dcsimg

Comments

provided by eFloras
The root tubers yield tapioca and are a staple crop in many areas of the tropics. They contain hydrocyanic acid and may cause death if eaten raw; they become edible after thorough soaking in water and cooking.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 11: 275, 276 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Description

provided by eFloras
Erect shrubs 1.5-5 m tall; root tubers terete. Stipules triangular-lanceolate, 5-7 mm, entire or with 1 or 2 bristly segments; petiole 6-35 cm, slightly peltate, inserted less than 5 mm from margin; leaf blade palmately 3-9-lobed, 5-20 cm, lobes oblanceolate to narrowly elliptic, 8-18 × 1.5-4 cm, apex acu-minate, entire; lateral veins 5-15. Racemes terminal or axillary, 5-8 cm; bracts oblong-lanceolate; pedicels 4-6 mm. Male flowers: calyx ca. 7 mm, purple-red, divided to or over middle, lobes long ovate, 3-4 × ca. 2.5 mm, hairy inside; stamens 6-7 mm; anthers white pubescent at apex. Female flowers: calyx ca. 10 mm, lobes oblong-lanceolate, ca. 8 × 3 mm; ovary ovoid, longitudinally 6-angled; stigmas recurved, plaited. Capsule ellipsoidal, 1.5-1.8 × 1-1.5 cm, longitudinally 6-winged, scabrous. Seeds slightly triangular, ca. 1 cm; testa crustaceous, smooth, with spot-stripes. Fl. Sep-Nov.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 11: 275, 276 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Habitat & Distribution

provided by eFloras
Widely cultivated. Fujian, Guangdong, Guangxi, Guizhou, Hainan, Taiwan, Yunnan [native to Brazil; cultivated throughout the tropics].
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 11: 275, 276 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Synonym

provided by eFloras
Jatropha manihot Linnaeus, Sp. Pl. 2: 1007. 1753; Janipha aipi (Pohl) J. Presl; J. manihot (Linnaeus) Kunth; Jatropha stipulata Vellozo; Mandioca aipi (Pohl) Link; M. dulcis Parodi; M. utilissima (Pohl) Link; Manihot aipi Pohl; M. edulis A. Richard; M. utilissima Pohl.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of China Vol. 11: 275, 276 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of China @ eFloras.org
editor
Wu Zhengyi, Peter H. Raven & Hong Deyuan
project
eFloras.org
original
visit source
partner site
eFloras

Brief Summary

provided by EOL authors
Manihot esculenta, cassava, is a perennial woody shrub in the Euphorbiaceae (spurge family) native to South America but now grown in tropical and sub-tropical areas worldwide for the edible starchy roots (tubers), which are an major food source in the developing world, in equatorial regions including Africa, South America, and Oceania. Also known as yuca (although not related to the genus Yucca), manioc, and tapioca, the dried root is the source of tapioca (used in the U.S. to make pudding). The cassava shrub may grow to 2.75 meters (9 feet) tall, with leaves deeply divided into 3–7 lobes. The shrub is often grown as an annual, and propagated from stem cuttings after tubers have been harvested. The fruit is small, roughly 1 cm (1/2 inch) in diameter, but root tubers in cultivated varieties (which require 9–18 months to grow to harvestable size) can be 5–10 cm in diameter and 15–30 cm long. Fresh roots and leaves contain cyanide compounds including linamarin (cyanogenic glucoside) and hydrocyanic acid at levels that may be toxic, but properly treated (in a labor-intensive process that may include roasting, soaking, or fermentation, as shown in this YouTube clip, An Introduction to Cassava), the cyanide content is neglible. “Bitter” varieties contain more of these compounds than “sweet” varieties—although flavor is an imperfect indicator—but are often preferred by farmers for their pest-repellent properties. Cassava, which may be the most widely grown root crop in the world, originated in western and southern Mexico and tropical South America (likely Brazil). Archaeological evidence suggests that it was cultivated in Peru 4,000 years ago, and in Mexico by 2,000 years ago. It was introduced to West Africa in the 16th century, and became a major food crop there and in Asia. Total 2010 global production was 228 million metric tons, harvested from 18.4 million hectares, with Nigeria, Thailand, and Brazil producing the largest amounts. In optimal conditions, cassava may yield up to 68 tons per hectare in a year, but typical yields are 10 tons/hectare. In addition, cassava is often intercropped with maize, vegetables, legumes, cocoa, and coffee. Cassava tubers are prepared in various forms as a food (see ”culinary uses” in detailed entry), and are an important source of carbohydrates; they also contain significant amounts of phosphorus and iron, and are relatively rich in vitamin C. The leaves, which must also be treated to remove cyanide compounds before eating, contain 20–30% protein and are used as vegetable. Cassava is also used as a livestock feed in Latin America, the Caribbean, and Europe, and is increasingly cultivated for use as a biofuel (in China, for example). (Bailey 1976, FAOSTAT 2012, Sadik 1988, Wikipedia 2011)
license
cc-by-nc
copyright
Jacqueline Courteau
original
visit source
partner site
EOL authors

Derivation of specific name

provided by Flora of Zimbabwe
esculenta: edible
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Manihot esculenta Crantz Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=135500
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Description

provided by Flora of Zimbabwe
Shrub or small tree up to 5 m tall, cultivated for its edible root tubers which are widely used as a staple food source. Stems brittle, branching dichotomously, often blueish-grey when young; whitish watery sap present. Leaves up to 15 × 25 cm, deeply divided into 3-7 oblanceolate lobes, dark green above, paler blue-green beneath, almost hairless or slighly pubescent near the midrib; margin entire; petiole up to 25 cm long, often reddish-purple. Inflorescences in lax terminal heads, 2-11 cm long. Flowers unisexual in the same inflorescence, greenish tinged orange-red and often with purplish veining. Fruit ellipsoid to subglobose, up to 17 × 15 mm, greenish, finely wrinkled, six-winged.
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Manihot esculenta Crantz Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=135500
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Frequency

provided by Flora of Zimbabwe
Very occasionally naturalized
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Manihot esculenta Crantz Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=135500
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Worldwide distribution

provided by Flora of Zimbabwe
Native probably in eastern South America; widely cultivated throughout tropical Africa and tropical regions elsewhere.
license
cc-by-nc
copyright
Mark Hyde, Bart Wursten and Petra Ballings
bibliographic citation
Hyde, M.A., Wursten, B.T. and Ballings, P. (2002-2014). Manihot esculenta Crantz Flora of Zimbabwe website. Accessed 28 August 2014 at http://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=135500
author
Mark Hyde
author
Bart Wursten
author
Petra Ballings
original
visit source
partner site
Flora of Zimbabwe

Cassava

provided by wikipedia EN

Manihot esculenta, commonly called cassava (/kəˈsɑːvə/), manioc,[2] or yuca (among numerous regional names), is a woody shrub of the spurge family, Euphorbiaceae, native to South America, from Brazil and parts of the Andes. Although a perennial plant, cassava is extensively cultivated as an annual crop in tropical and subtropical regions for its edible starchy root tuber, a major source of carbohydrates. Though it is often called yuca in parts of Spanish America and in the United States, it is not related to yucca, a shrub in the family Asparagaceae. Cassava is predominantly consumed in boiled form, but substantial quantities are used to extract cassava starch, called tapioca, which is used for food, animal feed, and industrial purposes. The Brazilian farinha, and the related garri of West Africa, is an edible coarse flour obtained by grating cassava roots, pressing moisture off the obtained grated pulp, and finally drying it (and roasting both in the case of farinha and garri).

Cassava is the third-largest source of food carbohydrates in the tropics, after rice and maize.[3][4][5] Cassava is a major staple food in the developing world, providing a basic diet for over half a billion people.[6] It is one of the most drought-tolerant crops, capable of growing on marginal soils. Nigeria is the world's largest producer of cassava, while Thailand is the largest exporter of cassava starch.

Cassava is classified as either sweet or bitter. Like other roots and tubers, both bitter and sweet varieties of cassava contain antinutritional factors and toxins, with the bitter varieties containing much larger amounts.[7] It must be properly prepared before consumption, as improper preparation of cassava can leave enough residual cyanide to cause acute cyanide intoxication,[8][9] goiter, ataxia, partial paralysis, or death.[10][11] The more toxic varieties of cassava have been used in some places as famine food during times of food insecurity.[8][7] Farmers often prefer the bitter varieties because they deter pests, animals, and thieves.[12]

Description

The cassava root is long and tapered, with a firm, homogeneous flesh encased in a detachable rind, about 1 millimetre (116 inch) thick, rough and brown on the outside. Commercial cultivars can be 5 to 10 centimetres (2 to 4 in) in diameter at the top, and around 15 to 30 cm (6 to 12 in) long. A woody vascular bundle runs along the root's axis. The flesh can be chalk-white or yellowish. Cassava roots are very rich in starch and contain small amounts of calcium (16 milligrams per 100 grams), phosphorus (27 mg/100 g), and vitamin C (20.6 mg/100 g).[13] However, they are poor in protein and other nutrients. In contrast, cassava leaves are a good source of protein for animal and human[14] nutrition, but deficient in the amino acid methionine.[15]

Genome

The complete and haplotype-resolved African cassava (TME204) genome was reconstructed and made available using the Hi-C technology.[16] The genome shows abundant novel gene loci with enriched functionality related to chromatin organization, meristem development, and cell responses.[16] Differentially expressed transcripts of different haplotype origins were enriched for different functionality during tissue development. In each tissue, 20–30% of transcripts showed allele-specific expression differences with <2% of direction-shifting. Despite high gene synteny, the HiFi genome assembly revealed extensive chromosome rearrangements and abundant intra-genomic and inter-genomic divergent sequences, with significant structural variations mostly related to long terminal repeat retrotransposons.[16]

Although smallholders are otherwise economically inefficient producers, they are vital to productivity at particular times.[17] Small cassava farmers are no exception.[17] Genetic diversity is vital when productivity has declined due to pests and diseases, and smallholders tend to retain less productive but more diverse gene pools.[17]

Storage tuber

MeFT1 (FT) is a gene producing FT proteins which affect the formation of storage roots in many plants, including this one.[18] Alleles in cassava include MeFT1 and MeFT2.[18] MeFT1 expression in leaves seems to not be photoperiodic, while MeFT2 clearly is.[18] MeFT1 expression encourages motivation of sucrose towards the reproductive organs, as shown by experimental overexpression reducing storage root accumulation.[18]

Taxonomy

History

A cassava field in Bogor Regency, Indonesia
Taíno women preparing cassava bread in 1565: grating yuca roots into paste, shaping the bread, and cooking it on a fire-heated burén
17th-century painting by Albert Eckhout in Dutch Brazil

Wild populations of M. esculenta subspecies flabellifolia, shown to be the progenitor of domesticated cassava, are centered in west-central Brazil, where it was likely first domesticated no more than 10,000 years BP.[19] Forms of the modern domesticated species can also be found growing in the wild in the south of Brazil. By 4,600 BC, cassava pollen appears in the Gulf of Mexico lowlands, at the San Andrés archaeological site.[20] The oldest direct evidence of cassava cultivation comes from a 1,400-year-old Maya site, Joya de Cerén, in El Salvador.[21] With its high food potential, it had become a staple food of the native populations of northern South America, southern Mesoamerica, and the Taino people in the Caribbean islands, who grew it using a high-yielding form of shifting agriculture by the time of European contact in 1492.[22] Cassava was a staple food of pre-Columbian peoples in the Americas and is often portrayed in indigenous art. The Moche people often depicted yuca in their ceramics.[23]

Spaniards in their early occupation of Caribbean islands did not want to eat cassava or maize, which they considered insubstantial, dangerous, and not nutritious. They much preferred foods from Spain, specifically wheat bread, olive oil, red wine, and meat, and considered maize and cassava damaging to Europeans.[24] The cultivation and consumption of cassava were nonetheless continued in both Portuguese and Spanish America. Mass production of cassava bread became the first Cuban industry established by the Spanish.[25] Ships departing to Europe from Cuban ports such as Havana, Santiago, Bayamo, and Baracoa carried goods to Spain, but sailors needed to be provisioned for the voyage. The Spanish also needed to replenish their boats with dried meat, water, fruit, and large amounts of cassava bread.[26] Sailors complained that it caused them digestive problems.[27] Tropical Cuban weather was not suitable for wheat planting and cassava would not go stale as quickly as regular bread.

Cassava was introduced to Africa by Portuguese traders from Brazil in the 16th century. Around the same period, it was also introduced to Asia through Columbian Exchange by Portuguese and Spanish traders, planted in their colonies in Goa, Malacca, Eastern Indonesia, Timor and the Philippines. Maize and cassava are now important staple foods, replacing native African crops in places such as Tanzania.[28] Cassava has also become an important crop in Asia. While it is a valued food staple in parts of eastern Indonesia, it is primarily cultivated for starch extraction and bio-fuel production in Thailand, Cambodia and Vietnam.[29] Cassava is sometimes described as the "bread of the tropics"[30] but should not be confused with the tropical and equatorial bread tree (Encephalartos), the breadfruit (Artocarpus altilis) or the African breadfruit (Treculia africana). This description definitely holds in Africa and parts of South America; in Asian countries such as Vietnam fresh cassava barely features in human diets.[31]

There is a legend that cassava was introduced in 1880–1885 CE to the South Indian state of Kerala by the King of Travancore, Vishakham Thirunal Maharaja, after a great famine hit the kingdom, as a substitute for rice.[32] However, there are documented cases of cassava cultivation in parts of the state before the time of Vishakham Thirunal Maharaja.[33] Cassava is called kappa or maricheeni in Malayalam. It is also referred to as tapioca in Indian English usage.

Cultivation

Optimal conditions for cassava cultivations are: mean annual temperatures between 20 and 29 C, annual precipitations between 1000 and 2500 mm, and an annual growth period of no less than 240 days.[34] These conditions are found among other places in the northern part of the Gulf Coastal Plain in Mexico.[34] In this part of Mexico the following soil types have been shown to be good for cassava cultivation: phaeozem, regosol, arenosol, andosol and luvisol.[34]

Pests

A major cause of losses during cassava storage is infestation by insects.[35] A wide range of species that feed directly on dried cassava chips have been reported as a major factor in spoiling stored cassava, with losses between 19% and 30% of the harvested produce.[35] In Africa, a previous issue was the cassava mealybug (Phenacoccus manihoti) and cassava green mite (Mononychellus tanajoa). These pests can cause up to 80 percent crop loss, which is extremely detrimental to the production of subsistence farmers. These pests were rampant in the 1970s and 1980s but were brought under control following the establishment of the Biological Control Centre for Africa of the International Institute of Tropical Agriculture (IITA) under the leadership of Hans Rudolf Herren.[36] The Centre investigated biological control for cassava pests; two South American natural enemies Anagyrus lopezi (a parasitoid wasp) and Typhlodromalus aripo (a predatory mite) were found to effectively control the cassava mealybug and the cassava green mite, respectively.

Xanthomonas axonopodis pv. manihotis causes bacterial blight of cassava. This disease originated in South America and has followed cassava around the world.[37] Bacterial blight has been responsible for near catastrophic losses and famine in past decades, and its mitigation requires active management practices.[37] Several other bacteria also attack cassava, including the related Xanthomonas campestris pv. cassavae, which causes bacterial angular leaf spot.

Several viruses are of economic importance. The African cassava mosaic virus causes the leaves of the cassava plant to wither, limiting the growth of the root.[38] An outbreak of the virus in Africa in the 1920s led to a major famine.[39] The virus is spread by the whitefly and by the transplanting of diseased plants into new fields. Sometime in the late-1980s, a mutation occurred in Uganda that made the virus even more harmful, causing the complete loss of leaves. This mutated virus spread at a rate of 80 kilometres (50 miles) per year, and as of 2005 was found throughout Uganda, Rwanda, Burundi, the Democratic Republic of the Congo and the Republic of the Congo.[40] Altogether viruses are a severe production limitation in the tropics. They are the primary reason for the complete lack of yield increases in the 25 years up to 2021.[5]

Cassava brown streak virus disease has been identified as a major threat to cultivation worldwide.[39] Cassava mosaic virus (CMV) is widespread in Africa, causing cassava mosaic disease (CMD).[41] Bredeson et al 2016 find the M. esculenta cultivars most widely used on that continent have M. carthaginensis subsp. glaziovii genes of which some appear to be CMD resistance genes.[41] Although the ongoing CMD pandemic affects both East and Central Africa, Legg et al. found that these two areas have two distinct subpopulations of the vector, Bemisia tabaci whiteflies.[42]

A wide range of plant parasitic nematodes have been reported associated with cassava worldwide. These include Pratylenchus brachyurus, Rotylenchulus reniformis, Helicotylenchus spp., Scutellonema spp. and Meloidogyne spp., of which Meloidogyne incognita and Meloidogyne javanica are the most widely reported and economically important.[43] Meloidogyne spp. feeding produces physically damaging galls with eggs inside them. Galls later merge as the females grow and enlarge, and they interfere with water and nutrient supply.[44] Cassava roots become tough with age and restrict the movement of the juveniles and the egg release. It is therefore possible that extensive galling can be observed even at low densities following infection.[45] Other pests and diseases can gain entry through the physical damage caused by gall formation, leading to rots. They have not been shown to cause direct damage to the enlarged storage roots, but plants can have reduced height if there was loss of enlarged root weight.[46]

Research on nematode pests of cassava is still in the early stages; results on the response of cassava is, therefore, not consistent, ranging from negligible to seriously damaging.[47][48][44][49] Since nematodes have such a seemingly erratic distribution in cassava agricultural fields, it is not easy to clearly define the level of direct damage attributed to nematodes and thereafter quantify the success of a chosen management method.[45]

The use of nematicides has been found to result in lower numbers of galls per feeder root compared to a control, coupled with a lower number of rots in the storage roots.[50] The organophosphorus nematicide femaniphos, when used, did not affect crop growth and yield parameter variables measured at harvest. Nematicide use in cassava is not terribly effective at increasing harvested yield, but lower infestation at harvest and lower subsequent storage loss provide a higher effective yield. The use of tolerant and resistant cultivars is the most practical management method in most locales.[51][45][52]

This crop suffers from a rust, rust of cassava, caused by Uromyces manihotis.[53]

Harvesting

Cassava is harvested by hand by raising the lower part of the stem, pulling the roots out of the ground, and removing them from the base of the plant. The upper parts of the stems with the leaves are plucked off before harvest. Cassava is propagated by cutting the stem into sections of approximately 15 cm, these being planted prior to the wet season.[54] Cassava growth is favorable under temperatures ranging from 25 to 29 °C (77 to 84 °F), but it can tolerate temperatures as low as 12 °C (54 °F) and as high as 40 °C (104 °F).[55]

Postharvest handling and storage

Cassava undergoes post-harvest physiological deterioration (PPD) once the tubers are separated from the main plant. The tubers, when damaged, normally respond with a healing mechanism. However, the same mechanism, which involves coumaric acids, starts about 15 minutes after damage, and fails to switch off in harvested tubers. It continues until the entire tuber is oxidized and blackened within two to three days after harvest, rendering it unpalatable and useless. PPD is related to the accumulation of reactive oxygen species (ROS) initiated by cyanide release during mechanical harvesting. Cassava shelf life may be increased up to three weeks by overexpressing a cyanide-insensitive alternative oxidase, which suppressed ROS by 10-fold.[56] PPD is one of the main obstacles preventing farmers from exporting cassavas abroad and generating income. Fresh cassava can be preserved like potato, using thiabendazole or bleach as a fungicide, then wrapping in plastic, coating in wax or freezing.[57]

While alternative methods for PPD control have been proposed, such as preventing ROS effects by use of plastic bags during storage and transport, coating the roots with wax, or freezing roots, such strategies have proved to be economically or technically impractical, leading to breeding of cassava varieties more tolerant to PPD and with improved durability after harvest.[58] Plant breeding has resulted in different strategies for cassava tolerance to PPD.[58][59] One was induced by mutagenic levels of gamma rays, which putatively silenced one of the genes involved in PPD genesis, while another was a group of high-carotene clones in which the antioxidant properties of carotenoids are postulated to protect the roots from PPD.[59]

Production

In 2020, global production of cassava root was 303 million tonnes, with Nigeria as the world's largest producer, producing 20% of the world total (table). Other major growers were Democratic Republic of the Congo and Thailand.[60]

Cassava is one of the most drought-tolerant crops, can be successfully grown on marginal soils, and gives reasonable yields where many other crops do not grow well. Cassava is well adapted within latitudes 30° north and south of the equator, at elevations between sea level and 2,000 m (7,000 ft) above sea level, in equatorial temperatures, with rainfalls from 50 to 5,000 mm (2 to 200 in) annually, and to poor soils with a pH ranging from acidic to alkaline. These conditions are common in certain parts of Africa and South America.

Cassava is a highly productive crop when considering food energy produced per unit land area per day – 1,000,000 kJ/ha (250,000 kcal/ha), as compared with 650,000 kJ/ha (156,000 kcal/ha) for rice, 460,000 kJ/ha (110,000 kcal/ha) for wheat and 840,000 kJ/ha (200,000 kcal/ha) for maize.[61]

Toxicity

Cassava roots, peels and leaves should not be consumed raw because they contain two cyanogenic glucosides, linamarin and lotaustralin. These are decomposed by linamarase, a naturally occurring enzyme in cassava, liberating hydrogen cyanide (HCN).[62] Cassava varieties are often categorized as either bitter or sweet, signifying the presence or absence of toxic levels of cyanogenic glucosides, respectively. The so-called sweet (more accurately non-bitter) cultivars can produce as little as 20 milligrams of cyanide (CN) per kilogram of fresh roots, whereas bitter ones may produce more than 50 times as much (1 g/kg). Cassavas grown during drought are especially high in these toxins.[63][64] A dose of 25 mg of pure cassava cyanogenic glucoside, which contains 2.5 mg of cyanide, is sufficient to kill a rat.[65] Excess cyanide residue from improper preparation is known to cause acute cyanide intoxication, and goiters, and has been linked to ataxia (a neurological disorder affecting the ability to walk, also known as konzo).[7] It has also been linked to tropical calcific pancreatitis in humans, leading to chronic pancreatitis.[66][67]

Symptoms of acute cyanide intoxication appear four or more hours after ingesting raw or poorly processed cassava: vertigo, vomiting, and collapse. In some cases, death may result within one or two hours. It can be treated easily with an injection of thiosulfate (which makes sulfur available for the patient's body to detoxify by converting the poisonous cyanide into thiocyanate).[7]

"Chronic, low-level cyanide exposure is associated with the development of goiter and with tropical ataxic neuropathy, a nerve-damaging disorder that renders a person unsteady and uncoordinated. Severe cyanide poisoning, particularly during famines, is associated with outbreaks of a debilitating, irreversible paralytic disorder called konzo and, in some cases, death. The incidence of konzo and tropical ataxic neuropathy can be as high as three percent in some areas."[68][69]

During the shortages in Venezuela in the late 2010s, dozens of deaths were reported due to Venezuelans resorting to eating bitter cassava in order to curb starvation.[70][71] Cases of cassava poisoning were also documented during the famine accompanying the Great Leap Forward (1958–1962) in China.[72]

Societies that traditionally eat cassava generally understand that some processing (soaking, cooking, fermentation, etc.) is necessary to avoid getting sick. Brief soaking (four hours) of cassava is not sufficient, but soaking for 18–24 hours can remove up to half the level of cyanide. Drying may not be sufficient, either.[7]

Cassava root, peeled and soaking

For some smaller-rooted, sweet varieties, cooking is sufficient to eliminate all toxicity. The cyanide is carried away in the processing water and the amounts produced in domestic consumption are too small to have environmental impact.[62] The larger-rooted, bitter varieties used for production of flour or starch must be processed to remove the cyanogenic glucosides. The large roots are peeled and then ground into flour, which is then soaked in water, squeezed dry several times, and toasted. The starch grains that flow with the water during the soaking process are also used in cooking.[73] The flour is used throughout South America and the Caribbean. Industrial production of cassava flour, even at the cottage level, may generate enough cyanide and cyanogenic glycosides in the effluents to have a severe environmental impact.[62]

Uses

Processing cassava starch into cassava noodles, Kampong Cham

Alcoholic beverages

Alcoholic beverages made from cassava include cauim and tiquira (Brazil), kasiri (Venezuela, Guyana, Suriname), impala (Mozambique), masato (Peruvian Amazonia chicha), parakari or kari (Venezuela, Guyana, Surinam), nihamanchi (South America) also known as (Ecuador and Peru), ö döi (chicha de yuca, Ngäbe-Bugle, Panama), sakurá (Brazil, Suriname), and tarul ko (Darjeeling, Sikkim, India).

Culinary

Cassava heavy cake

Cassava-based dishes are widely consumed wherever the plant is cultivated; some have regional, national, or ethnic importance.[74] Cassava must be cooked properly to detoxify it before it is eaten.[75]

Cassava can be cooked in many ways. The root of the sweet variety has a delicate flavor and can replace potatoes. It is used in cholent in some households.[76] It can be made into a flour that is used in breads, cakes and cookies. In Brazil, detoxified cassava is ground and cooked to a dry, often hard or crunchy meal known as farofa used as a condiment, toasted in butter, or eaten alone as a side dish.

Preparation

Cassava bread

A safe processing method known as the "wetting method" is to mix the cassava flour with water into a thick paste, spread it in a thin layer over a basket and then let it stand for five hours at 30 °C in the shade.[77] In that time, about 83% of the cyanogenic glycosides are broken down by the linamarase; the resulting hydrogen cyanide escapes to the atmosphere, making the flour safe for consumption the same evening.[77]

The traditional method used in West Africa is to peel the roots and put them into water for three days to ferment. The roots are then dried or cooked. In Nigeria and several other west African countries, including Ghana, Cameroon, Benin, Togo, Ivory Coast, and Burkina Faso, they are usually grated and lightly fried in palm oil to preserve them. The result is a foodstuff called gari. Fermentation is also used in other places such as Indonesia (see Tapai). The fermentation process also reduces the level of antinutrients, making the cassava a more nutritious food.[78] The reliance on cassava as a food source and the resulting exposure to the goitrogenic effects of thiocyanate has been responsible for the endemic goiters seen in the Akoko area of southwestern Nigeria.[79][80]

A traditional method used by the Lucayans to detoxify manioc is by peeling, grinding, and mashing; filtering the mash through a basket tube to remove the hydrogen cyanide; and drying and sieving the mash for flour. The poisonous filtrate water was boiled to release the hydrogen cyanide, and used as a base for stews. [81]

A project called "BioCassava Plus" uses bioengineering to grow cassava with lower cyanogenic glycosides combined with fortification of vitamin A, iron and protein to improve the nutrition of people in sub-Saharan Africa.[82][83]

Nutrition

Raw cassava is 60% water, 38% carbohydrates, 1% protein, and has negligible fat (table).[84] In a 100-gram (3+12-ounce) reference serving, raw cassava provides 670 kilojoules (160 kilocalories) of food energy and 25% of the Daily Value (DV) of vitamin C, but otherwise has no micronutrients in significant content (i.e. above 10% of the relevant DV). Cooked cassava starch has a digestibility of over 75%.[84]

Cassava, like other foods, also has antinutritional and toxic factors. Of particular concern are the cyanogenic glucosides of cassava (linamarin and lotaustralin). On hydrolysis, these release hydrogen cyanide (HCN). The presence of cyanide in cassava is of concern for human and for animal consumption. The concentration of these antinutritional and unsafe glycosides varies considerably between varieties and also with climatic and cultural conditions. Selection of cassava species to be grown, therefore, is quite important. Once harvested, bitter cassava must be treated and prepared properly prior to human or animal consumption, while sweet cassava can be used after boiling.

Comparison with other major staple foods

A comparative table shows that cassava is a good energy source. In its prepared forms, in which its toxic or unpleasant components have been reduced to acceptable levels, it contains an extremely high proportion of starch compared to most staples. However, cassava is a poorer dietary source of protein and most other essential nutrients. Though an important staple, its main value is as a component of a balanced diet.

Comparisons between the nutrient content of cassava and other major staple foods when raw must be interpreted with caution because most staples are not edible in such forms and many are indigestible, even dangerously poisonous or otherwise harmful.[85] For consumption, each must be prepared and cooked as appropriate.

Biofuel

In many countries, significant research has begun to evaluate the use of cassava as an ethanol biofuel feedstock. Under the Development Plan for Renewable Energy in the Eleventh Five-Year Plan in the People's Republic of China, the target was to increase the production of ethanol fuel from nongrain feedstock to 2 million metric tons (2,000,000 long tons; 2,200,000 short tons), and that of biodiesel to 200 thousand metric tons (200,000 long tons; 220,000 short tons) by 2010. This is equivalent to the replacement of 10 million metric tons (9,800,000 long tons; 11,000,000 short tons) of petroleum.[86] This push for non-grain ethanol was further increased to a goal of 300 million metric tons (300,000,000 long tons; 330,000,000 short tons) of cellulosic and non-grain based ethanol combined by 2020.[87] As a result, cassava (tapioca) chips have gradually become a major source of ethanol production. On 22 December 2007, the largest cassava ethanol fuel production facility was completed in Beihai, with annual output of 200 thousand metric tons (200,000 long tons; 220,000 short tons), which would need an average of 1.5 million metric tons (1,500,000 long tons; 1,700,000 short tons) of cassava. In November 2008, China-based Hainan Yedao Group invested US$51.5 million in a new biofuel facility that is expected to produce 120 million litres (33 million US gallons) a year of bioethanol from cassava plants.[88]

Animal feed

Tubers being grated; a close-up of the product; drying on road to be used for pig and chicken feed

Cassava tubers and hay are used worldwide as animal feed. Cassava hay is harvested at a young growth stage (three to four months) when it reaches about 30 to 45 cm (12 to 18 in) above ground; it is then sun-dried for one to two days until its final dry matter content approaches 85 percent. Cassava hay contains high protein (20–27 percent crude protein) and condensed tannins (1.5–4 percent CP). It is valued as a good roughage source for ruminants such as cattle.[89]

Laundry starch

Cassava is also used in a number of commercially available laundry products, especially as starch for shirts and other garments.[90] Using cassava starch diluted in water and spraying it over fabrics before ironing helps stiffen collars.

Economic importance

Cassava, yams (Dioscorea spp.), and sweet potatoes (Ipomoea batatas) are important sources of food in the tropics. The cassava plant gives the third-highest yield of carbohydrates per cultivated area among crop plants, after sugarcane and sugar beets.[91] Cassava plays a particularly important role in agriculture in developing countries, especially in sub-Saharan Africa, because it does well on poor soils and with low rainfall, and because it is a perennial that can be harvested as required. Its wide harvesting window allows it to act as a famine reserve and is invaluable in managing labor schedules. It offers flexibility to resource-poor farmers because it serves as either a subsistence or a cash crop.[92]

Worldwide, 800 million people depend on cassava as their primary food staple.[93] No continent depends as much on root and tuber crops in feeding its population as does Africa. In the humid and sub-humid areas of tropical Africa, it is either a primary staple food or a secondary costaple. In Ghana, for example, cassava and yams occupy an important position in the agricultural economy and contribute about 46 percent of the agricultural gross domestic product. Cassava accounts for a daily caloric intake of 30 percent in Ghana and is grown by nearly every farming family. The importance of cassava to many Africans is epitomised in the Ewe (a language spoken in Ghana, Togo and Benin) name for the plant, agbeli, meaning "there is life".

In Tamil Nadu, India, there are many cassava processing factories alongside National Highway 68 between Thalaivasal and Attur. Cassava is widely cultivated and eaten as a staple food in Andhra Pradesh and in Kerala. In Assam it is an important source of carbohydrates especially for natives of hilly areas.

In the subtropical region of southern China, cassava is the fifth-largest crop in terms of production, after rice, sweet potato, sugar cane, and maize. China is also the largest export market for cassava produced in Vietnam and Thailand. Over 60 percent of cassava production in China is concentrated in a single province, Guangxi, averaging over seven million tonnes annually.

See also

References

  1. ^ a b "Manihot esculenta Crantz, Rei Herb. 1: 167 (1766)". Plants of the World Online. Board of Trustees of the Royal Botanic Gardens, Kew. 2022. Archived from the original on 11 November 2022. Retrieved 11 November 2022.
  2. ^ "Manihot esculenta". Germplasm Resources Information Network (GRIN). Agricultural Research Service (ARS), United States Department of Agriculture (USDA). Retrieved 4 January 2014.
  3. ^ "Cassava". Food and Agriculture Organization of the United Nations (FAO). Archived from the original on 18 November 2016. Retrieved 24 November 2011.
  4. ^ Fauquet Claude; Fargette Denis (1990). "African Cassava Mosaic Virus: Etiology, Epidemiology, and Control" (PDF). Plant Disease. American Phytopathological Society (APS). 74 (6): 404–11. doi:10.1094/pd-74-0404. Archived (PDF) from the original on 9 August 2017. Retrieved 10 January 2011.
  5. ^ a b Afedraru, Lominda (31 January 2019). "Uganda to launch innovative gene-edited cassava research". Alliance for Science. Archived from the original on 15 August 2021. Retrieved 15 August 2021.
  6. ^ "Dimensions of Need: An atlas of food and agriculture". United Nations Food and Agriculture Organization (FAO). 1995. Archived from the original on 24 November 2016. Retrieved 23 November 2011.
  7. ^ a b c d e "Ch. 7 Toxic substances and antinutritional factors". Roots, tubers, plantains and bananas in human nutrition. Rome: Food and Agriculture Organization of the United Nations (FAO). 1990. ISBN 9789251028629.
  8. ^ a b "CASSAVA POISONING – VENEZUELA". ProMED-mail. 29 January 2017. Archived from the original on 2 February 2017. Retrieved 29 January 2017.
  9. ^ "Cassava poisoning was integral to Episode 177 of Series 17 of the BBC drama 'Doctors'". BBC. 5 February 2016. Archived from the original on 8 February 2016. Retrieved 13 February 2018.
  10. ^ Soto-Blanco, Benito; Górniak, Silvana Lima (1 July 2010). "Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats". Experimental and Toxicologic Pathology. 62 (4): 361–366. doi:10.1016/j.etp.2009.05.011. ISSN 0940-2993. PMID 19559583.
  11. ^ Suharti, Sri; Oktafiani, Hafni; Sudarman, Asep; Baik, Myunggi; Wiryawan, Komang Gede (1 December 2021). "Effect of cyanide-degrading bacteria inoculation on performance, rumen fermentation characteristics of sheep fed bitter cassava (Manihot esculenta Crantz) leaf meal". Annals of Agricultural Sciences. 66 (2): 131–136. doi:10.1016/j.aoas.2021.09.001. ISSN 0570-1783. S2CID 244191058.
  12. ^ Chiwona-Karltun, Linley; Katundu, Chrissie; Ngoma, James; Chipungu, Felistus; Mkumbira, Jonathan; Simukoko, Sidney; Jiggins, Janice (2002). "Bitter cassava and women: an intriguing response to food security". LEISA Magazine. 18 (4). Archived from the original on 22 September 2018. Retrieved 22 September 2018.
  13. ^ "Basic Report: 11134, Cassava, raw". National Nutrient Database for Standard Reference Release 28. Agricultural Research Service, US Department of Agriculture. May 2016. Archived from the original on 12 July 2017. Retrieved 7 December 2016.
  14. ^ Latif, Sajid; Müller, Joachim (2015). "Potential of cassava leaves in human nutrition: a review" (PDF). Trends in Food Science & Technology. 44 (2): 147–158. doi:10.1016/j.tifs.2015.04.006. Retrieved 7 September 2022.
  15. ^ Ravindran, Velmerugu (1992). "Preparation of cassava leaf products and their use as animal feeds" (PDF). FAO Animal Production and Health Paper (95): 111–125. Archived from the original (PDF) on 15 January 2012. Retrieved 13 August 2010.
  16. ^ a b c Qi, W.; Lim, Y.; Patrignani, A.; Schläpfer, P.; Bratus-Neuenschwander, A.; Grüter, S.; Chanez, C.; Rodde, N.; Prat, E.; Vautrin, S.; Fustier, M.; Pratas, D.; Schlapbach, R.; Gruissem, W. (2022). "The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features". GigaScience. 11. doi:10.1093/gigascience/giac028. PMC 8952263. PMID 35333302.
  17. ^ a b c McGregor, Andrew; Manley, M.; Tubuna, S.; Deo, R.; Bourke, Mike (2020). "Pacific Island food security: situation, challenges and opportunities". Pacific Economic Bulletin. Asia Pacific Press. hdl:1885/39234. ISSN 0817-8038.
  18. ^ a b c d Zierer, Wolfgang; Rüscher, David; Sonnewald, Uwe; Sonnewald, Sophia (2021). "Tuber and Tuberous Root Development". Annual Review of Plant Biology. Annual Reviews. 72 (1): 551–580. doi:10.1146/annurev-arplant-080720-084456. ISSN 1543-5008. PMID 33788583.
  19. ^ Olsen, K. M.; Schaal, B. A. (1999). "Evidence on the origin of cassava: phylogeography of Manihot esculenta". Proceedings of the National Academy of Sciences of the United States of America. 96 (10): 5586–91. Bibcode:1999PNAS...96.5586O. doi:10.1073/pnas.96.10.5586. PMC 21904. PMID 10318928.
  20. ^ Pope, Kevin O.; Pohl, Mary E. D.; Jones, John G.; Lentz, David L.; von Nagy, Christopher; Vega, Francisco J.; Quitmyer, Irvy R. (2001). "Origin and Environmental Setting of Ancient Agriculture in the Lowlands of Mesoamerica". Science. 292 (5520): 1370–3. Bibcode:2001Sci...292.1370P. doi:10.1126/science.292.5520.1370. PMID 11359011.
  21. ^ "CU team discovers Mayan crop system". Archived from the original on 31 July 2019. Retrieved 31 July 2019.
  22. ^ "Taino | History & Culture". Encyclopedia Britannica. Archived from the original on 1 September 2020. Retrieved 24 September 2020.
  23. ^ Berrin, Katherine & Larco Museum. The Spirit of Ancient Peru:Treasures from the Museo Arqueológico Rafael Larco Herrera. New York: Thames & Hudson, 1997.
  24. ^ Earle, Rebecca (2012) The Body of the Conquistador: Food, Race, and the Colonial Experience in Spanish America, 1492–1700. New York: Cambridge University Press. pp. 54–57, 151. ISBN 978-1107693296.
  25. ^ Long, Janet (2003). Conquest and food: consequences of the encounter of two worlds; page 75. UNAM. ISBN 978-9703208524. Archived from the original on 20 April 2023. Retrieved 24 August 2020.
  26. ^ Watkins, Thayer (2006). "The Economic History of Havana, Cuba: A City So Beautiful and Important It Was Once Worth More Than All of Florida". San José State University, Department of Economics. Archived from the original on 2 May 2016. Retrieved 20 August 2015.
  27. ^ Super, John C. (1984). "Spanish Diet in the Atlantic Crossing". Terrae Incognitae. 16: 60–63. doi:10.1179/008228884791016718.
  28. ^ Nweke, Felix I. (2005). "The cassava transformation in Africa". A review of cassava in Africa with country case studies on Nigeria, Ghana, the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy. Vol. 2. Rome: The Food and Agriculture Organization of the United Nations. Archived from the original on 11 February 2019. Retrieved 1 January 2011.
  29. ^ Hershey, Clair; et al. (April 2000). "Cassava in Asia. Expanding the Competitive Edge in Diversified Markets". A review of cassava in Asia with country case studies on Thailand and Viet Nam. Rome: Food and Agriculture Organization of the United Nations. Archived from the original on 7 November 2017. Retrieved 28 January 2018.
  30. ^ Adams, C.; Murrieta, R.; Siqueira, A.; Neves, W.; Sanches, R. (2009). "Bread of the Land: the Invisibility of Manioc in the Amazon". Amazon Peasant Societies in a Changing Environment. pp. 281–305. doi:10.1007/978-1-4020-9283-1_13. ISBN 978-1-4020-9282-4.
  31. ^ Mota-Guttierez and O'Brien, Cassava consumption and the occurrence of cyanide in cassava in Vietnam, Indonesia and Philippines Archived 25 May 2021 at the Wayback Machine, Public Health Nutrition, 2019
  32. ^ Saraswathy Nagarajan, "How tapioca came to Travancore" Archived 27 July 2020 at the Wayback Machine, The Hindu, June 27, 2019
  33. ^ Ainslie, Whitelaw; Halford, Henry; Royal College of Physicians of London. n 80046799 (1813). Materia medica of Hindoostan, and artisan's and agriculturalist's nomenclature. London Royal College of Physicians. Madras Government Press.
  34. ^ a b c Del-Rosario-Arellano, José Luis; Aguilar-Rivera, Noe; Leyva-Ovalle, Otto Raúl; Andres-Meza, Pablo; Meneses-Marquez, Isaac; Bolio-López, Gloria Ivette (2022). "Zonificación edafoclimática de la yuca (Manihot esculenta Crantz) para la producción sostenible de bioproductos" [Edaphoclimatic zoning of cassava (manihot esculenta crantz) for sustainable production of bioproducts]. Norte Grande Geography Journal (in Spanish). 81. doi:10.4067/S0718-34022022000100361.
  35. ^ a b Osipitan, A. A.; Sangowusi, V. T.; Lawal, O. I.; Popoola, K. O. (2015). "Correlation of Chemical Compositions of Cassava Varieties to Their Resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae)". Journal of Insect Science. 15 (1): 13. doi:10.1093/jisesa/ieu173. PMC 4535132. PMID 25700536.
  36. ^ "1995: Herren". The World Food Prize Foundation. Archived from the original on 11 July 2015. Retrieved 29 May 2015.
  37. ^ a b Lozano, J. Carlos (September 1986). "Cassava bacterial blight: a manageable disease" (PDF). Plant Disease. American Phytopathological Society (APS). 70 (12): 1089–1093. doi:10.1094/PD-70-1089. Archived (PDF) from the original on 14 January 2023. Retrieved 14 January 2023.
  38. ^ "Cassava (manioc)". Archived from the original on 30 June 2015. Retrieved 29 May 2015.
  39. ^ a b "Virus ravages cassava plants in Africa". The New York Times. 31 May 2010. Archived from the original on 16 March 2017. Retrieved 24 February 2017.
  40. ^ "Hungry African nations balk at biotech cassava". St. Louis Post-Dispatch. 31 August 2005. Archived from the original on 3 March 2012. Retrieved 11 August 2008.
  41. ^ a b Lebot, Vincent (2020). Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams And Aroids. Wallingford, Oxfordshire, UK Boston, MA, USA: CABI (Centre for Agriculture and Bioscience International). p. 541. ISBN 978-1-78924-336-9. OCLC 1110672215.
  42. ^
    • Legg, James P.; Kumar, P. Lava; Makeshkumar, T.; Tripathi, Leena; Ferguson, Morag; Kanju, Edward; Ntawuruhunga, Pheneas; Cuellar, Wilmer (2014). "Cassava Virus Diseases: Biology, Epidemiology, and Management". Control of Plant Virus Diseases: Vegetatively-Propagated Crops. Elsevier Inc. doi:10.1016/bs.aivir.2014.10.001. ISSN 0065-3527. PMID 25591878.
    • Legg, James; Sseruwagi, Peter; Boniface, Simon; Okao, Geoffrey; Shirima, Rudolph; Bigirimana, Simon; Gashaka, Gervais; Herrmann, Hans; Jeremiah, Simon; Obiero, Hannington; Ndyetabulai, Innocent; Tata, Willy; Masembe, Charles; Brown, Judith (2014). "Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa 2014". Virus Research. Elsevier. 186: 61–75. doi:10.1016/j.virusres.2013.11.018. PMID 24291251. S2CID 1844458.
  43. ^ Mc Sorley, R.; Ohair, S. K.; Parrado, J. L. (1983). "Nematodes of Cassava, Manihot esculenta Crantz". Nematropica. 13: 261–287. Archived from the original on 3 June 2016. Retrieved 4 May 2016.
  44. ^ a b Gapasin, R. M. (1980). "Reaction of golden yellow cassava to Meloidogyne spp. Inoculation". Annals of Tropical Research. 2: 49–53.
  45. ^ a b c Coyne, D. L. (1994). "Nematode pests of cassava". African Crop Science Journal. 2 (4): 355–359. Archived from the original on 22 September 2018. Retrieved 22 September 2018.
  46. ^ Caveness, F. E. (1982). "Root-knot nematodes as parasites of cassava". IITA Research Briefs. 3 (2): 2–3.
  47. ^ Coyne, D. L.; Talwana, L. A. H. (2000). "Reaction of cassava cultivars to root-knot nematode (Meloidogyne spp.) in pot experiments and farmer-managed field trials in Uganda". International Journal of Nematology. 10: 153–158. Archived from the original on 20 April 2023. Retrieved 22 September 2018.
  48. ^ Makumbi-Kidza, N. N.; Speijer; Sikora R. A. (2000). "Effects of Meloidogyne incognita on growth and storage-root formation of cassava (Manihot esculenta)". Journal of Nematology. 32 (4S): 475–477. PMC 2620481. PMID 19270997.
  49. ^ Theberge, R. L., ed. (1985). Common African pests and diseases of cassava, yam, sweet potato and cocoyam. Ibadan, Nigeria: International Institute of Tropical Agriculture (IITA). p. 107. ISBN 9789781310010.
  50. ^ Coyne D. L.; Kagoda F.; Wambugu E.; Ragama P. (2006). "Response of cassava to nematicide application and plant-parasitic nematode infection in East Africa, with emphasis on root-knot nematode". International Journal of Pest Management. 52 (3): 215–23. doi:10.1080/09670870600722959. S2CID 84771539.
  51. ^ Coyne, Danny L.; Cortada, Laura; Dalzell, Johnathan J.; Claudius-Cole, Abiodun O.; Haukeland, Solveig; Luambano, Nessie; Talwana, Herbert (25 August 2018). "Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa". Annual Review of Phytopathology. Annual Reviews. 56 (1): 381–403. doi:10.1146/annurev-phyto-080417-045833. ISSN 0066-4286. PMC 7340484. PMID 29958072. S2CID 49615468.
  52. ^ Uchechukwumgemezu, Chidinma (21 December 2020). "Nigeria to introduce new cassava varieties". todayng. Archived from the original on 21 December 2020. Retrieved 21 December 2020.
  53. ^ "Uromyces manihotis (rust of cassava)". Invasive Species Compendium (ISC). CABI (Centre for Agriculture and Bioscience International). 2019. Archived from the original on 9 November 2022. Retrieved 27 October 2022.
  54. ^ Howeler, Reinhardt H. (2007). "Production techniques for sustainable cassava production in Asia" (PDF). Centro Internacional de Agricultura Tropical (CIAT), Bangkok. Archived from the original (PDF) on 5 October 2016. Retrieved 3 May 2016.
  55. ^ Willy H. Verheye, ed. (2010). "Tropical Root and Tuber Crops". Soils, Plant Growth and Crop Production Volume II. EOLSS Publishers. p. 273. ISBN 978-1-84826-368-0. Archived from the original on 11 May 2021. Retrieved 29 December 2020.
  56. ^ Zidenga, T; et al. (2012). "Extending cassava root shelf life via reduction of reactive oxygen species production". Plant Physiology. 159 (4): 1396–1407. doi:10.1104/pp.112.200345. PMC 3425186. PMID 22711743.
  57. ^ "Storage and processing of roots and tubers in the tropics". U.N. Food and Agriculture Organization. Archived from the original on 22 April 2016. Retrieved 4 May 2016.
  58. ^ a b Venturini, M. T; Santos, L. R; Vildoso, C. I; Santos, V. S; Oliveira, E. J (2016). "Variation in cassava germplasm for tolerance to post-harvest physiological deterioration". Genetics and Molecular Research. 15 (2). doi:10.4238/gmr.15027818. PMID 27173317.
  59. ^ a b Morante, N.; Sánchez, T.; Ceballos, H.; Calle, F.; Pérez, J. C.; Egesi, C.; Cuambe, C. E.; Escobar, A. F.; Ortiz, D.; Chávez, A. L.; Fregene, M. (2010). "Tolerance to Postharvest Physiological Deterioration in Cassava Roots". Crop Science. 50 (4): 1333–1338. doi:10.2135/cropsci2009.11.0666.
  60. ^ a b "Cassava production in 2018, Crops/World Regions/Production Quantity from pick lists". UN Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). 2019. Archived from the original on 22 November 2016. Retrieved 19 April 2020.
  61. ^ El-Sharkawy, Mabrouk A. (1 August 1993). "Drought-tolerant Cassava for Africa, Asia, and Latin America". BioScience. 43 (7): 441–451. doi:10.2307/1311903. ISSN 1525-3244. JSTOR 1311903. Archived from the original on 21 January 2022. Retrieved 19 April 2020.
  62. ^ a b c Cereda, M. P.; Mattos, M. C. Y. (1996). "Linamarin: the Toxic Compound of Cassava". Journal of Venomous Animals and Toxins. 2: 06–12. doi:10.1590/S0104-79301996000100002.
  63. ^ Aregheore E. M.; Agunbiade O. O. (1991). "The toxic effects of cassava (Manihot esculenta Crantz) diets on humans: a review". Vet. Hum. Toxicol. 33 (3): 274–275. PMID 1650055.
  64. ^ White W. L. B.; Arias-Garzon D. I.; McMahon J. M.; Sayre R. T. (1998). "Cyanogenesis in Cassava, The Role of Hydroxynitrile Lyase in Root Cyanide Production". Plant Physiol. 116 (4): 1219–1225. doi:10.1104/pp.116.4.1219. PMC 35028. PMID 9536038.
  65. ^ "Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on hydrocyanic acid in flavourings and other food ingredients with flavouring properties". EFSA Journal. 105: 1–28. 2004. Archived from the original on 29 September 2015. Retrieved 6 April 2013.
  66. ^ Bhatia E (2002). "Tropical calcific pancreatitis: strong association with SPINK1 trypsin inhibitor mutations". Gastroenterology. 123 (4): 1020–1025. doi:10.1053/gast.2002.36028. PMID 12360463.
  67. ^ Harford, Tim (4 September 2019). "How do people learn to cook a poisonous plant safely?". BBC News. Archived from the original on 4 September 2019. Retrieved 4 September 2019.
  68. ^ Wagner, Holly. "Cassava's cyanide-producing abilities can cause neuropathy". cidpusa.org. Archived from the original on 24 September 2010. Retrieved 21 June 2010.
  69. ^ Siritunga D; Sayre RT (September–October 2007). "Transgenic approaches for cyanogen reduction in cassava". J AOAC Int. 90 (5): 1450–5. doi:10.1093/jaoac/90.5.1450. PMID 17955993.
  70. ^ Castro, Maolis (6 March 2017). "La yuca amarga alimenta la muerte en Venezuela". El País (in Spanish). Archived from the original on 12 February 2018. Retrieved 25 February 2018.
  71. ^ "Estragos de la crisis: Ocho niños han muerto en Aragua por consumir yuca amarga". La Patilla (in European Spanish). 22 February 2018. Archived from the original on 23 February 2018. Retrieved 25 February 2018.
  72. ^ Zhou Xun (2012). "Ch. 3 Seasons of death". The Great Famine in China, 1958-1962: A Documentary History. Yale University Press.
  73. ^ Padmaja, G.; Steinkraus, K. H. (1995). "Cyanide detoxification in cassava for food and feed uses". Critical Reviews in Food Science and Nutrition. 35 (4): 299–339. doi:10.1080/10408399509527703. PMID 7576161.
  74. ^ Frederick Douglass Opie, Hog and Hominy: Soul Food from Africa to America, (Columbia University Press 2008), chapters 1–2.
  75. ^ "Cassava: Benefits, toxicity, and how to prepare". www.medicalnewstoday.com. 9 February 2021. Archived from the original on 30 March 2022. Retrieved 30 March 2022.
  76. ^ "Manioc Root - Cargo Handbook - the world's largest cargo transport guidelines website". cargohandbook.com. Archived from the original on 20 May 2022. Retrieved 30 March 2022.
  77. ^ a b Bradbury, J.H. (2006). "Simple wetting method to reduce cyanogen content of cassava flour" (PDF). Journal of Food Composition and Analysis. 19 (4): 388–393. doi:10.1016/j.jfca.2005.04.012. Archived (PDF) from the original on 5 February 2015. Retrieved 23 March 2018.
  78. ^ Oboh G, Oladunmoye MK (2007). "Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium-cyanide variety of cassava tubers". Nutr Health. 18 (4): 355–67. doi:10.1177/026010600701800405. PMID 18087867. S2CID 25650282.
  79. ^ Akindahunsi AA, Grissom FE, Adewusi SR, Afolabi OA, Torimiro SE, Oke OL (1998). "Parameters of thyroid function in the endemic goitre of Akungba and Oke-Agbe villages of Akoko area of southwestern Nigeria". African Journal of Medicine and Medical Sciences. 27 (3–4): 239–42. PMID 10497657.
  80. ^ Bumoko GM, Sadiki NH, Rwatambuga A, Kayembe KP, Okitundu DL, Mumba Ngoyi D, Muyembe JJ, Banea JP, Boivin MJ, Tshala-Katumbay D (15 February 2015). "Lower serum levels of selenium, copper, and zinc are related to neuromotor impairments in children with konzo". J Neurol Sci. 349 (1–2): 149–53. doi:10.1016/j.jns.2015.01.007. PMC 4323625. PMID 25592410.
  81. ^ Keegan, William; Carlson, Lisbeth (2008). Talking Taino: Caribbean Natural History from a Native Perspective (Caribbean Archaeology and Ethnohistory). Fire Ant Books. p. 74. ISBN 978-0817355081.
  82. ^ Sayre, R.; Beeching, J. R.; Cahoon, E. B.; Egesi, C.; Fauquet, C.; Fellman, J.; Fregene, M.; Gruissem, W.; Mallowa, S.; Manary, M.; Maziya-Dixon, B.; Mbanaso, A.; Schachtman, D. P.; Siritunga, D.; Taylor, N.; Vanderschuren, H.; Zhang, P. (2011). "The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa". Annual Review of Plant Biology. 62: 251–272. doi:10.1146/annurev-arplant-042110-103751. PMID 21526968.
  83. ^ "BioCassava Plus". St. Louis, Missouri, USA: Donald Danforth Plant Science Center. 2018. Archived from the original on 27 March 2016. Retrieved 23 March 2018.
  84. ^ a b Tewe, Olumide O. (2004). "The Global Cassava Development Strategy". U.N. Food and Agriculture Organization. Archived from the original on 19 January 2012. Retrieved 24 November 2011.
  85. ^ Achidi, Aduni U.; Ajayi, Olufunmike A.; Maziya-Dixon, Bussie; Bokanga, Mpoko (June 2008). "The Effect of Processing on the Nutrient Content of Cassava (Manihot Esculenta Crantz) Leaves". Journal of Food Processing and Preservation. 32 (3): 486–502. doi:10.1111/j.1745-4549.2007.00165.x. ISSN 0145-8892.
  86. ^ "Stuart's Brasil". 30 January 2009. Archived from the original (Blog) on 7 April 2015. Retrieved 29 May 2015.
  87. ^ Anderson-Sprecher, Andrew; Ji, James. "China Biofuel Industry Faces Uncertain Future" (PDF). USDA Foreign Agriculture Service. Archived (PDF) from the original on 27 July 2020. Retrieved 8 November 2019.
  88. ^ "Cassava bio-ethanol plant to open in China". businessGreen. 5 November 2008. Archived from the original on 20 April 2023. Retrieved 29 May 2015.
  89. ^ R. Lunsin; M. Wanapat; P. Rowlinson (October 2012). "Effect of cassava hay and rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows". Asian-Australasian Journal of Animal Sciences. 25 (10): 1364–1373. doi:10.5713/ajas.2012.12051. PMC 4093022. PMID 25049491.
  90. ^ "Tapioca or Cassava". NVBT www.botanischetuinen.nl. Archived from the original on 20 April 2023. Retrieved 30 March 2022.
  91. ^ Nutrition per Hectare for Staple Crops Archived 9 June 2016 at the Wayback Machine. gardeningplaces.com
  92. ^ Stone, G. D. (2002). "Both Sides Now". Current Anthropology. 43 (4): 611–630. doi:10.1086/341532. S2CID 18867515.
  93. ^ Save and Grow: Cassava (PDF). Rome: Food and Agriculture Organization. 2013. p. iii. ISBN 978-92-5-107641-5. Archived (PDF) from the original on 23 November 2016. Retrieved 27 October 2016.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Cassava: Brief Summary

provided by wikipedia EN

Manihot esculenta, commonly called cassava (/kəˈsɑːvə/), manioc, or yuca (among numerous regional names), is a woody shrub of the spurge family, Euphorbiaceae, native to South America, from Brazil and parts of the Andes. Although a perennial plant, cassava is extensively cultivated as an annual crop in tropical and subtropical regions for its edible starchy root tuber, a major source of carbohydrates. Though it is often called yuca in parts of Spanish America and in the United States, it is not related to yucca, a shrub in the family Asparagaceae. Cassava is predominantly consumed in boiled form, but substantial quantities are used to extract cassava starch, called tapioca, which is used for food, animal feed, and industrial purposes. The Brazilian farinha, and the related garri of West Africa, is an edible coarse flour obtained by grating cassava roots, pressing moisture off the obtained grated pulp, and finally drying it (and roasting both in the case of farinha and garri).

Cassava is the third-largest source of food carbohydrates in the tropics, after rice and maize. Cassava is a major staple food in the developing world, providing a basic diet for over half a billion people. It is one of the most drought-tolerant crops, capable of growing on marginal soils. Nigeria is the world's largest producer of cassava, while Thailand is the largest exporter of cassava starch.

Cassava is classified as either sweet or bitter. Like other roots and tubers, both bitter and sweet varieties of cassava contain antinutritional factors and toxins, with the bitter varieties containing much larger amounts. It must be properly prepared before consumption, as improper preparation of cassava can leave enough residual cyanide to cause acute cyanide intoxication, goiter, ataxia, partial paralysis, or death. The more toxic varieties of cassava have been used in some places as famine food during times of food insecurity. Farmers often prefer the bitter varieties because they deter pests, animals, and thieves.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN