

Tassonomia

Sono note 30 sottospecie.

Distribuzione e habitat

 src=

Il suo areale comprende tutto il Nordamerica, dall'America Centrale alla Guayana, Venezuela e Colombia.

Descrizione

È un cervo di media grandezza, alto 1 m e 20 cm e del peso di 130 kg circa. Il mantello d'estate si presenta raso e di colore marrone chiaro, mentre diventa più folto e grigio durante l'inverno. I maschi sono più grandi di un terzo rispetto alle femmine. Presentano corna o più propriamente palchi ricurvi in avanti. Le ramificazioni crescono con l'avanzare dell'età fino a raggiungere il massimo sviluppo verso i 4 anni. Oltre questa età tendono a ridursi (la vita media di un cervo coda bianca è di 10 anni). Le femmine vivono in piccoli branchi, mentre i maschi conducono una vita solitaria, eccetto durante la stagione degli amori. e il cervo dalla coda bianca ci mette 3 ore per far nascere tre cuccioli

Biologia

Ottimi nuotatori, sbuffano o scalpitano in caso di pericolo immediato.

Predatori

Soffrono della caccia da parte di coyote, puma, ghiottoni, lupi e orsi neri. Quando vanno a bere, possono cadere vittime degli alligatori.

Curiosità

È stato utilizzato al posto del capriolo (non essendo presente sul suolo americano) nel film di Walt Disney Bambi, trasposizione cinematografica della favola austriaca Bambi, la vita di un capriolo.

Galleria d'immagini

Bibliografia

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Odocoileus virginianus: Brief Summary ( Italian )

provided by wikipedia IT

Il cervo dalla coda bianca o cervo della Virginia (Odocoileus virginianus) è un mammifero artiodattilo appartenente alla famiglia dei Cervidi.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Baltauodegis elnias ( Lithuanian )

provided by wikipedia LT
Binomas Odocoileus virginianus

Baltauodegis elnias (lot. Odocoileus virginianus) – elninių (Cervidae) šeimos žinduolis. Paplitęs nuo Kanados iki Pietų Amerikos šiaurinės dalies. Kūno ilgis apie 1,8-2,4 m, masė – iki 140 kg. Gyvena grupėmis. Ištikus pavojui pakelia uodegą ir švysteli ryškia balta apačia, tuo įspėdamas kitus bandos narius. Ragus meta apie vasario mėn, o nauji išauga balandžiogegužės mėn. Prieš rują nutrina ragus dengiančią odą, kad lieka vien kaulas.

 src=
Baltauodegio elnio paplitimas


Vikiteka

license
cc-by-sa-3.0
copyright
Vikipedijos autoriai ir redaktoriai
original
visit source
partner site
wikipedia LT

Baltauodegis elnias: Brief Summary ( Lithuanian )

provided by wikipedia LT

Baltauodegis elnias (lot. Odocoileus virginianus) – elninių (Cervidae) šeimos žinduolis. Paplitęs nuo Kanados iki Pietų Amerikos šiaurinės dalies. Kūno ilgis apie 1,8-2,4 m, masė – iki 140 kg. Gyvena grupėmis. Ištikus pavojui pakelia uodegą ir švysteli ryškia balta apačia, tuo įspėdamas kitus bandos narius. Ragus meta apie vasario mėn, o nauji išauga balandžiogegužės mėn. Prieš rują nutrina ragus dengiančią odą, kad lieka vien kaulas.

 src= Baltauodegio elnio paplitimas


Vikiteka

license
cc-by-sa-3.0
copyright
Vikipedijos autoriai ir redaktoriai
original
visit source
partner site
wikipedia LT

Baltastes briedis ( Latvian )

provided by wikipedia LV

Baltastes briedis (Odocoileus virginianus) ir briežu dzimtas (Cervidae) pārnadžu suga, kas sastopama abos Amerikas kontinentos, gan Ziemeļamerikā, gan Dienvidamerikā.

Izplatība

 src=
Baltastes briedis sastopams, sākot ar Kanādas dienvidiem un beidzot ar Peru un Bolīviju Dienvidamerikā
 src=
Briesmu gadījumos baltastes briedis izslien asti gaisā, kas plīvo kā balts karogs un brīdina visu baru
 src=
Ragu žuburojums ir atkarīgs no barības vielu vērtīguma, dzīvnieka vecuma un iedzimtības

Baltastes brieža dabiskais izplatības areāls aptver lielāko daļu Ziemeļamerikas un Dienvidamerikas ziemeļdaļu. Tas sastopams Kanādā, ASV, Meksikā, Centrālamerikā, izplatības areāla dienvidu robežai sasniedzot Peru un Bolīviju.[1] Amerikā tā ir visbiežāk sastopamā pārnadžu suga, kurai ir vislielākais izplatības areāls.

Baltastes briedis ir introducēts daudzās vietās pasaulē: Jaunzēlandē, Kubā, Jamaikā, Haiti, Puertoriko, Bahamās, Mazajās Antiļu salās, kā arī dažās Eiropas valstīs — Somijā, Čehijā, Slovākijā un Serbijā.[1][2][3][4]

Sistemātika

Baltastes briedim ir ļoti daudz pasugu, kuru izdalīšana galvenokārt balstās uz morfoloģiskajām atšķirībām, tomēr vairāku pasugu pamatojamība ir apšaubāma.[5][6] Pēdējo gadu ģenētiskie pētījumi liecina, ka pasugu skaitam vajadzētu būt mazākam, nekā mūsdienās (apmēram 30—40, atkarībā no tā, kurai sistemātikai seko) tiek izdalītas.[5]

Visbiežāk sastopamā pasuga ir nominālpasuga jeb Virdžīnijas baltastes briedis (O. virginianus virginianus), toties Floridas briedis (O. virginianus clavium) un Kolumbijas baltastes briedis (O. virginianus leucurus) ir apdraudētākās. Kopumā baltastes briedim ir milzīga ģenētiskā dažādība, suga ir piemērojusies ļoti dažādām vidēm un apstākļiem. Centrālamerikas un Dienvidamerikas pasugas ir ļoti sarežģīti pētīt, jo tās mājo grūti pieejamās vietās, daudzviet mūsdienās tās ir arī izmirušas.

Izskats

Baltastes briedis ir vidēji liels vai liels briežu dzimtas dzīvnieks. Tā kā sugai ir ļoti liels izplatības areāls, tās auguma atšķirības, atkarībā no ģeogrāfiskās vides, ir ievērojamas. Kopumā, jo tālāk no ekvatora dzīvo dzīvnieks, jo tas ir lielāks. Tā ķermeņa garums ir 95—200 cm, astes garums 10—36,5 cm, augstums skaustā 53–120 cm.[7][8]

Baltastes brieža tēviņš vidēji (ietverot visas pasugas) sver 68 kg, mātīte 45,3 kg.[9] Īpatņi, kas dzīvo izplatības areāla ziemeļos, var sasniegt 125 kg. Lielākais zināmais baltastes briedis ir svēris 232 kg.[10] Mātītes Ziemeļamerikā parasti sver 40–90 kg. Tropos dzīvojošās sver 35–50 kg, reizēm pat tikai 25 kg. Andu kalnu populācijas īpatņi, līdzīgi kā Ziemeļamerikas ziemeļu radinieki, arī ir lielāki, nekā tropos dzīvojošie. Arī to kažoks ir biezāks, garspalvaināks.

Kopumā baltastes brieža kažoks pavasarī un vasarā ir sarkanīgi brūns, bet rudenī un ziemā tas kļūst pelēkbrūns. Sugas pamanāmākā iezīme, kurai pateicoties tā ieguvusi arī savu nosaukumu, ir baltā astes apakšdaļa, kas redzama, kad dzīvnieks trauksmes stāvoklī to izslien stāvus gaisā kā baltu karogu, tādējādi brīdinot visus bara dzīvniekus. Astes virspuse ir brūna, tādā pašā krāsā kā ķermeņa matojums, tadēļ, kad tā nolaista lejā, ir tikpat kā nepamanāma. Ap acīm un purnu, kā arī zem zoda briedim ir balti laukumi. Šai sugai sastopama arī baltā morfa, kas nav albīni.

Ragi

Baltastes briežu tēviņiem ir žuburoti ragi, bet arī apmēram vienai no 10 000 mātītēm ir ragi, lai gan to saista ar hermafrodītismu.[11] Reizēm tēviņu ragiem nav žuburu, tad tie ir kā pīķi, kas var būt gan gari, gan īsi. Ragu lielumu nosaka pieejamais barības daudzums un tās vērtīgums, dzīvnieka vecums un iedzimtība. Ragu žuburojums parasti ir simetrisks., bet var būt arī asimetrisks žuburojums

Katru gadu ragi tiek mainīti. Jaunie ragi sāk augt pavasarī, bet tie tiek nomesti ziema, sākot ar decembri un beidzot ar februāri, pēc tam, kad beidzas pārošanās sezona. Pavasarī ragus sedz pūkaina, velvetam līdzīga āda. Apmēram pēc mēneša samtainā āda nolobās. Ja šajā periodā ragi tiek savainoti, ievainojums saglabājas visu gadu. Labos barošanās apstākļos, ar pietiekamu kalcija daudzumu, kā arī ar atbilstošu ģenētiku,[12] ragiem var būt līdz 8 žuburiem jau jaunam briedim, kurš ir tikai pusotra gada vecs,[13] tomēr ragu žuburojumu vairāk ietekmē vecums. Par tēviņa vecumu liecina arī tā kažoka krāsa. Jo briedis vecāks, jo kažoks sudrabaināks, kā arī tā purns kļūst arvien garāks. Amerikas mednieki, kas ir ieinteresēti skaistu ragu trofejās, uzskata, ka pīķu ragu brieži būtu jāizmedī, lai atbrīvotos no šīs ģenētiskās līnijas.[12]

Atšķirības no melnastes brieža

Salīdzinoši melnastes briedis vidēji ir lielāks nekā baltastes briedis. Vispamanāmākā atšķirība starp abām sugām ir ausu lielums. Melnastes briedim ausis ir daudz lielākas. Tā aste visbiežāk ir viscauri balta ar melnu astes galu (reizēm astes virspuse ir tumša, kā turpinājums muguras tumšajai viduslīnijai), toties baltastes briedim aste vienmēr ir balta tikai no apakšas, kā arī astes gals ir balts. Baltastes briedis, izslienot asti vertikāli gaisā, mēdz signalizēt par briesmām. Melnastes briedis asti neceļ un nelieto signalizēšanai.[14] Arī ragu struktūra abām sugām ir atšķirīga. Melnastes briedim ragu žuburi veidojas arī uz sānu zariem, bet baltastes briedim visi žuburi ir kā sānu zari, kas atdalās no galvenā stumbra. Kopumā melnastes brieža ragi ir lielāki un žuburotāki.[14]

Uzvedība

 src=
Baltastes briedis ir labs peldētājs un bieži no uzbrucējiem izbēg, metoties ūdenī
 src=
Riesta laikā tēviņi aizņemti nepārtrauktās savstarpējās cīņās par tiesībām sapāroties
 src=
Mazulis pirmās nedēļas tiek slēpts dziļā un biezā zālē

Baltastes briedis samērā ātri piemērojas jauniem apstākļiem un jauniem barības avotiem.[15] To var sastapt gan prērijā, gan mežā. Centrālamerikas tropos dzīvojošās populācijas priekšroku dod sausajiem platlapu koku mežiem, kas jaukti ar skujkokiem un kas robežojas ar savannu, kopumā izvairoties no mitriem un bieziem mežiem.[16]

Lai arī baltastes briedis viegli piemērojas jauniem apstākļiem, tas ir ļoti tramīgs un uzmanīgs dzīvnieks. Tas ir ļoti veikls un spēcīgs. Reljefā vidē briedis spēj sasniegt ātrumu 48 km/h.[7] Tas ir arī ļoti labs peldētājs un ļoti bieži no plēsējiem izbēg, metoties kādā lielā ūdenstilpnē. Ūdenī tas glābiņu meklē arī no kukaiņiem vasarā. Visu dzīvi baltastes briedis pavada samērā nelielā teritorijā, ļoti bieži tā nav lielāka par 1 km². Tas neveic arī nekādus sezoniālus pārceļojumus.[7] Baroties tie dodas krēslā: agri no rīta un pēcpusdienā līdz tumsai.[7]

Kopumā baltastes briedis ir vientuļnieks, īpaši vasarā. Izņēmums ir mātīte ar mazuļiem. Tomēr reizēm var novērot barus, kuros ganās vairāk kā 100 īpatņi.[7] Jaunās mātītes paliek kopā ar savām mātēm līdz 2 gadu vecumam, bet tēviņi pamet māti jau apmēram gada vecumā. Reizēm jaunie tēviņi veido nelielus vecpuišu barus, kuros ir 2—4 īpatņi, bet iestājoties riesta laikam, bars izjūk.[7] Riests sākas septembra sākumā. Šajā laikā tēviņi uzsāk savstarpējās cīņas, laužoties ar ragiem, lai iegūtu tiesības sapāroties.[7]

Barība

Baltastes briedis ir zālēdājs un barojas ar visdažādāko veģetāro barību. Tie ir dažādi lakstaugi un graudzāles, koku un krūmu zari, dzinumi, lapas, arī kaktusi un dažādi asie prēriju grīšļi un zāles. Baltastes brieži ēd arī zīles, kukurūzu un dažādus augļus. To gremošanas sistēma spēj tikt galā arī ar sēnēm un indīgiem augiem, piemēram, indīgo efeju (Toxicodendron radicans). Kā visiem atgremotājiem arī baltastes briedim ir četru kambaru kuņģis. Katram nodalījumam ir sava funkcija un nozīme barības sagremošanā.

Vairošanās

Lielākā daļa baltastes briežu dzimumbriedumu sasniedz 2 gadu vecumā, lai gan ļoti retos gadījumos jaunas mātītes sapārojas pat 7 mēnešu vecumā.[7] Kopumā baltastes brieži ir poligāmi, lai gan reizēm tēviņi paliek kopā ar kādu no mātītēm, sākot ar dažām dienām un beidzot ar dažām nedēļām, līdz mātītei sākas meklēšanās. Tas parasti notiek novembrī. Meklēšanās periods ir īss — 24 stundas.[7] Ja mātīte šajā laikā nesapārojas, nākamais meklēšanās periods pienāk pēc apmēram 28 dienām.

Grūsnības periods ilgst 6,5 mēnešus. Pirmajā grūsnības reizē parasti piedzimst viens mazulis, bet vecākām mātītēm dzimst 2 mazuli, ļoti retos gadījumos 3 vai 4 mazuļi. Uzreiz pēc piedzimšanas mazulis sāk staigāt, bet zāli tas sāk knibināt dažu dienu vecumā. Mātes, kamēr stirnēni ir ļoti mazi, tos rūpīgi slēpj biezā un garā zālē, ierodoties pie mazuļiem ik pa 4 stundām. Kamēr māte ir aizgājusi, mazulis guļ, pieplacis pie zemes ar izstieptu kaklu. Mazuļa sarkanbrūno kažociņu rotā balti raibumiņi, tadēļ stirnēns dabā ir grūti pamanāms. Savai mātei sekot mazuļi sāk, sasniedzot 4 nedēļu vecumu, bet 2 mēnešu vecumā tie sāk baroties ar zāli.[7]

Atsauces

  1. 1,0 1,1 IUCN: Odocoileus virginianus
  2. «Establishment of the Invasive White-tailed Deer in Portland, Jamaica». Arhivēts no oriģināla, laiks: 2016. gada 4. martā. Skatīts: 2016. gada 23. janvārī.
  3. White-tailed Deer (Odocoileus virginianus) in Cuba
  4. Overview of Impacts of Feral and Introduced Ungulates on the Environment in the Eastern United States and Caribbean
  5. 5,0 5,1 SPECIES: Odocoileus virginianus
  6. Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications
  7. 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 ADW: Odocoileus virginianus
  8. Boitani, Luigi, Simon & Schuster's Guide to Mammals. Simon & Schuster/Touchstone Books (1984), ISBN 978-0-671-42805-1
  9. Mammalian Species: Odocoileus virginianus
  10. The Outdoor Life Book of World Records
  11. Wislocki, G.B. (1954). "Antlers in Female Deer, with a Report of Three Cases in Odocoileus". Journal of Mammalogy 35 (4): 486–495. doi:10.2307/1375571
  12. 12,0 12,1 The Management of Spike Bucks in a White-Tailed Deer Population
  13. Understanding Spike Buck Harvest
  14. 14,0 14,1 «Columbia Blacktail Deer». Arhivēts no oriģināla, laiks: 2016. gada 13. martā. Skatīts: 2016. gada 25. janvārī.
  15. Christian Alejandro, Delfin Alfonso (2010). "Comparison of geographic distribution models of white-tailed deer Odocoileus virginianus (Zimmermann, 1780) subspecies in Mexico: biological and management implications". Therya 1 (1): 41–68.
  16. Brokx, P. A. (1984). White-tailed deer of South America. In: L.K. Halls (ed.), Ecology and Management of the White-Tailed Deer, pp. 525-546. Stackpole Company, Harrisburg, PA.

license
cc-by-sa-3.0
copyright
Wikipedia autori un redaktori
original
visit source
partner site
wikipedia LV

Baltastes briedis: Brief Summary ( Latvian )

provided by wikipedia LV

Baltastes briedis (Odocoileus virginianus) ir briežu dzimtas (Cervidae) pārnadžu suga, kas sastopama abos Amerikas kontinentos, gan Ziemeļamerikā, gan Dienvidamerikā.

license
cc-by-sa-3.0
copyright
Wikipedia autori un redaktori
original
visit source
partner site
wikipedia LV

Witstaarthert ( Dutch; Flemish )

provided by wikipedia NL

Het witstaarthert of Virginiaans hert (Odocoileus virginianus) is een Amerikaans hert. Hij komt voor in Zuid-Canada, de gehele VS behalve het zuidwesten, en geheel Midden-Amerika zuidwaarts tot Brazilië en Peru. Hij komt ook in een groot aantal habitats voor: van bossen tot woestijnen, van bergen tot moerassen. Zelfs in buitenwijken wordt het witstaarthert aangetroffen. De soort is ingevoerd in Nieuw-Zeeland, Finland, Tsjechië en Slowakije.

Herkenning

Het witstaarthert heeft een schofthoogte van 68 tot 114 centimeter, een staartlengte van 15 tot 33 centimeter en een kop-romplengte van 173 tot 180 centimeter. Mannetjes wegen 68 tot 141 kilogram, vrouwtjes 41 tot 96 kilogram. Enkele ondersoorten, als het Keyhert (O.v. clavium) uit de Florida Keys, worden niet zwaarder dan 23 kilogram.

In de zomer is de vacht roodachtig bruin, in de herfst verandert het in grijzig bruin. De onderzijde is wit, evenals een keelvlek, de kring om de ogen en de snuit en de binnenzijde van de oren. De bruine staart is aan de onderkant en op de punt wit, waaraan het dier zijn naam dankt. De bok draagt een gewei. De kalveren zijn gevlekt.

Gedrag

Het witstaarthert is een nachtdier dat zich ook regelmatig overdag laat zien. Overdag verbergt hij zich tussen de begroeiing, en 's avonds komt hij tevoorschijn.

Het witstaarthert gebruikt altijd dezelfde gangen, op zoek naar voedsel. Deze herbivoor voedt zich o.a. met grassen, kruiden en bladeren. Het witstaarthert eet 2¼ tot 4 kilogram aan voedsel per dag. Om dit dagelijks te verkrijgen, vult hij zijn menu 's zomers aan met waterplanten, in de herfst met noten en maïskolven en 's winters met twijgen en knoppen, bast, paddenstoelen en korstmossen. Het is ook vastgesteld dat ze soms de nesten van loopvogels leegroven.[2] Water haalt hij niet alleen uit zijn voedsel, en hij moet dus regelmatig drinken.

Witstaartherten zijn groepsdieren. Een groep bestaat uit bokken of uit een moeder met haar jongen. Een bokkengroep bestaat uit drie tot vijf dieren. In de groep heerst een hiërarchie. De herten dagen elkaar uit door te staren, het hoofd omhoog of omlaag te knikken of de oren te laten hangen. Een gevecht bestaat meestal uit schoppen. De hiërarchische volgorde wisselt regelmatig en valt uit elkaar bij het begin van de bronsttijd. 's Winters vormen de bokken en hindes samen grote kudden, tot wel honderdvijftig dieren. De dieren zijn niet territoriaal. Een hinde leidt de groep.

Poema en wolf zijn de belangrijkste natuurlijke vijanden van een wistaarthert. Bij gevaar maakt het witstaarthert snuivende geluiden en stampt hij met zijn hoeven. In de vlucht vlagt hij zijn staart, waarbij de grote witte vlek (de spiegel), die normaal wordt verborgen door de staart, zichtbaar wordt. Dit doet het hert om andere witstaartherten te waarschuwen. Via de witte vlek kan ook het kalfje de moeder volgen.

Witstaartherten zijn uitstekende zwemmers en renners. Het hert kan aan 58 kilometer per uur rennen. Ook kan hij 9 meter ver en 2,6 meter hoog springen.

Voortplanting

De bronsttijd duurt in Noord-Amerika slechts twee weken. In het noorden van het verspreidingsgebied valt de bronsttijd in november, meer naar het zuiden in januari en februari. Aan het begin van de bronsttijd vechten de bokken meer en meer om de hiërarchie in de bokkengroepen. Hierbij proberen ze elkaar weg te duwen. Na deze gevechten valt de groep uit elkaar, waarna de bokken op zoek gaan naar hinden. Eerst laten ze hun geur achter op een bepaalde plek. Hindes die op deze plek komen urineren daar, waarna de bokken hun geurspoor volgen. Een bok probeert met meerdere hindes te paren, maar het komt regelmatig voor dat een bok slechts één hinde dekt.

 src=
Kalfje

Na een draagtijd van 200 tot 205 dagen worden twee tot drie kalveren geboren (afhankelijk van het voedselaanbod). Een vrouwtje dat voor de eerste keer werpt krijgt meestal maar één jong. Het geboortegewicht is 1½ tot 3½ kilogram. Bij het foerageren laat de moeder de kalveren alleen, maar ze blijft in de buurt. De kalveren drukken zich dan tegen de grond, waarbij hun gevlekte vacht als schutkleur werkt. De jongen worden iedere vier uur gevoed.

Na twee en een halve maand worden de jongen gespeend en na drie tot vijf maanden verliezen ze hun gevlekte vacht. De kalveren blijven meer dan een jaar bij hun moeder. Soms blijven ze tot de volgende worp van de moeder. De moeder jaagt ze vaak weg voor de volgende worp, maar soms blijven ze nog een paar dagen. De vrouwelijke jongen sluiten zich soms weer aan bij het vrouwtje.

In het tweede jaar worden de dieren geslachtsrijp. Het witstaarthert wordt maximaal 15 jaar in het wild, 25 jaar in gevangenschap.

Trivia

  • Het witstaarthert stond model voor de Disney-versie het hertje Bambi. In het originele boek van Felix Salten is Bambi een ree.
  • Het witstaarthert is een belangrijk drager van de ziekte van Lyme, die via teken wordt verspreid.
Bronnen, noten en/of referenties
  1. (en) Witstaarthert op de IUCN Red List of Threatened Species.
  2. Kijk hoe hazen toeslaan als kannibalen op schokkende beelden. National Geographic (16 januari 2019). Geraadpleegd op 24 januari 2019.
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Witstaarthert: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL

Het witstaarthert of Virginiaans hert (Odocoileus virginianus) is een Amerikaans hert. Hij komt voor in Zuid-Canada, de gehele VS behalve het zuidwesten, en geheel Midden-Amerika zuidwaarts tot Brazilië en Peru. Hij komt ook in een groot aantal habitats voor: van bossen tot woestijnen, van bergen tot moerassen. Zelfs in buitenwijken wordt het witstaarthert aangetroffen. De soort is ingevoerd in Nieuw-Zeeland, Finland, Tsjechië en Slowakije.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Hvithalehjort ( Norwegian )

provided by wikipedia NO

Hvithalehjort (Odocoileus virginianus), eller virginiahjort, er et yndefullt og ganske stort medlem av hjortefamilien (Cervidae). Bukken (hanndyret) kan bli opptil 140 kg, mens hinden (hunndyret) kan nå en vekt på rundt 115 kg. Kalven har lyse flekker i den rødbrune pelsen. Felles for alle hvithalehjorter er den eiendommelige, melkehvite halen, som reiser seg når hvithalehjorten blir skremt og med det og varsler andre hjorter.

Atferd

 src=
Odocoileus virginianus

Hvithalejorten har utmerket hørsel, luktesans og syn, og kan lett finne ut om det finnes mennesker eller andre fiender rundt den. Selv når den spiser er den på vakt, og tar ofte småpauser i spisingen for å kikke seg rundt. Når en hvithalehjort oppdager at det er fare på ferde rundt den, løfter den hodet og stirrer i retning hvor faren befinner seg. Samtidig blir både hørselen og luktesansen skjerpet, for å fange opp alt som er mistenkelig.

Hvithalehjorten er for det meste et nattdyr, men man kan se den når som helst på dagen. De spiser for det meste tidlig om morgenen eller ved solnedgang. Om vinteren danner hvithalehjorten noen ganger enorme flokker på over hundre dyr.

Føde

Slik som andre hjortedyr beiter hvithalehjorten på gress og løvblader, samt frukter, urter og blomster. Maten varierer mye etter årstidene, og om vinteren da det er lite mat å finne, bruker den mer energi enn den klarer å finne. Dermed går hjorten ned i vekt. Slik som andre hjortetyper klarer hvithalehjorten å redusere fødeinntaket om vinteren for å unngå det store energitapet når den leter etter mat.

Forplantning

Hinden blir kjønnsmoden etter et år, mens bukken blir ikke kjønnsmoden før vanligvis rundt fire år og utover. Paringen skjer sent ut på høsten, og hinden har en drektighetsperiode på rundt 6 og en halv måned. Antall kalver som blir født øker ettersom hinden blir eldre; de yngste føder som regel kun én kalv, mens de eldre kan føde opptil tre.

Ungene til hvithalehjorten holder seg på et lite område med tett vegetasjon i de første ukene etter fødselen, selv om de kan både stå og gå. Kalven forblir ved sin mor i ett til to år.

Tilstand og utbredelse

 src=
Odocoileus virginianus

Hvithalehjorten finnes vilt over store deler av Amerika. Hjorten finnes i hele USA og de sørlige deler av Canada, og helt ned til Peru og Brasil i Sør-Amerika. I senere tid har den også blitt innført på både New Zealand og i Finland.

Hvithalehjorten var i en periode nær utryddelse i Nord-Amerika, men etter regulering av jakt har tallet tatt seg opp igjen. Av naturlige fiender ligger pumaen øverst, og man regner med at hele 3/4 av kosten til pumaen består av hvithalehjort.

Arten er funnet: Belize, Brasil, Canada (Alberta, Britisk Columbia, Labrador, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario, Prince Edward Island, Québec, Saskatchewan), Colombia, Costa Rica, Ecuador, El Salvador, Finland, Fransk Guyana, Guatemala, Guyana, Honduras, Mexico, Nicaragua, New Zealand, Panama, Peru, Slovakia, Surinam, Tsjekkia, USA (Alabama, Arizona, Arkansas, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Jersey, New Mexico, New York, Nord-Carolina, Nord-Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, Sør-Carolina, Sør-Dakota, Tennessee, Texas, Vermont, Virginia, Washington, Vest-Virginia, Wisconsin, Wyoming) og Venezuela.[1]

Referanser

  1. ^ a b Gallina, S. and Lopez Arevalo, H. 2016. Odocoileus virginianus. The IUCN Red List of Threatened Species 2016: e.T42394A22162580. Odocoileus virginianus. Besøkt 1. februar 2018.

Eksterne lenker

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Hvithalehjort: Brief Summary ( Norwegian )

provided by wikipedia NO

Hvithalehjort (Odocoileus virginianus), eller virginiahjort, er et yndefullt og ganske stort medlem av hjortefamilien (Cervidae). Bukken (hanndyret) kan bli opptil 140 kg, mens hinden (hunndyret) kan nå en vekt på rundt 115 kg. Kalven har lyse flekker i den rødbrune pelsen. Felles for alle hvithalehjorter er den eiendommelige, melkehvite halen, som reiser seg når hvithalehjorten blir skremt og med det og varsler andre hjorter.

license
cc-by-sa-3.0
copyright
Wikipedia forfattere og redaktører
original
visit source
partner site
wikipedia NO

Mulak białoogonowy ( Polish )

provided by wikipedia POL
Commons Multimedia w Wikimedia Commons

Mulak białoogonowy[3], jeleń wirginijski[4], jeleń wirgiński[4] (Odocoileus virginianus) – gatunek ssaka parzystokopytnego z rodziny jeleniowatych (Cervidae), pospolity na obszarze Ameryki Północnej, na południe od Kanady. Występuje także w południowej Kanadzie, w Meksyku i północnej części Ameryki Południowej, aż po Peru. W wyniku introdukcji mulaki białoogonowe można spotkać także w niektórych regionach północnej Europy. Mulaki białoogonowe zasiedlają różne biotopy. Mimo że zwykle preferuje obszary zalesione z niewielkimi otwartymi przestrzeniami, gatunek ten może się przystosować do życia w bardziej otwartym środowisku takim jak sawanna. Te ssaki charakteryzują się większym porożem proporcjonalnie do swojego rozmiaru oraz większymi ogonami. Dodatkowo istnieje znacząca różnica wielkości między samicą a samcem.

Żyje w małych stadach. Ruja w październiku; ciąża trwa ok. 200 dni. Występuje kilkadziesiąt podgatunków (najmniejszy na Florydzie).

Mulak białoogonowy jest najważniejszym zwierzęciem łownym Ameryki[5]. Widnieje w godle stanu Jukatan.

Nazewnictwo

W polskiej literaturze zoologicznej gatunek Odocoileus virginianus był oznaczany nazwą „jeleń wirgiński”[4] lub „wirginijski”[4]. W wydanej w 2015 roku przez Muzeum i Instytut Zoologii Polskiej Akademii Nauk publikacji „Polskie nazewnictwo ssaków świata” gatunkowi nadano nazwę „mulak białoogonowy”, rezerwując nazwę „jeleń” dla rodzaju Cervus[3].

Charakterystyka

 src=
Samiec w Kansas

Sierść mulaka jest czerwonawo-brązowa wiosną i latem i staje się szaro-brązowa na jesień i zimę. Mulaka można rozpoznać po charakterystycznym białym spodzie ogona, który ukazuje unosząc ogon podczas ucieczki.

Samiec (zwany także bykiem) waży zwykle od 60 do 100 kg, choć spotykano okazy ważące ponad 160 kg. Samica (łania) przeciętnie waży od 40 do 60 kg, ale niektóre osiągają nawet 75-80 kg.

Mulak białoogonowy osiąga 85–205 cm długości oraz 55–110 cm wysokości w kłębie[5].

Samce powyżej roku życia posiadają poroże. Poroże zaczyna rosnąc późną wiosną okryte scypułem. Byki mogą posiadać typowe lub nietypowe poroże. Typowe poroże jest symetryczne z odrostkami wyrastającymi ku górze bezpośrednio z pnia. Nietypowe poroże jest niesymetryczne, a odrostki rosną w dowolnych kierunkach. Te cechy nie są jednak jedynymi kryteriami podziału. Istnieją systemy punktowania poroża opierające się dodatkowo na pomiarach odstępstwa od symetrii. Zatem byki o niewielkiej asymetrii poroża również można uważać za typowe. Cechą charakterystyczną jest poroże wygięte do przodu. Wewnętrzna rozpiętość poroża jest różnorodna i może wynosić od 8 do 64 cm (3-25 cali). Byki zrzucają poroże po godach od późnego grudnia do lutego.

Występowanie

Hunter with buck.jpg

Nadmierne polowania i degradacja środowiska, w tym zmniejszenie powierzchni lasów, poważnie zmniejszyły populacje mulaków na większości zamieszkiwanych przez nie terenów. Przykładowo, do roku 1930 populacja gatunku w Stanach Zjednoczonych szacowana była na około 300 tysięcy sztuk. Po protestach myśliwych i ekologów zabroniono komercyjnego wykorzystywania mulaków, wprowadzono programy ochronne oraz uregulowano polowania. Według ostatnich szacunków, obecna populacja w Stanach Zjednoczonych wynosi około 30 milionów sztuk.

Działania ochronne okazały się tak skuteczne, że w niektórych rejonach populacja mulaków znacznie przekracza możliwości ekosystemu, a zwierzęta stały się problemem. Wypadki na drogach z udziałem mulaków są ważnym problemem w wielu częściach ich zasięgu występowania, zwłaszcza nocą i podczas rui, powodując ofiary zarówno wśród zwierząt, jak i ludzi. W przypadku dużych populacji jeleni, rolnicy mogą ucierpieć w wyniku szkód powodowanych w uprawach, zwłaszcza w sadach i na polach kukurydzy.

Gatunek jest uznawany za oficjalne zwierzę stanu (state animal) w stanach Arkansas, Illinois, Missisipi, New Hampshire, Ohio, Pensylwania, Michigan, Karolina Południowa i Wisconsin. Sylwetka byka widnieje w herbie oraz fladze Vermont. Największa populacja jeleni tego gatunku występuje w stanie Teksas (ponad cztery miliony sztuk). Duże skupiska występują w środkowym Teksasie i w stanach Michigan, Minnesota, Missisipi, New Jersey, New York i Pensylwania.

Mulak białoogonowy został sprowadzony w 1935 roku do Finlandii. Mulaki rozprzestrzeniły się ostatnio na tereny północnej Skandynawii i południowej Karelii, rywalizując i czasem wypierając lokalną faunę. Obecna populacja około 30 tys. mulaków została zapoczątkowana przez cztery zwierzęta sprowadzone z Minnesoty.

W wielu ze stanów w Stanach Zjednoczonych i w wielu kanadyjskich prowincjach, polowanie na mulaki białoogonowe jest głęboko zakorzenione w miejscowej kulturze i jest ważnym elementem gospodarki wielu terenów wiejskich.

W stanie Nowy Jork istnieje populacja całkowicie białych – ale nie albinosów – mulaków białoogonowych (z wyjątkiem nosów i okolic kopyt). Dzięki wytężonej ochronie populacja białych mulaków dobrze się rozwija.

W zachodnich częściach Stanów Zjednoczonych i Kanady zasięg występowania mulaków białoogonowych pokrywa się z zasięgiem występowania mulaków. W niektórych skrajnie północnych regionach współdzielą terytorium z łosiami. Mulaki białoogonowe spotyka się także na terytoriach wapiti głównie w lasach liściastych. W parkach narodowych ssaki te są bardziej płochliwe i szukają bardziej odosobnionych miejsc niż inne jeleniowate tam występujące.

Zachowanie i reprodukcja

 src=
Młode z matką

Ruja przypada na jesień, normalnie w późnym październiku lub wczesnym listopadzie, zainicjowana na ogół zmniejszającą się długością dnia. Dojrzewanie płciowe samic jest zależne od gęstości populacji. Samice mogą uzyskać dojrzałość w pierwszym roku życia, co jest jednak rzadkością i zdarza się jedynie w bardzo małych populacjach. Większość samic dojrzewa po pierwszym, lub czasami drugim roku życia.

Samce walczą o możliwość zapładniania samic. Potyczki między nimi ustalają hierarchię. Byki próbują kopulować z możliwie dużą liczbą samic, tracąc kondycję fizyczną, gdyż rzadko jedzą lub odpoczywają w czasie godów. Jak zaobserwowano, gody są krótsze na wyższych szerokościach geograficznych.

Samice rodzą jedno, dwa lub rzadko trzy młode w drugiej połowie wiosny, zwykle w maju lub czerwcu. Młode rodzą się z sierścią z charakterystycznymi białymi plamkami. Podczas pierwszego lata młode tracą plamki i osiągają masę ciała 20–35 kg do zimy. Młode płci męskiej są nieco większe i cięższe od samic.

Mulaki białoogonowe komunikują się na wiele różnych sposobów, poprzez dźwięki, zapach i ślady. Wszystkie osobniki są zdolne do wydawania słyszalnych dźwięków, unikatowych dla każdego zwierzęcia. Młode kwiczą by przywołać matki. Samice piszczą i chrząkają. Chrząkanie wydaje niski gardłowy dźwięk, który zwraca uwagę wszystkich jeleni w okolicy. Zarówno łanie, jak i byki prychają, w ten sposób sygnalizując zagrożenie. Dodatkowo byki chrząkają z wysokością dźwięku zmniejszającą się wraz z dojrzewaniem samca. Byki jako jedyne wydają dźwięk będący kombinacją charczenia, chrząkania i sapania, który ukazuje agresję i wrogość.

Mulaki białoogonowe posiadają wiele gruczołów, które pozwalają im na wytwarzanie substancji zapachowych. Niektóre z nich są tak silne, że są wyczuwalne nawet dla ludzi. Trzy główne gruczoły znajdują się przy oczach i wewnętrznej i zewnętrznej części tylnych nóg. Zapach z gruczołu przy oczach przenoszony jest na gałązki poprzez pocieranie głową. Gruczoły na tylnych nogach znajdują się u dołu zewnętrznej części nóg i substancje zapachowe przenoszone są w czasie przechodzenia przez trawę poprzez ocieranie o nią. Gruczoł znajdujący się po wewnętrznej stronie tylnych nóg, w okolicach kolan, produkuje substancję o najsilniejszej woni.

Podczas godów, mulaki kucają w taki sposób, by mocz spływał po wewnętrznej stronie ich nóg. Następnie pocierają znajdujące się tam gruczoły wcierając mocz w znajdującą się tam sierść. Wydzielina gruczołu w połączeniu w moczem wydaje bardzo intensywny zapach. Ponadto samice uwalniają hormony i feromony informujące byki o gotowości seksualnej.

Zostawianie znaków jest jednym ze sposobów komunikacji mulaków. Większość śladów zostawiają samce, lecz samice często odwiedzają oznakowane miejsca. Jedną z form znakowania jest zdzieranie kory z drzew. Samiec zrywa korę za pomocą poroża znacząc terytorium i polerując poroże. Kolejnym sposobem znaczenia terytorium jest tworzenie na ziemi linii posługując się kopytami, by kopiąc odsłonić ściółkę, aż do ziemi. Następnie samce znaczą ziemię w tych miejscach moczem.

Pożywienie

Mulaki żywią się różnorodnymi roślinami – młodymi pędami, liśćmi oraz trawami. Specjalna budowa żołądka pozwala im jeść również grzyby, które są niejadalne dla ludzi. Dieta mulaków zmienia się w zależności od pory roku.

Przypisy

  1. Odocoileus virginianus, w: Integrated Taxonomic Information System (ang.).
  2. Gallina, S. & Lopez Arevalo, H. 2008, Odocoileus virginianus [w:] The IUCN Red List of Threatened Species 2015 [online], wersja 2015.2 [dostęp 2015-09-03] (ang.).
  3. a b Nazwa polska za: Włodzimierz Cichocki, Agnieszka Ważna, Jan Cichocki, Ewa Rajska, Artur Jasiński, Wiesław Bogdanowicz: Polskie nazewnictwo ssaków świata. Warszawa: Muzeum i Instytut Zoologii PAN, 2015, s. 173. ISBN 978-83-88147-15-9.
  4. a b c d K. Kowalski (redaktor naukowy), A. Krzanowski, H. Kubiak, G. Rzebik-Kowalska, L. Sych: Ssaki. Wyd. IV. Warszawa: Wiedza Powszechna, 1991, s. 117, seria: Mały słownik zoologiczny. ISBN 83-214-0637-8.
  5. a b Halina Komosińska, Elżbieta Podsiadło: Ssaki kopytne. Przewodnik. Warszawa: Wydawnictwo Naukowe PWN, 2002. ISBN 83-01-13806-8.

Bibliografia

  • Dewey, T. & Animal Diversity WebT.& A.D.W. Staff T. & Animal Diversity WebT.& A.D.W., Odocoileus virginianus, (On-line), Animal Diversity Web, 2003 (ang.).data dostępu?
  • Halina Komosińska, Elżbieta Podsiadło: Ssaki kopytne: przewodnik. Warszawa: Wydawnictwo Naukowe PWN, 2002. ISBN 83-01-13806-8.
license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Mulak białoogonowy: Brief Summary ( Polish )

provided by wikipedia POL

Mulak białoogonowy, jeleń wirginijski, jeleń wirgiński (Odocoileus virginianus) – gatunek ssaka parzystokopytnego z rodziny jeleniowatych (Cervidae), pospolity na obszarze Ameryki Północnej, na południe od Kanady. Występuje także w południowej Kanadzie, w Meksyku i północnej części Ameryki Południowej, aż po Peru. W wyniku introdukcji mulaki białoogonowe można spotkać także w niektórych regionach północnej Europy. Mulaki białoogonowe zasiedlają różne biotopy. Mimo że zwykle preferuje obszary zalesione z niewielkimi otwartymi przestrzeniami, gatunek ten może się przystosować do życia w bardziej otwartym środowisku takim jak sawanna. Te ssaki charakteryzują się większym porożem proporcjonalnie do swojego rozmiaru oraz większymi ogonami. Dodatkowo istnieje znacząca różnica wielkości między samicą a samcem.

Żyje w małych stadach. Ruja w październiku; ciąża trwa ok. 200 dni. Występuje kilkadziesiąt podgatunków (najmniejszy na Florydzie).

Mulak białoogonowy jest najważniejszym zwierzęciem łownym Ameryki. Widnieje w godle stanu Jukatan.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Cariacu ( Portuguese )

provided by wikipedia PT

O cariacu, veado-da-virgínia, veado-galheiro ou veado-de-cauda-branca (Odocoileus virginianus) é uma espécie de veado encontrado do sul do Canadá ao norte do Brasil. Estes animais chegam a medir até 2 metros de comprimento e 1 metro de altura, com pelagem dorsal avermelhada, garganta e barriga brancas e chifres ramificados.

Taxonomia

 src=
Veado agitando sua cauda branca.

Até recentemente, alguns autores tentaram dividir O. virginianus em várias subespécies, baseando-se em caracteres morfológicos. Estudos moleculares, entretanto, sugerem que há menos subespécies do que é proposto. Nos Estados Unidos, O. virginianus virginianus é a subespécie mais difundida. A variabilidade genética é muito grande dentro da espécie e ela é adaptável a vários ambientes. Várias populações locais, especialmente em estados do sul, são descendentes de animais translocados de várias localidades do leste da Divisória Continental da América do Norte.

A América Central e Sul possuem um complexo número de subespécies de cariacu, que ocorrem desde a Guatemala até o Peru. A lista de subespécies é maior do que das que ocorrem na América do Norte e essa quantidade também é questionável. Entretanto, as populações de cariacu são difíceis de estudar, devido à caça excessiva. Algumas áreas já não possuem mais populações da espécie, o que dificulta o estabelecimento de estudos genéticos.

Subespécies

 src=
O. v. truei, fêmea, Costa Rica
Três O. v. borealis, New Hampshire

Algumas subespécies:[1]

Descrição

O pelo deste cervídeo muda de cor e espessura de acordo com as estações do ano. Apresenta pernas fortes que o permitem correr a altas velocidades. Somente os machos apresentam hastes que caem e mudam todos os anos. Apresenta uma cauda branca, que eleva quando pressente algum perigo para poder sinalizar alarme, daí também ser conhecido por veado-de-cauda-branca.

 src=
Veado-da-vírginia macho

Estes animais são, por natureza, assustados e estão constantemente em alerta para qualquer perigo que possa haver. Felizmente a sua capacidade de correr a alta velocidade torna-o um alvo difícil para qualquer predador esfomeado, como os lobos.

Os veados-da-virgínia passam a maior parte do tempo à procura de alimento e a pastar e têm por hábito criar grupos familiares (compostos por fêmeas e crias de diferentes idades). Os machos levam uma vida solitário, apesar de ocasionalmente poderem formar pequenos grupos. As pequenas unidades reúnem-se no Inverno.

A época de acasalamento pode ser violenta, pois os machos competem entre si pelo direito de acasalar com as fêmeas.

Os recém-nascidos são capazes de se levantar após algumas horas e de correr após três semanas. Os jovens são desmamados quatro semanas depois, mesmo assim, as crias ficam com a genitora durante dois ou mais anos. Durante o dia as genitoras, deixam os seus filhos sozinhos para evitar de chamar a atenção dos predadores.

Dieta

A dieta destes animais é composta por diversos tipos de vegetais. Os que vivem nas florestas mais a Leste preferem ervas, cogumelos e, também, rebentos e ramos de árvores. Em condições desérticas mais rigorosas, sobrevivem com plantas mais duras, tais como cactos, iúcas e arbustos. Durante os meses de Inverno, quando as fontes de alimentos são difíceis de encontrar, o veado come ramos e folhas coníferas.

Distribuição

O veado-da-virgínia vive numa série de hábitats diferentes, desde montanhas a semi-desertos, de pradarias a florestas temperadas e coníferas. A sua distribuição estende-se do Sul do Canadá ao Nordeste Brasileiro, passando pelos EUA e pelo México.

Referências

  1. a b Grubb, P. (2005). Wilson, D.E.; Reeder, D.M. (eds.), ed. Mammal Species of the World 3 ed. Baltimore: Johns Hopkins University Press. pp. 637–722. ISBN 978-0-8018-8221-0. OCLC 62265494 !CS1 manut: Nomes múltiplos: lista de editores (link)
  2. Gallina, S. & Lopez Arevalo, H. (2008). Odocoileus virginianus (em inglês). IUCN 2013. Lista Vermelha de Espécies Ameaçadas da IUCN de 2013 . Página visitada em 2 de fevereiro de 2014..
  3. http://wdfw.wa.gov/living/deer.html#species Em falta ou vazio |título= (ajuda)
 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Cariacu: Brief Summary ( Portuguese )

provided by wikipedia PT

O cariacu, veado-da-virgínia, veado-galheiro ou veado-de-cauda-branca (Odocoileus virginianus) é uma espécie de veado encontrado do sul do Canadá ao norte do Brasil. Estes animais chegam a medir até 2 metros de comprimento e 1 metro de altura, com pelagem dorsal avermelhada, garganta e barriga brancas e chifres ramificados.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Vitsvanshjort ( Swedish )

provided by wikipedia SV

Vitsvanshjort (Odocoileus virginianus) är en amerikansk art inom familjen hjortdjur. Hanen (bocken) kan vara upp till 2,40 meter lång (mankhöjden är vanligtvis omkring en meter) och upp till 170 kg. Hindar kan nå en vikt på 110 kg.

Utbredning

 src=
Underarten O. v. clavium förekommer på Florida Keys.

Vitsvanshjortens utbredningsområde sträcker sig från västra och södra Kanada över USA, Mexiko och Centralamerika till norra Brasilien. Isolerade populationer lever i Ecuador och Bolivia. Habitatet är mycket variabelt och kan vara fuktiga regnskogar, tempererade skogar, savanner, buskmarker eller odlade regioner. I New Mexico lever den till exempel i en ökenlik omgivning, medan i nordliga Kanada lever den i bergstrakter.[1][2]

Arten introducerades i Finland, Nya Zeeland, Slovakien och Tjeckien.[1]

Hjorten återfinns i 48 stater i Förenta staterna och är känd att kunna anpassa sig till miljön. I början på 1930-talet fanns cirka 300 000 vitsvanshjortar. Men olika bevaringsprojekt, inklusive inplantering i Norden, har gjort att den överlevt utrotning. Moderna uppskattningar beräknar antalet vitsvanshjortar till cirka 30 miljoner. Vitsvanshjorten är ett av de populäraste jaktvilten i Nordamerika. Speciellt i stater som Minnesota och Wisconsin är hjortjakten en stor begivenhet som liknar den svenska älgjakten.[källa behövs]

Inplantering i Finland

Vitsvanshjorten inplanterades i Finland på Laukko herrgårds mark under 1930-talet och blev ett av världens mest lyckade inplanteringsprojekt, då den blivit ett viktigt vilt. Inplanteringen har också medfört problem, bland annat genom att hjorten är värd för vissa parasiter. Den upptar mer eller mindre samma ekologiska nisch som skogsvildrenen, som var utdöd i Finland då vitsvanshjorten inplanterades.

En grupp amerikafinländare beslöt på 1930-talet donera hjortar till Finland. De grundade en kommitté och samlade in behövliga medel. De första djuren anlände till Helsingfors hamn den 8 september 1934. De hade varit åtta, men ett dog innan lastning och två under färdens sista dag. 1984 hämtades ytterligare sex djur med flyg, varav två dog under resan. Ytterligare två hindar dog utan att ha kalvat. Stammen härstammar alltså från sju individer. Trots det lilla antalet verkar inavel inte ha varit ett problem.[3]

Vitsvanshjorten har börjat spridas i nordligaste Sverige, vid gränsen till Finland. Enskilda individer har också invandrat till Ryssland. Den anses problematisk för jordbruk och trafik. I Sverige har man ställt sig negativ till invandringen av vitsvanshjort från Finland, både därför att det är en för faunan främmande art och därför att den är värd för en hjärnparasit som kan angripa älg. Den är[3] också huvudvärd för rundmasken Rumenfilaria andersoni, som sedermera spridit sig till bland annat ren och älg.

Utseende

Pälsen har på sommaren en rödaktig färg och är på ovansidan mörkare än vid buken, vinterpälsen är grå.[4] Som namnet antyder har svansen en vit undersida, ovansidan är brun. Under flykten riktas svansen upp så att den vita delen är synlig. Vanligen bär bara hannar horn. Hornen kastas efter parningstiden och bildas sedan på nytt. Honor med horn påträffas endast i mycket sällsynta fall.[5]

Storleken är beroende på utbredningsområde och höjd över havet. Hannar av de största populationerna når en absolut längd av 1,0 till 2,4 meter inklusive den 10 till 36 cm långa svansen. De har en mankhöjd av 53 till 107 cm och en vikt av 90 till 135 kg. Honor av samma population är upp till 40 procent lättare.[4] Underarter i södra delen av utbredningsområdet är oftast mindre. Vitsvanshjortar som lever på Florida Keys når bara en mankhöjd omkring 80 centimeter och en vikt vid 35 till 50 kilogram (dvärgväxt på öar), vissa honor väger bara 25,5 kilogram.[6]

Ekologi

Vitsvanshjorten lever vanligen ensam men det förekommer även mindre grupper som oftast består av en hind med kalvar. I sällsynta fall påträffas större flockar med upp till 100 individer.[7] Individerna eller flockarna uppehåller sig i fasta revir men territorierna kan överlappa varandra och de försvaras inte mot artfränder. Revirets storlek är beroende på tillgång till föda och framkomligheten bland vegetationen. Allmänt varierar storleken mellan 60 och 520 hektar men i täta regnskogar är reviret endast 34 hektar stort.[1] Särskilt under parningstiden syns flera bockar och hindar tillsammans. Hanarna försöker få kontroll över en hona men i motsats till wapitihjortar upprättar de inget harem.[7]

Efter dräktigheten som varar i cirka 200 dagar föder honan ett eller två, sällan tre eller fyra, ungar. Liksom ungar av andra hjortdjur har de vita fläckar på kroppen som försvinner efter 3 till 4 månader.[4] Unga honor stannar vanligen två år hos modern och unga hannar lämnar modern under första levnadsåret. Könsmognaden infaller för honor efter ett och för hannar efter två år. Vid den första dräktigheten har hinden vanligen bara en kalv.[7] Livslängden når i naturen upp till tio år men de flesta lever endast två till tre år. Enstaka individer i fångenskap blev 20 år gamla.[7]

Födan utgörs bland annat av blad, gräs, knopp, bär och trädens bark.[4] Arten har utöver människan flera naturliga fiender som vargar, pumor, björnar och prärievargar samt i Central- och Sydamerika jaguaren.[7]

Referenser

Den här artikeln är helt eller delvis baserad på material från tyskspråkiga Wikipedia, 12 november 2009.

Noter

  1. ^ [a b c d] Gallina, S. & Lopez Arevalo, H. 2008 Odocoileus virginianus. Från: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. <www.iucnredlist.org>. Läst 24 november 2010.
  2. ^ Lindblad 1984, s. 100
  3. ^ [a b] Arja Kivipelto: Peura toi riesan poroille. Helsingin Sanomat 23 december 2015, ss B14–15
  4. ^ [a b c d] Smith, Winston Paul (6 november 1991). Odocoileus virginianus (på engelska). Mammalian Species. American Society of Mammalogists. http://www.science.smith.edu/departments/Biology/VHAYSSEN/msi/pdf/i0076-3519-388-01-0001.pdf. Läst 3 juni 2012.
  5. ^ Wislocki G.B. 1954 Antlers in Female Deer, with a Report of Three Cases in Odocoileus. Journal of Mammalogy 35(4):486-495.
  6. ^ ”White-tailed deer and red brocket deer of Costa Rican Fauna”. 1-costaricalink.com. Arkiverad från originalet den 30 december 2010. https://web.archive.org/web/20101230160737/http://1-costaricalink.com/costa_rica_information/deer.htm. Läst 20 februari 2011.
  7. ^ [a b c d e] Dewey, T. (13 april 2003). Odocoileus virginianus (på engelska). Animal Diversity Web. University of Michigan. http://animaldiversity.ummz.umich.edu/site/accounts/information/Odocoileus_virginianus.html. Läst 3 juni 2012.

Tryckta källor

  • Den Stora Boken om Jakt. Nordbok Förlag, Göteborg. 1980
  • Jan Lindblad (1984). Mina tropiska världar. ISBN 91-34-50478-8
license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Vitsvanshjort: Brief Summary ( Swedish )

provided by wikipedia SV

Vitsvanshjort (Odocoileus virginianus) är en amerikansk art inom familjen hjortdjur. Hanen (bocken) kan vara upp till 2,40 meter lång (mankhöjden är vanligtvis omkring en meter) och upp till 170 kg. Hindar kan nå en vikt på 110 kg.

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Ak kuyruklu geyik ( Turkish )

provided by wikipedia TR

Ak kuyruklu geyik (Odocoileus virginianus), geyikgiller (Cervidae) familyasından Kuzey Amerika'da sıkça rastlanan, erkeklerinde ağaç dallarına benzer boynuzlar olan, otçul bir yabani hayvan.

Stub icon Çift toynaklılar ile ilgili bu madde bir taslaktır. Madde içeriğini geliştirerek Vikipedi'ye katkıda bulunabilirsiniz.
license
cc-by-sa-3.0
copyright
Wikipedia yazarları ve editörleri
original
visit source
partner site
wikipedia TR

Олень білохвостий ( Ukrainian )

provided by wikipedia UK

Зовнішній вигляд

 src=
Білохвостий олень, що біжить по полю

Взимку шерсть яскраво-сіра, а влітку набуває червонуватого відтінку, зверху трохи сильніше, ніж знизу.

Своєю назвою даний вид пов'язаний з хвостом, верхня сторона якого коричнева, а нижня — біла. Тікаючи, цей олень піднімає хвіст, сигналізуючи родичам про небезпеку. Роги носять тільки самці. Після шлюбного сезону вони скидають роги, а на їх місці починають утворюватися нові. Обидва роги мають форму півмісяця, опуклого вперед і в сторони. На кожному з рогів від шести до семи відростків.

Величина білохвостого оленя варіює залежно від підвиду. У тварин, що мешкають на півночі США, висота в загривку становить 1,0-1,1 м, а вага самця становить від 100 до 150 кг. Самки трохи менше і легше. У міру просування на південь, підвиди стають менше. На островах Флорида-Кіс живуть білохвості олені з середньою величиною в холці 60 см і вагою 35 кг, що є наслідком острівної карликовості. Тривалість життя становить приблизно десять років.

Поширення

Білохвостий олень поширений від півдня Канади до Перу і півночі Бразилії. Він відноситься до найпоширеніших видів родини оленевих, пристосувавшись до різних середовищ існування. Цього оленя можна зустріти як у великих лісах Нової Англії, так і в прерії, в болотах Еверглейдс, в напівпустелях Мексики і Аризони. У Південній Америці він населяє тугайні ліси, прибережні чагарникові савани і північні схили Анд, проте відсутня в дощових лісах. У Центральній і Південній Америці білохвостий олень зустрічається, як правило, більш рідко, ніж у Північній.

Білохвості олені були інтродуковані і в інших частинах світу. У 1950-ті-х роках їх завезли до Фінляндії, звідки вони самостійно поширилися в інші країни Скандинавії. У Чехії також є завезена популяція. Крім того, білохвостий олень є одним із семи видів оленів, які були завезені до Нової Зеландії для полювання.

Поведінка

 src=
Дитинча в траві

Білохвостий олень веде в цілому скоріше одиночний спосіб життя, ніж у групі. Тим не менш, поза шлюбних сезонів самки і самці час від часу утворюють неміцні групи. Для спарювання самці знаходять собі окремих самок і, на відміну від вапіті, не намагаються стати господарем гарему. Після 200-денної вагітності самки народжують на світ від одного до двох, зрідка трьох, дитинчат. Як і у багатьох видів, шерсть дитинчат білохвостого оленя після народження всіяна білими плямами.

Білохвостий олень харчується листям, травами, бруньками, ягодами та іншими дикими плодами, а також корою. У нього є безліч ворогів. Крім людини, ними є вовки, пуми, ведмеді і койот, в Південній Америці також ягуари.

Загрози і захист

 src=
Самка, Коста-Рика

Перед появою європейців у Північній Америці мешкала за деякими оцінками близько 40 мільйонів білохвостих оленів. На них полювали індіанці, що однак не мало впливу на чисельність популяцій. Колоністи почали полювати на оленів через їхні шкіри, а також просто для розваги. До 1900 року чисельність білохвостого оленя різко скоротилася, поки не досягла всього 500 тисяч особин. З тих пір обмеження полювання призвели до значного поліпшення, проте ситуація все ще сильно відрізняється залежно від регіону. У деяких регіонах, наприклад прилеглих до Великих озер, білохвості олені зустрічаються так само часто, як і раніше. У цілому, популяція цього виду в США оцінюється в 14 мільйонів особин.

Деякі підвиди вважаються майже мертвими і складаються в Червоному списку МСОП. До них відносяться

  • Рифовий олень (лат. Odocoileus virginianus clavium), що мешкають на островах Флорида-Кіш. Це найдрібніший підвид білохвостого оленя. Через інтенсивне полювання в 1945 році залишилося лише 26 особин. Масштабні заходи щодо захисту цих тварин дозволили чисельності зрости до 300 особин в наші дні, однак посилюється туризм на островах дає привід для занепокоєння. Майже всі рифові олені живуть на островах No Name Key і Big Pine Key. Іноді олені досягають вплав і сусідні острови, проте відсутність там питної води змушує їх повертатися. МСОП оцінює цей підвид як сильно загрозливий.
  • Колумбійський білохвостий олень (лат. Odocoileus virginianus leucurus), названий на честь річки Колумбія в штатах Вашингтон і Орегон. Його чисельність внаслідок руйнування людиною життєвого простору тимчасово впала до 400 особин. Сьогодні існують 3000 цих тварин, через що Служба рибних ресурсів та дикої природи США в 2003 році вирішила викреслити колумбійського білохвостого оленя зі списку загрозливих тварин. У МСОП даний підвид оцінюється як мало загрозливий.

Різне

Найближчим родичем білохвостого оленя є Олень чорнохвостий. Обидва види можуть давати плідне потомство і іноді можна зустріти гібридів обох видів.

Примітки

  1. Соколов В. Е. П'ятимовний словник назв тварин. Ссавці. — 1984. — С. 127. — 10 000 экз.

Посилання

license
cc-by-sa-3.0
copyright
Автори та редактори Вікіпедії
original
visit source
partner site
wikipedia UK

Hươu đuôi trắng ( Vietnamese )

provided by wikipedia VI

Hươu đuôi trắng (danh pháp khoa học: Odocoileus virginianus) là một loài hươu có kích thước trung bình, là loài bản địa Hoa Kỳ (trừ năm tiểu bang không có loài này hiện diện), Canada, México, Trung Mỹ, và Nam Mỹ đến phía nam tận Peru. Nó cũng được nhập nội vào New Zealand và vài quốc gia châu Âu như Phần Lan, Cộng hòa SécSerbia. Ở châu Mỹ, nó là loài móng guốc phân bố rộng rãi nhất.

 src=
Một con hươu đuôi trắng đực

Chú thích

  1. ^ Gallina, S. & Lopez Arevalo, H. (2008). Odocoileus virginianus. 2008 Sách đỏ IUCN. Liên minh Bảo tồn Thiên nhiên Quốc tế 2008. Truy cập ngày 8 tháng 4 năm 2009. Database entry includes a brief justification of why this species is of least concern.

Tham khảo


Hình tượng sơ khai Bài viết về chủ đề Bộ Guốc chẵn này vẫn còn sơ khai. Bạn có thể giúp Wikipedia bằng cách mở rộng nội dung để bài được hoàn chỉnh hơn.
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Hươu đuôi trắng: Brief Summary ( Vietnamese )

provided by wikipedia VI

Hươu đuôi trắng (danh pháp khoa học: Odocoileus virginianus) là một loài hươu có kích thước trung bình, là loài bản địa Hoa Kỳ (trừ năm tiểu bang không có loài này hiện diện), Canada, México, Trung Mỹ, và Nam Mỹ đến phía nam tận Peru. Nó cũng được nhập nội vào New Zealand và vài quốc gia châu Âu như Phần Lan, Cộng hòa SécSerbia. Ở châu Mỹ, nó là loài móng guốc phân bố rộng rãi nhất.

 src= Một con hươu đuôi trắng đực
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Белохвостый олень ( Russian )

provided by wikipedia русскую Википедию
 src=
Самка, Коста-Рика

Перед появлением европейцев в Северной Америке обитало по некоторым оценкам около 40 миллионов белохвостых оленей. На них охотились индейцы, что однако не имело влияния на численность популяций. Колонисты начали охотиться на оленей из-за их шкуры, а также просто для развлечения. До 1900 года численность белохвостого оленя резко сократилась, пока не достигла всего 500 тысяч особей. С тех пор ограничения охоты привели к значительному улучшению, однако ситуация всё ещё сильно разнится в зависимости от региона. В некоторых регионах, например прилегающих к Великим озёрам, белохвостые олени встречаются столь же часто, как и раньше. В целом, популяция этого вида в США оценивается в 14 миллионов особей.

Некоторые подвиды считаются почти вымершими и состоят в Красном списке МСОП. К ним относятся:

  • Флоридский островной олень[3] (Odocoileus virginianus clavium), обитающий на островах Флорида-Кис. Это наиболее мелкий подвид белохвостого оленя. Из-за интенсивной охоты в 1945 году их осталось всего 26 особей. Масштабные меры по защите этих животных позволили численности возрасти до 300 особей в наши дни, однако усиливающийся туризм на островах даёт повод для беспокойства. Почти все рифовые олени живут на островах No Name Key и Big Pine Key. Иногда олени достигают вплавь и соседних островов, однако отсутствие там питьевой воды заставляет их возвращаться. МСОП оценивает этот подвид как находящийся в серьёзной опасности.
  • Колумбийский белохвостый олень (Odocoileus virginianus leucurus), назван в честь реки Колумбия в штатах Вашингтон и Орегон. Его численность вследствие разрушения человеком жизненного пространства упала до 400 особей. Сегодня существуют 3000 особей этих животных, из-за чего Служба рыбных ресурсов и дикой природы США в 2003 году решила вычеркнуть колумбийского белохвостого оленя из списка угрожаемых видов. В МСОП данный подвид оценивается как находящийся в наименьшей опасности.

Разное

Ближайшим родственником белохвостого оленя является чернохвостый олень. Оба вида могут производить плодовитое потомство, и иногда можно встретить гибридов обоих видов.

Примечания

  1. Белохвостый олень (англ.) по данным Объединённой таксономической информационной службы (ITIS).
  2. 1 2 Соколов В. Е. Пятиязычный словарь названий животных. Млекопитающие. Латинский, русский, английский, немецкий, французский. / под общей редакцией акад. В. Е. Соколова. — М.: Рус. яз., 1984. — С. 127. — 10 000 экз.
  3. Фишер Д., Саймон Н., Винсент Д. Красная книга. Дикая природа в опасности / пер. с англ., под ред. А. Г. Банникова. — М.: Прогресс, 1976. — С. 179. — 478 с.
license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

Белохвостый олень: Brief Summary ( Russian )

provided by wikipedia русскую Википедию
 src= Самка, Коста-Рика

Перед появлением европейцев в Северной Америке обитало по некоторым оценкам около 40 миллионов белохвостых оленей. На них охотились индейцы, что однако не имело влияния на численность популяций. Колонисты начали охотиться на оленей из-за их шкуры, а также просто для развлечения. До 1900 года численность белохвостого оленя резко сократилась, пока не достигла всего 500 тысяч особей. С тех пор ограничения охоты привели к значительному улучшению, однако ситуация всё ещё сильно разнится в зависимости от региона. В некоторых регионах, например прилегающих к Великим озёрам, белохвостые олени встречаются столь же часто, как и раньше. В целом, популяция этого вида в США оценивается в 14 миллионов особей.

Некоторые подвиды считаются почти вымершими и состоят в Красном списке МСОП. К ним относятся:

Файл:Baby fawn's first steps.ogvВоспроизвести медиафайл Флоридский островной олень (Odocoileus virginianus clavium), обитающий на островах Флорида-Кис. Это наиболее мелкий подвид белохвостого оленя. Из-за интенсивной охоты в 1945 году их осталось всего 26 особей. Масштабные меры по защите этих животных позволили численности возрасти до 300 особей в наши дни, однако усиливающийся туризм на островах даёт повод для беспокойства. Почти все рифовые олени живут на островах No Name Key и Big Pine Key. Иногда олени достигают вплавь и соседних островов, однако отсутствие там питьевой воды заставляет их возвращаться. МСОП оценивает этот подвид как находящийся в серьёзной опасности. Колумбийский белохвостый олень (Odocoileus virginianus leucurus), назван в честь реки Колумбия в штатах Вашингтон и Орегон. Его численность вследствие разрушения человеком жизненного пространства упала до 400 особей. Сегодня существуют 3000 особей этих животных, из-за чего Служба рыбных ресурсов и дикой природы США в 2003 году решила вычеркнуть колумбийского белохвостого оленя из списка угрожаемых видов. В МСОП данный подвид оценивается как находящийся в наименьшей опасности.
license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

白尾鹿 ( Chinese )

provided by wikipedia 中文维基百科
二名法 Odocoileus virginianus
Zimmermann, 1780 Odocoileus virginianus map.svg
亞種
  • 另見內文

白尾鹿學名:Odocoileus virginianus,英语:White-tailed deer)是鹿的一种。

主要特征

白尾鹿是北美洲最小的鹿种,肩高为1米,体重40-130公斤。

Hunter with buck.jpg

分布

白尾鹿是世界上分布最广的鹿之一,从加拿大东部森林,到美国东部森林、佛罗里达半岛墨西哥中美洲国家,到秘鲁北部。

亚种

北美洲的白尾鹿

 src=
这只雄性礁鹿在佛罗里达礁鹿保护区的美国红树林。
 src=
幼年礁鹿

中美洲和南美洲的白尾鹿

  • WhitetailedDeerFawn.jpg
  • Cerfs de Virginie.jpg
  • Deer running.jpg
 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

白尾鹿: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

白尾鹿(學名:Odocoileus virginianus,英语:White-tailed deer)是鹿的一种。

license
cc-by-sa-3.0
copyright
维基百科作者和编辑

흰꼬리사슴 ( Korean )

provided by wikipedia 한국어 위키백과

흰꼬리사슴(Odocoileus virginianus, 영어: white-tailed deer, whitetail) 또는 버지니아 사슴(영어: Virginia deer)은 미국 전역의 삼림 지역과 캐나다, 멕시코, 중앙아메리카 그리고 페루볼리비아와 같은 남아메리카에서 발견되는 중형 크기의 사슴이다.[2] 또한 뉴질랜드쿠바, 자메이카, 히스파니올라섬, 푸에르토리코, 바하마, 소앤틸리스 제도 그리고 핀란드체코, 세르비아 등 유럽의 일부 국가에도 도입되어 서식하고 있다.[3][4][5] 아메리카 대륙에서 가장 널리 분포하는 유제류이다. 천적은 퓨마, 늑대, , 울버린, 미시시피악어 다.

각주

  1. “Odocoileus virginianus”. 《멸종 위기 종의 IUCN 적색 목록. 2008판》 (영어). 국제 자연 보전 연맹. 2008. 2009년 4월 8일에 확인함. Database entry includes a brief justification of why this species is of least concern.
  2. http://maps.iucnredlist.org/map.html?id=42394
  3. “보관된 사본” (PDF). 2016년 3월 4일에 원본 문서 (PDF)에서 보존된 문서. 2016년 1월 31일에 확인함.
  4. http://www.arthurgrosset.com/mammals/white-taileddeer.html
  5. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1093&context=icwdm_wdmconfproc
 title=
license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자

흰꼬리사슴: Brief Summary ( Korean )

provided by wikipedia 한국어 위키백과

흰꼬리사슴(Odocoileus virginianus, 영어: white-tailed deer, whitetail) 또는 버지니아 사슴(영어: Virginia deer)은 미국 전역의 삼림 지역과 캐나다, 멕시코, 중앙아메리카 그리고 페루볼리비아와 같은 남아메리카에서 발견되는 중형 크기의 사슴이다. 또한 뉴질랜드쿠바, 자메이카, 히스파니올라섬, 푸에르토리코, 바하마, 소앤틸리스 제도 그리고 핀란드체코, 세르비아 등 유럽의 일부 국가에도 도입되어 서식하고 있다. 아메리카 대륙에서 가장 널리 분포하는 유제류이다. 천적은 퓨마, 늑대, , 울버린, 미시시피악어 다.

license
cc-by-sa-3.0
copyright
Wikipedia 작가 및 편집자