Chinook Salmon population sizes have been shown to fluctuate with long-term climate changes. The most dramatic example of this is the El Nino events, every 3-7 years, which bring warm water into the Pacific and negatively affect Chinook Salmon populations. Longer term changes have involved changes in water currents over time, which have had opposite effects in Alaska and along the coast of California. In Alaska, these changes have caused a change in the mixing layer which has increased the chlorophyll levels in plankton, making the system more productive. This has increased the zooplankton population, which in turn causes an increase in the salmon population size. In California, however, climatic changes have caused the mixing layer to deepen, which has reduced the amount of nutrients available, causing the salmon population to decrease (Taylor and Southards, 1997; Satterfield and Finney, 2002; Botsford and Lawrence, 2002; Dalton, 2001).
External fertilization in Chinook Salmon requires precise communication in order to ensure proper timing of gamete release. During the courtship, which can last up to several hours, the male vibrates and crosses in front of the female, while the female is preparing for spawning by digging the redd. The female has been shown to selectively choose larger males, who vibrate more. A few seconds before depositing her eggs, the female will shake quickly next to the male, inducing sperm release (Berejikian, Tezak, and LaRae, 2001).
Other Communication Modes: vibrations
Perception Channels: tactile ; chemical
The Chinook Salmon has 17 distinct Evolutionarily Significant Units, (ESU) in the US only, two of which are endangered and seven of which are threatened.
ENDANGERED:
Sacramento River Winter Run,
Upper Columbia River Spring Run
THREATENED:
Snake River Fall Run,
Snake River Spring/Summer Run,
Central Valley Spring Run,
California Coastal,
Puget Sound,
Lower Columbia,
Upper Willamette,
CANDIDATE:
Central Valley Fall Run
NOT WARRANTED:
S. Oregon/N. California Coastal,
Upper Klamath Trinity,
Oregon Coastal,
Washington Coastal,
Mid Columbia Spring Run,
Upper Columbia Summer/Fall Run,
Deschules Summer/Fall Run
Many agencies have been set up to protect this species, including the Pacific Fisheries Management Council, the North Pacific Fisheries Management Council, and the National Marine Fisheries Service. The federal Magnuson-Stevens Act was made to protect the Essential Fish Habitat, the waters and substrates necessary to fish for spawning, breeding, feeding and growing to maturity. The Sustainable Fisheries Act has amended the Magnuson-Stevens Act.
The main causes for the declining fish populations are overfishing, damming and diverting water, habitat destruction, and introducing hatchery populations. Overfishing has decreased population sizes enough that all other causes, along with natural predation, can have extreme effects, and population sizes decrease rapidly. Damming causes decline because it blocks adults from returning to their birthplace and because smolts often get sucked into the turbines of hydroelectric dams and are killed. Diverting water away from salmon streams causes water temperature to rise, reducing the oxygen carrying capacity of the water. Temperatures could also become fatally high in the summer. Reduced water levels could expose eggs in the winter, or flows could be too low to carry smolts out to sea. Habitat destruction, including logging, clearing rivers, pollution, and wetlands destruction, take away shade and necessary protection for juveniles. After logging has changed runoff patterns, streams may contain too much silt and become uninhabitable. Pollution can cause many physiological problems, including increased susceptibiity to pathogens. Introducing hatchery populations adds to the decline because the introduced populations interbreed with the native populations and can reduce resistence to disease (Pacific States Marine Fisheries Commission, 1996; National Wildlife Federation, 2002; NOAA, 2001; University of Wisconsin Sea Grant Institute, 2002; Arkoosh and Collier, 2002).
US Federal List: endangered
CITES: no special status
State of Michigan List: no special status
The female digs a nest (called a redd) in the gravel and then deposits her eggs and the male deposits sperm. After 90-150 days (depending on temperature) the eggs hatch, and the alevins (fry with yolksacs attached to the underside) stay in the gravel until the yolksac is used up. The fry then emerge from the gravel in the spring and feed and grow for a few months to two years, depending on the stream system. They then migrate downstream as smolts, following the natural current. The smolts undergo huge physiological changes in their transition from freshwater to salt water. They then spend the next 1-7 years growing and maturing at sea. Growth rates in the ocean are much faster, and perhaps as much as 99% of the somatic growth occurs as sea. Mature adults will then return to their natal streams to spawn. Once the adults have re-entered freshwater, they no longer feed, and they complete sexual maturation during the freshwater migration (Pacific States Marine Fisheries Commission, 1996; National Wildlife Federation, 2002; NOAA, 2001; Delaney and ADFG, 1994; University of California at Berkeley; Government of Canada, 2002; Ewing and Ewing, 2002; Satterfield and Finney, 2002).
The Chinook Salmon is very important to commercial, recreational, and subsistence fishermen. It has always been central to the Native American lifestyle on the Pacific coast, and now much of the economy of the Pacific Northwest is based on it. Despite being relatively rare (compared to other Pacific Salmon species) it is the most commercially valuable. It is also now an important big game fish in the Great Lakes and is a big tourist draw in both the Pacific and Great Lakes regions
(Pacific States Marine Fisheries Commission, 1996; National Wildlife Federation, 2002; Delaney and ADFG, 1994; University of Wisconsin Sea Grant Institute, 2002).
Positive Impacts: food ; ecotourism ; controls pest population
Spawning Chinook Salmon are the keystone species in many streams because so many other species rely on them for food. In the ocean, they are often one of the top predators. Chinook Salmon are now the top predator in the Great Lakes where they were introduced to control other non-native fish species (University of Wisconsin Sea Grant Institute, 2002).
Ecosystem Impact: keystone species
While in freshwater, Chinook Salmon fry and smolts feed on plankton and then terrestrial and aquatic insects, amphipods and crustaceans. After migrating to the ocean, the maturing adults feed on large zooplakton, herring, pilchard, sandlance and other fishes, squid, and crustaceans. Once the adult salmon have re-entered freshwater, they do not feed. In the Great Lakes, Chinook Salmon were introduced to control the invasive alewife population (National Wildlife Federation, 2002; Delaney and ADFG, 1994; Government of Canada, 2002).
Animal Foods: fish; insects; mollusks; aquatic crustaceans; zooplankton
Primary Diet: carnivore (Piscivore , Insectivore , Eats non-insect arthropods, Molluscivore ); planktivore
Chinook Salmon are found natively in the Pacific from Monterey Bay, California to the Chukchi Sea, Alaska in North America and from the Anadyr River, Siberia to Hokkaido, Japan in Asia. It has also been introduced to many places around the world including the Great Lakes and New Zealand.
Biogeographic Regions: nearctic (Introduced , Native ); palearctic (Native ); australian (Introduced ); pacific ocean (Native )
The Chinook Salmon is anadromous– born in freshwater, migrating to the ocean, and returning as mature adults to their natal streams to spawn. Freshwater streams, estuaries, and the open ocean are all important habitats. The freshwater streams are relatively deep with course gravel. The water must be cool, under 14 C for maximum survival, and fast flowing. Estuaries provide a transition zone between the freshwater and saltwater and the more vegetation the better because there will be more feeding and hiding opportunities. At sea, Chinook Salmon can either stay close to shore or migrate thousands of miles to deep in the Pacific.
Habitat Regions: temperate ; saltwater or marine ; freshwater
Aquatic Biomes: pelagic ; lakes and ponds; rivers and streams; coastal
Other Habitat Features: estuarine
The average age of spawning adults is 4-6 years, however, they can spend up to 8 years in the ocean or return after less than one year. The average age is slightly younger in the south with 2/3/4 year-olds most common; 5/6/7 year-olds are most common in the north. Often, females are older than males at sexual maturity. There is high mortality early because of high natural predation, and those smolts that do not reach a certain size before their first winter at sea will not survive colder temperatures. Human modification of the environment has led to even higher mortality, mainly due to siltation and decreased water flow which have reduced the availability of oxygen to the eggs and fry (Pacific States Marine Fisheries Commission, 1996; Delaney and ADFG, 1994; Government of Canada, 2002).
Range lifespan
Status: wild: 8 (high) years.
Average lifespan
Status: wild: 3-4 years.
Average lifespan
Status: wild: 9.0 years.
Average lifespan
Status: wild: 2.5 years.
Average lifespan
Status: wild: 5.0 years.
Average lifespan
Status: wild: 7.0 years.
The Chinook Salmon is the largest of all Pacific salmon species, often larger than 100 lbs and longer than 5 ft. It is characterized by a deep blue-green back, silvery sides and a white belly with black irregular spots on the back, dorsal fin and both lobes of the tail. It also has a small eye, black gum coloration, a thick caudal peduncle and 13-19 anal rays. For spawning, both males and females develop a reddish hue on the sides, although males may be deeper in color. Males can also be distinguished by a hooked nose and a ridged back. The Chinook fry look very different, with well developed parr marks (vertical bars) on their sides.
Range mass: 61.4 (high) kg.
Average mass: 13.6 kg.
Range length: 147.32 (high) cm.
Average length: 91.44 cm.
Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry
Sexual Dimorphism: male more colorful; sexes shaped differently
For young Chinook Salmon, predation is very high. Many species eat the fry and smolts, including striped bass, American shad, sculpins and sea gulls. Reaching adulthood does not release them from predation, however, as they are still prey to many animals when they return to spawn. Most common are bears, orcas, sea lions, seals, otters, eagles, terns and cormorants. People have made predation worse by concentrating adult salmon at dams and weirs (Pacific States Marine Fisheries Commission, 1996; National Wildlife Federation, 2002; NOAA, 2001; University of California at Berkeley).
Known Predators:
The Chinook Salmon have seasonal runs in which all adults return to their natal streams and spawn at approximately the same time of year. Sexual maturity can be anywhere from 2-7 years, so within any given run, size will vary considerably. Salmon are semalparous, and shortly after spawning they die.
After migrating back to the exact place of birth, with very little straying, the adults span in the course gravel of the river. The female first digs a redd in the gravel with an undulating motion of her tail, while the male stands guard. The female then deposits her eggs (3000-14000) in the nest, sometimes in 4-5 different packets within a single redd. The male then deposits his sperm, and both parents guard the redd until they die, sometime within the next 25 days. Spawning is timed so that the fry will emerge in the spring, the time where the stream has the highest productivity.
Many streams have more than one run, with each run going to a slightly different location in the stream. In each location, different environmental factors will affect the timing of the run, all timed so the fry emerge in the spring. For example, in a stream with spring and summer runs, often the spring run will go to higher elevation and with the colder temperature, the eggs will take longer to hatch (Pacific States Marine Fisheries Commission, 1996; National Wildlife Federation, 2002; Matthews and Waples, 1991; NOAA, 2001; Delaney and ADFG, 1994; Government of Canada, 2002).
Breeding season: Spawning season varies, but the most common runs are in the summer and fall with some streams having runs in the spring and winter as well.
Range number of offspring: 3000 to 14000.
Range gestation period: 90 to 150 days.
Range age at sexual or reproductive maturity (female): 1 to 8 years.
Average age at sexual or reproductive maturity (female): 0.75 years.
Range age at sexual or reproductive maturity (male): 1 to 8 years.
Average age at sexual or reproductive maturity (male): 0.75 years.
Key Reproductive Features: semelparous ; seasonal breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (External ); oviparous
There is no parental care in Chinook Salmon, as both parents die before the young emerge. However, the decomposing adult carcasses provide necessary nutrients to the eggs and fry.
Parental Investment: no parental involvement
Listen to the podcast, meet the Stream of Dreams team and find audio extras on the Learning + Education section of EOL.
Chinook or King Salmon (Oncorhynchus tshawytscha) are the largest salmon. They may reach around 150 cm in length and can occasionally exceed 23 kg; other salmon rarely exceed 14 kg. These fish have black spots on the back and on the dorsal, adipose and both lobes of the caudal (tail) fin. The gums are dark at the base of the teeth. At sea, these fish are blue, green, or gray above and silver below. Small males are often dull yellow while large males are often blotchy with dull red on the side. Breeding individuals are dark olive-brown to purple. (Page and Burr 1991)
The Chinook is the least abundant of the Pacific Salmon. It is anadromous (moving from the ocean to freshwater to breed), occurring in the Pacific Ocean and coastal streams. It is found in northeast Asia and, in North America, in Arctic and Pacific drainages from Point Hope, Alaska, to the Ventura River in California, occasionally straying south to San Diego, California. This species is widely stocked outside its range, notably in the Great Lakes. (Page and Burr 1991)
In comparison to other Pacific salmon: Sockeye and Chum Salmon (O. nerka and O. keta) have no large black spots; Coho Salmon (O. kisutch) have no black spots on the lower lobe of the caudal fin and have gums that are light at the base of the teeth; and Pink Salmon (O. gorbuscha) have large oval black spots on the back and caudal fin and do not exceed 76 cm in length. (Page and Burr 1991)
Chinook Salmon spawn once and die. For detailed information on the biology and status of this species, including conservation issues, see this resource from the NOAA Fisheries Office of Protected Resources.
The Chinook salmon /ʃɪˈnʊk/ (Oncorhynchus tshawytscha) is the largest and most valuable species of Pacific salmon in North America, as well as the largest in the genus Oncorhynchus.[2] Its common name is derived from the Chinookan peoples. Other vernacular names for the species include king salmon, Quinnat salmon, Tsumen, spring salmon, chrome hog, Blackmouth, and Tyee salmon. The scientific species name is based on the Russian common name chavycha (чавыча).
Chinook are anadromous fish native to the North Pacific Ocean and the river systems of western North America, ranging from California to Alaska, as well as Asian rivers ranging from northern Japan to the Palyavaam River in Arctic northeast Siberia. They have been introduced to other parts of the world, including New Zealand and Patagonia. Introduced Chinook salmon are thriving in Lake Michigan and Michigan's western rivers. A large Chinook is a prized and sought-after catch for a sporting angler. The flesh of the salmon is also highly valued for its dietary nutritional content, which includes high levels of important omega-3 fatty acids. Some populations are endangered; however, many are healthy. The Chinook salmon has not been assessed for the IUCN Red List. According to NOAA, the Chinook salmon population along the California coast is declining from factors such as overfishing, loss of freshwater and estuarine habitat, hydropower development, poor ocean conditions, and hatchery practices.[3]
Historically, the native distribution of Chinook salmon in North America ranged from the Ventura River in California in the south to Kotzebue Sound in Alaska in the north.[4] Recent studies have shown that Chinook salmon are historically native to the Guadalupe River (California) watershed, the southernmost major metropolitan area hosting salmon runs in the United States.[5] Populations have disappeared from large areas where they once flourished, however,[6] or shrunk by as much as 40 percent.[7] In some regions, their inland range has been cut off, mainly by dams and habitat alterations: in Southern California, in some areas east of the Coast Ranges of California and Oregon, and in large areas in the Snake River and upper Columbia River drainage basins.[8] In certain areas such as California's Sacramento–San Joaquin River Delta, it was revealed that extremely low numbers of juvenile Chinook salmon (less than 1%) were surviving.[9]
In the western Pacific, the distribution ranges from northern Japan (Hokkaido) in the south to the Arctic Ocean as far as the East Siberian Sea and Palyavaam River in the north.[8] Nevertheless, they are consistently present and the distribution is well known only in Kamchatka. Elsewhere, information is scarce, but they have a patchy presence in the Anadyr River basin and parts of the Chukchi Peninsula. Also, in parts of the northern Magadan Oblast near the Shelikhov Gulf and Penzhina Bay, stocks might persist but remain poorly studied.[8]
In 1967, the Michigan Department of Natural Resources introduced Chinook into Lake Michigan and Lake Huron to control the alewife, an invasive species of nuisance fish from the Atlantic Ocean.[10] In the 1960s, alewives constituted 90% of the biota in these lakes. Coho salmon had been introduced the year before, and the program was successful. Chinook and Coho salmon thrived on the alewives and spawned in the lakes' tributaries. After this success, Chinook were introduced into the other Great Lakes,[11] where sport fishermen prize them for their aggressive behaviour on the hook.
The species has also established itself in Patagonian waters in South America, where both introduced and escaped hatchery fish have colonized rivers and established stable spawning runs.[12] Chinook salmon have been found spawning in headwater reaches of the Rio Santa Cruz, apparently having migrated over 1,000 km (620 mi) from the ocean. The population is thought to be derived from a single stocking of juveniles in the lower river around 1930.[13]
Sporadic efforts to introduce the fish to New Zealand waters in the late 19th century were largely failures and led to no evident establishments. Initially ova were imported from the Baird hatchery of the McCloud River in California.[14] Further efforts in the early 20th century were more successful and subsequently led to the establishment of spawning runs in the rivers of Canterbury and North Otago: Rangitata River, the Opihi River, the Ashburton River, the Rakaia River, the Waimakariri River, the Hurunui River, and the Waiau Uwha River.[15] The success of the latter introductions is thought to be partly attributable to the use of ova from autumn-run populations as opposed to ova from spring-run populations used in the first attempts.[14] Whilst other salmon have also been introduced into New Zealand, only Chinook salmon (or king salmon as it is known locally in New Zealand) have established sizeable pelagic runs.
The Chinook is blue-green, red, or purple on the back and on the top of the head, with silvery sides and white ventral surfaces. It has black spots on its tail and the upper half of its body. Although spots are seen on the tail in pink salmon and silver on the tail in coho and chum salmon, Chinook are unique among the Pacific salmon in combining black spots and silver on the tail. Another distinctive feature is a black gum line that is present in both salt and fresh water.[16] Adult fish typically range in size from 24 to 36 in (61 to 91 cm), but may be up to 58 in (150 cm) in length; they average 10 to 50 lb (4.5 to 22.7 kg), but may reach 130 lb (59 kg). The meat can be either pink or white, depending on what the salmon have been feeding on.
Chinook salmon are the largest of the Pacific salmon. In the Kenai River of Alaska, mature Chinook averaged 16.8 kg (37 lb).[17] The current sport-caught world record, 97.25 lb (44.11 kg), was caught on May 17, 1985, in the Kenai River. The commercial catch world record is 126 lb (57 kg) caught near Rivers Inlet, British Columbia, in the late 1970s.[18]
Chinook, like many other species of salmon, are considered euryhaline, and thus live in both saltwater and freshwater environments throughout their life. Once hatching, salmon spend one to eight years in the ocean (averaging from three to four years)[19] before returning to their home rivers to spawn. The salmon undergo radical morphological changes as they prepare for the spawning event ahead. Salmon lose the silvery blue they had as ocean fish, and their color darkens, sometimes with a radical change in hue. Salmon are sexually dimorphic, and the male salmon develop canine-like teeth, and their jaws develop a pronounced curve or hook called a "kype."[20] Studies have shown that larger and more dominant male salmon have a reproductive advantage as female Chinook are often more aggressive toward smaller males.[21]
Chinook spawn in larger and deeper waters than other salmon species and can be found on the spawning redds (nests) from September to December. The female salmon may lay her eggs in four to five nesting pockets within a redd. After laying eggs, females guard the redd from four to 25 days before dying, while males seek additional mates. Chinook eggs hatch 90 to 150 days after deposition, depending upon water temperature. Egg deposits are timed to ensure the young salmon fry emerge during an appropriate season for survival and growth. Fry and parr (young fish) usually stay in fresh water for 12 to 18 months before traveling downstream to estuaries, where they remain as smolts for several months. Some Chinook return to fresh water one or two years earlier than their counterparts and are referred to as "jack" salmon. "Jack" salmon are typically less than 24 inches (61 cm) long but are sexually mature.
The Yukon River has the longest freshwater migration route of any salmon, over 3,000 km (1,900 mi) from its mouth in the Bering Sea to spawning grounds upstream of Whitehorse, Yukon.[22] Since Chinook rely on fat reserves for energy upon re-entering fresh water, commercial fish caught here are highly prized for their unusually high levels of heart-healthy omega-3 fatty acids. However, the high costs of harvest and transport from this rural area limits its affordability. The highest elevation Chinook spawn is in the Middle Fork and Upper Salmon River in Idaho. These fish travel over 7,000 feet (2,100 m) in elevation, and over 900 miles (1,400 km), in their migration through eight dams and reservoirs on the Columbia and Lower Snake Rivers.
Chinook eat amphipods and other crustaceans and insects while young, and primarily other fish when older. Young salmon feed in streambeds for a short period until they are strong enough to journey out to the ocean and acquire more food. Chinook juveniles divide into two types: ocean-type and stream-type. Ocean-type Chinook migrate to salt water in their first year. Stream-type salmon spend one full year in fresh water before migrating to the ocean. After a few years in the ocean, adult salmon, then large enough to escape most predators, return to their natal streambeds to mate. Chinook can have extended lifespans, in which some fish spend one to five years in the ocean, reaching age eight. More northerly populations tend to have longer lives.
Salmon need suitable spawning habitat. Clean, cool, oxygenated, sediment-free fresh water is essential for egg development. Chinook use larger sediment (gravel) sizes for spawning than other Pacific salmon. Riparian vegetation and woody debris help juvenile salmon by providing cover and maintaining low water temperatures.
Chinook also need healthy ocean habitats. Juvenile salmon grow in clean, productive estuarine environments and gain the energy for migration. Later, they change physiologically to live in salt water. They rely on eelgrass and seaweeds for camouflage (protection from predators), shelter, and foraging habitat as they make their way to the open ocean. Adult fish need a rich, open ocean habitat to acquire the strength needed to travel back upstream, escape predators, and reproduce before dying. In his book King of Fish, David Montgomery writes, "The reserves of fish at sea are important to restocking rivers disturbed by natural catastrophes." Thus, it is vitally important for the fish to reach the oceans to grow into healthy adult fish to sustain the species without being impeded by man-made structures such as dams.
The bodies of water for salmon habitat must be clean and oxygenated. One sign of high productivity and growth rate in the oceans is the level of algae. Increased algal levels lead to higher levels of carbon dioxide in the water, which transfers into living organisms, fostering underwater plants and small organisms, which salmon eat.[23] Algae can filter high levels of toxins and pollutants. Thus, it is essential for algae and other water-filtering agents not to be destroyed in the oceans because they contribute to the well-being of the food chain.
With some populations endangered, precautions are necessary to prevent overfishing and habitat destruction, including appropriate management of hydroelectric and irrigation projects. If too few fish remain because of fishing and land management practices, salmon have more difficulty reproducing. When one of these factors is compromised, affected stock can decline. One Seattle Times article states, "Pacific salmon have disappeared from 40 percent of their historic range outside Alaska," and concludes it is imperative for people to realize the needs of salmon and try not to contribute to destructive practices that harm salmon runs.[7]
In the Pacific Northwest, the summer runs of especially large Chinook once common (before dams and overfishing led to declines) were known as June hogs.
A Chinook's birthplace and later evolution can be tracked by looking at its otolith (ear) bone. The bone can record the chemical composition of the water the fish had lived in, just as a tree's growth rings provide hints about dry and wet years. The bone is built with the chemical signature of the environment that hosted the fish. Researchers were able to tell where different individuals of Chinook were born and lived in the first year of their lives. Testing was done by measuring the strontium in the bones. Strontium can accurately show researchers the exact location and time of a fish swimming in a river.[24]
The total North Pacific fisheries harvest of the Chinook salmon in 2010 was some 1.4 million fish, corresponding to 7,000 tonnes; 1.1 million of the fish were captured in the United States, and others were divided by Canada and Russia. The share of Chinook salmon from the total commercial Pacific salmon harvest was less than 1% by weight and only about 0.3% of the number of fish.[26] The trend has been down in the captures compared to the period before 1990, when the total harvest had been around 25,000 tonnes. Global production has, however, remained at a stable level because of increased aquaculture.[25]
The world's largest producer and market supplier of Chinook salmon is New Zealand. In 2009, New Zealand exported 5,088 tonnes (5,088 t) of Chinook salmon, marketed as king salmon, equating to a value of NZ$61 million in export earnings. For the year ended March 2011, this amount had increased to NZ$85 million.[27][28] New Zealand accounts for about half of the global production of Chinook salmon, and about half of New Zealand's production is exported. Japan is New Zealand's largest export market, with stock also being supplied to other countries of the Pacific Rim, including Australia.[29]
Farming of the species in New Zealand began in the 1970s when hatcheries were initially set up to enhance and support wild fish stocks, with the first commercial operations starting in 1976.[14] After some opposition against their establishment by societal groups, including anglers, the first sea cage farm was established in 1983 at Big Glory Bay in Stewart Island by British Petroleum NZ Ltd.[14][29] Today, the salmon are hatched in land-based hatcheries (several of which exist) and transferred to sea cages or freshwater farms, where they are grown out to the harvestable size of 3–4 kilograms (6.6–8.8 lb). The broodstock for the farms is usually selected from existing farm stock or sometimes sourced from wild populations. Eggs and milt are stripped manually from sexually mature salmon and incubated under conditions replicating the streams and rivers where the salmon would spawn naturally (at around 10–12 °C or 50–54 °F). After hatching, the baby salmon are typically grown to the smolt stage (around six months of age) before they are transferred to the sea cages or ponds.[28] Most sea cage farming occurs in the Marlborough Sounds, Stewart Island, and Akaroa Harbour, while freshwater operations in Canterbury, Otago, and Tasman use ponds, raceways, and hydro canals for grow-out operations.[27] Low stocking densities, ranging between less than 1 kg/m3 and around 25 kg/m3 (depending on the life stage of the salmon), and the absence of disease in the fish mean New Zealand farmers do not need to use antibiotics or vaccines to maintain the health of their salmon stocks. The salmon are fed food pellets of fish meal specially formulated for Chinook salmon (typical proportions of the feed are: 45% protein, 22% fat, and 14% carbohydrate plus ash and water) that contain no steroids or other growth enhancers.[27][28]
Regulations and monitoring programmes ensure salmon are farmed in a sustainable manner. The planning and approval process for new salmon farms in New Zealand considers the farm's potential environmental effects, its effects on fishing activities (if it is a marine farm), and any possible cultural and social effects. In the interest of fish welfare, a number of New Zealand salmon farming operations anaesthetise salmon before slaughter using Aqui-S™, an organically based anaesthetic developed in New Zealand that is safe for use in food and that has been favourably reported on by the British Humane Slaughter Association. In recognition of the sustainable, environmentally conscious practices, the New Zealand salmon farming industry has been acknowledged as the world's greenest by the Global Aquaculture Performance Index.[30]
Chile is the only country other than New Zealand currently producing significant quantities of farmed Chinook salmon.[25] The United States has not produced farmed Chinook in commercial quantities since 1994.[25] In Canada, most commercial Chinook salmon farming ceased by 2009.[31]
Fisheries in the U.S. and Canada are limited by impacts to weak and endangered salmon runs. Nine populations of Chinook salmon are listed under the U.S. Endangered Species Act (ESA) as either threatened or endangered.[32] In the Snake River, Spring/Summer Chinook and Fall Chinook are ESA listed as Threatened.[33] The fall and late-fall runs in the Central Valley population in California is a U.S. National Marine Fisheries Service (NMFS) species of concern.
In April 2008, commercial fisheries in both Oregon and California were closed in response to the low count of Chinook salmon present because of the collapse of the Sacramento River run, one of the biggest south of the Columbia.[34] In April 2009, California again canceled the season.[35] The Pacific Fishery Management Council's goal for the Sacramento River run is an escapement total (fish that return to freshwater spawn areas and hatcheries) of 122,000–180,000 fish. The 2007 escapement was estimated at 88,000, and the 2008 estimate was 66,000 fish.[36] Scientists from universities and federal, state, and tribal agencies concluded the 2004 and 2005 broods were harmed by poor ocean conditions in 2005 and 2006, in addition to "a long-term, steady degradation of the freshwater and estuarine environment." Such conditions included weak upwelling, warm sea surface temperatures, and low densities of food.[36]
In Oregon, the 2010 spring Chinook run was forecast to increase by up to 150% over 2009 populations, growing from 200,000 to over 500,000, making this the largest run in recorded history. Lower temperatures in 2008 North Pacific waters brought in fatter plankton, which, along with greater outflows of Columbia River water, fed the resurgent populations. The Oregon Department of Fish and Wildlife estimated 80% were hatchery-born. Chinook runs in other habitats have not recovered proportionately.[37]
In April 2016, Coleman National Fish Hatchery outside of Red Bluff, California, released 12 million juvenile Chinook salmon, with many salmon being tagged for monitoring. The release was done in hopes of helping restore the salmon population of Battle Creek.[38][39]
In June 2021, the California State Water Resources Control Board approved a plan by the United States Bureau of Reclamation to release water from Lake Shasta for irrigation use, which "significantly" increased the risk of extinction of winter-run Chinook in the Sacramento River.[40]
Introduced Chinook salmon in Lake Michigan are sought after by tourists enjoying chartered fishing trips.[41] A 2016 survey of Wisconsin anglers found they would, on average, pay $140 for a trip to catch Chinook salmon, $90 for lake trout, and $180 for walleye.[42] Should the Chinook salmon fishery collapse and be replaced with a native lake trout fishery, the economic value would decrease by 80%.[43]
Since the later 1970s, the size and age range of Chinook salmon have been declining[44] according to studies along the northwest Pacific coast from Alaska to California for the years of 1977 to 2015 which examined about 1.5 million Chinook salmon.[44] Ocean-5 Chinook (which means the fish has spent five years in the ocean) have declined from being up to 3–5% of the population to being almost none.[44] Ocean-4 chinook are also seeing a rapid decline in their population.[44] This means that Chinook are not living as long as they used to. This trend has mostly been seen in Alaska, but also Oregon and Washington.[44]
New trends have also been seen regarding the size of Ocean-1, 2, 3, 4, and 5 from 1975 to 2015. The size of Chinook who have spent one and two years in the ocean has been rising, while the size of Chinook of three to five years has been declining.[44] The size increase was seen mainly in hatchery fish, not wild, and hatchery fish were often larger than wild, but the decrease was seen in both types of populations.[44] Factors have been discovered that have influenced the size of the Chinook. They include, but are not limited to, the years they spent in fresh water before migrating to the ocean, the time of year they were caught, which season run they participated in, and where they were caught.[44] However, what is causing these negative trends is still not fully known or researched. Some possibilities can be climate change, pollution, and fishing practices.[44]
In California specifically, Chinook populations in the rivers have been declining.[45] Chinook that are migratory are already more vulnerable, and the California drought made them even more vulnerable. A study was done specifically on the California Delta over three years, and it was discovered that the Chinook salmon had a low survival rate for different reasons, and as a result, the Chinook salmon population here has been on a decline.[45] Some of the factors affecting the populations include the route used during migration, drought conditions, the amount of snowmelt, and infrastructure that affects the flow of water (such as dams and levees).[45] Each of these factors has significantly impacted Chinook survival rates, as most have made it more challenging for Chinook to travel from their spawning grounds to the ocean and back. The fluctuation of water depth as well as temperature have made this more challenging, and as a result, Chinook populations are declining. Which rivers or streams the Chinook are in highly impacts their survival rates, as some, like the Chinook in the Fraser River, only have a 30% survival rate.[45] More studies and actions are needed for there to be an impact on the survival rates of the Chinook. Due to many of these reasons, the National Wildlife Federation has listed Chinook populations as endangered or threatened.[46]
The Chinook salmon is spiritually and culturally prized among certain First Nations peoples. For tribes on the Northwest coast, salmon were an important part of their culture for spiritual reasons and food.[47] Many celebrate the first spring Chinook caught each year with "first-salmon ceremonies." While salmon fishing in general remains important economically for many tribal communities, it is especially the Chinook harvest that is typically the most valuable. The relation to salmon for the tribes in this area is similar to how other tribes relied more on buffalo for food, and have many legends and spiritual ties to them.[47]
Chinook salmon were described and enthusiastically eaten by the Lewis and Clark Expedition. Lewis wrote that, when fresh, they tasted better than any other fish he had ever eaten. They did not particularly like dried or "pounded" salmon.[48] Lewis and Clark knew about Pacific salmon but had never seen one. The Western world had known about Pacific salmon since the late 18th century. Maritime fur traders and explorers, such as George Vancouver, frequently acquired salmon by trade with the indigenous people of the Northwest coast.[49] Lewis and Clark first encountered Chinook salmon as a gift from Chief Cameahwait, on August 13, 1805, near Lemhi Pass. Tasting it convinced Lewis they had crossed the continental divide.[50]
In Oregon, the Klamath tribes have lived along the Klamath river, and the Chinook salmon have been a large part of their lives.[51] An Indian legend of a tribe on the Klamath river describes how the construction of the dam has hurt the fish population and that the impact on them has gone unnoticed, and the destruction of the dam is what has brought back their food supply and made them happy again.[51] The Klamath tribe had a similar legend that has illustrated the importance of not messing up the Chinook salmon migration.[51] The legend described three Skookums which can be related to the three dams on the Klamath river in California.[51] It has been known that the creation of dams has negatively impacted the lives of many Native American Indians by disrupting their food supply and the flow of water. The impact on the salmon migration has been seen by not only tribal members but others as well, and as a result, progress is slowly being made to help restore the salmon habitats along the river.[51] It has been known that for many tribes Chinook salmon have played an important role, spiritually and physically.
Other tribes, including the Nuxalk, Kwakiutl, and Kyuquot, relied primarily on Chinook to eat.[52] Known as the "king salmon" in Alaska for its large size and flavorful flesh, the Chinook is the state fish of this state,[53] and of Oregon.[54]
{{cite web}}
: CS1 maint: url-status (link) The Chinook salmon /ʃɪˈnʊk/ (Oncorhynchus tshawytscha) is the largest and most valuable species of Pacific salmon in North America, as well as the largest in the genus Oncorhynchus. Its common name is derived from the Chinookan peoples. Other vernacular names for the species include king salmon, Quinnat salmon, Tsumen, spring salmon, chrome hog, Blackmouth, and Tyee salmon. The scientific species name is based on the Russian common name chavycha (чавыча).
Chinook are anadromous fish native to the North Pacific Ocean and the river systems of western North America, ranging from California to Alaska, as well as Asian rivers ranging from northern Japan to the Palyavaam River in Arctic northeast Siberia. They have been introduced to other parts of the world, including New Zealand and Patagonia. Introduced Chinook salmon are thriving in Lake Michigan and Michigan's western rivers. A large Chinook is a prized and sought-after catch for a sporting angler. The flesh of the salmon is also highly valued for its dietary nutritional content, which includes high levels of important omega-3 fatty acids. Some populations are endangered; however, many are healthy. The Chinook salmon has not been assessed for the IUCN Red List. According to NOAA, the Chinook salmon population along the California coast is declining from factors such as overfishing, loss of freshwater and estuarine habitat, hydropower development, poor ocean conditions, and hatchery practices.