dcsimg

Synapsid

provided by wikipedia EN

Synapsids[a] are one of the two major groups of animals that evolved from basal amniotes, the other being the sauropsids, the group that includes reptiles, dinosaurs, and birds. The group includes mammals and every animal more closely related to mammals than to sauropsids.[6] Unlike other amniotes, synapsids have a temporal fenestra, an opening low in the skull roof behind each eye, leaving a bony arch beneath each; this accounts for their name.[7] The distinctive temporal fenestra developed about 318 million years ago during the Late Carboniferous period,[1] when synapsids and sauropsids diverged.

Traditionally, non-mammalian synapsids were believed to have evolved from reptiles, and therefore described as mammal-like reptiles in classical systematics, and more primitive (non-therapsid) synapsids were also referred to as pelycosaurs, or pelycosaur-grade synapsids. These paraphyletic terms have now fallen into disfavor and are only used informally (if at all) in modern literature, because we now know that synapsids are not reptiles, nor are they part of reptilian lineage in a cladistical sense.[8][9][10] They are now more correctly referred to as stem mammals, and sometimes as proto-mammals, or paramammals.[11][12]

Synapsids were the largest terrestrial vertebrates in the Permian period, 299 to 251 million years ago, equalled only by some large pareiasaurs at the end of the Permian. Their numbers and variety were severely reduced by the Permian–Triassic extinction. By the time of the extinction at the end of the Permian, only the therapsid dicynodonts and eutheriodonts (consisting of the Eutherocephalia (Therocephalia) and Epicynodontia (Cynodontia)) are known to have continued into the Triassic period, and were the only surviving therapsids and synapsids. There were still some large bodied synapsids: Lisowicia bojani, a large dicynodont from the Late Triassic, was the size of an elephant. However, the cynodont group Probainognathia, which includes Mammaliaformes (mammals and their closer ancestors), were the only synapsids to survive beyond the Triassic.[13]

During the Triassic, the sauropsid archosaurs became the largest and most numerous land vertebrates, and gave rise to the dinosaurs. When all non-avian dinosaurs were wiped out by the Cretaceous–Paleogene extinction event, the mammalian synapsids diversified again to become the largest land and marine animals on Earth.

Linnaean and cladistic classifications

At the turn of the 20th century synapsids were thought to be one of the four main subclasses of reptiles. However, this notion was disproved upon closer inspection of skeletal remains, as synapsids are differentiated from reptiles by their distinctive temporal openings. These openings in the skull bones allowed the attachment of larger jaw muscles, hence a more efficient bite.

Synapsids were subsequently considered to be a later reptilian lineage that became mammals by gradually evolving increasingly mammalian features, hence the name "mammal-like reptiles" (also known as pelycosaurs). These became the traditional terms for all Paleozoic (early) synapsids. More recent studies have debunked this notion as well, and reptiles are now classified within Sauropsida (sauropsids), the sister group to synapsids, thus making synapsids their own taxonomic group.[8][9]

As a result, the paraphyletic terms "mammal-like reptile" and "pelycosaur" are seen as outdated and disfavored in technical literature, and the term stem mammal (or sometimes protomammal or paramammal) is used instead. Phylogenetically, it is now understood that synapsids comprise an independent branch of the tree of life.[14] The monophyly of Synapsida is not in doubt, and the expressions such as "Synapsida contains the mammals" and "synapsids gave rise to the mammals" both express the same phylogenetic hypothesis. This terminology reflects the modern cladistical approach to animal relationships, according to which the only valid groups are those that include all of the descendants of a common ancestor: these are known as monophyletic groups, or clades.

Additionally, Reptilia (reptiles) has been revised into a monophyletic group and is considered entirely distinct from Synapsida, falling within sauropsida, the sister group of Synapsida within Amniota.[15]

Although Synapsida includes modern mammals, the term is most often used when referring to non-mammalian, non-therapsid synapsids.

Primitive and advanced synapsids

The synapsids are traditionally divided for convenience, into therapsids, an advanced group of synapsids and the branch within which mammals evolved, and stem mammals, (previously known as pelycosaurs), comprising the other six more primitive families of synapsids.[16] Stem mammals were all rather lizard-like, with sprawling gait and possibly horny scutes, while therapsids tended to have a more erect pose and possibly hair, at least in some forms. In traditional taxonomy, the Synapsida encompasses two distinct grades: the low-slung stem mammals have given rise to the more erect therapsids, who in their turn have given rise to the mammals. In traditional vertebrate classification, the stem mammals and therapsids were both considered orders of the subclass Synapsida.[7][8]

In phylogenetic nomenclature, the terms are used somewhat differently, as the daughter clades are included. Most papers published during the 21st century have treated "Pelycosaur" as an informal grouping of primitive members. Therapsida has remained in use as a clade containing both the traditional therapsid families and mammals. However, in practical usage, the terms are used almost exclusively when referring to the more basal members that lie outside of Mammaliaformes.

Characteristics

Temporal openings

 src=
The synapsids are distinguished by a single hole, known as the temporal fenestra, in the skull behind each eye. This schematic shows the skull viewed from the left side. The middle opening is the orbit of the eye; the opening to the right of it is the temporal fenestra.

Synapsids evolved a temporal fenestra behind each eye orbit on the lateral surface of the skull. It may have provided new attachment sites for jaw muscles. A similar development took place in the diapsids, which evolved two rather than one opening behind each eye. Originally, the openings in the skull left the inner cranium covered only by the jaw muscles, but in higher therapsids and mammals, the sphenoid bone has expanded to close the opening. This has left the lower margin of the opening as an arch extending from the lower edges of the braincase.

Teeth

 src=
Eothyris, an early synapsid with multiple canines

Synapsids are characterized by having differentiated teeth. These include the canines, molars, and incisors.[17] The trend towards differentiation is found in some labyrinthodonts and early anapsid reptilians in the form of enlargement of the first teeth on the maxilla, forming a form of protocanines. This trait was subsequently lost in the diapsid line, but developed further in the synapsids. Early synapsids could have two or even three enlarged "canines", but in the therapsids, the pattern had settled to one canine in each upper jaw half. The lower canines developed later.

Jaw

The jaw transition is a good classification tool, as most other fossilized features that make a chronological progression from a reptile-like to a mammalian condition follow the progression of the jaw transition. The mandible, or lower jaw, consists of a single, tooth-bearing bone in mammals (the dentary), whereas the lower jaw of modern and prehistoric reptiles consists of a conglomeration of smaller bones (including the dentary, articular, and others). As they evolved in synapsids, these jaw bones were reduced in size and either lost or, in the case of the articular, gradually moved into the ear, forming one of the middle ear bones: while modern mammals possess the malleus, incus and stapes, basal synapsids (like all other tetrapods) possess only a stapes. The malleus is derived from the articular (a lower jaw bone), while the incus is derived from the quadrate (a cranial bone).[18]

Mammalian jaw structures are also set apart by the dentary-squamosal jaw joint. In this form of jaw joint, the dentary forms a connection with a depression in the squamosal known as the glenoid cavity. In contrast, all other jawed vertebrates, including reptiles and nonmammalian synapsids, possess a jaw joint in which one of the smaller bones of the lower jaw, the articular, makes a connection with a bone of the cranium called the quadrate bone to form the articular-quadrate jaw joint. In forms transitional to mammals, the jaw joint is composed of a large, lower jaw bone (similar to the dentary found in mammals) that does not connect to the squamosal, but connects to the quadrate with a receding articular bone.

Palate

Over time, as synapsids became more mammalian and less 'reptilian', they began to develop a secondary palate, separating the mouth and nasal cavity. In early synapsids, a secondary palate began to form on the sides of the maxilla, still leaving the mouth and nostril connected.

Eventually, the two sides of the palate began to curve together, forming a U shape instead of a C shape. The palate also began to extend back toward the throat, securing the entire mouth and creating a full palatine bone. The maxilla is also closed completely. In fossils of one of the first eutheriodonts, the beginnings of a palate are clearly visible. The later Thrinaxodon has a full and completely closed palate, forming a clear progression.[19]

Skin and fur

 src=
The sea otter has the densest fur of modern mammals.

In addition to the glandular skin covered in fur found in most modern mammals, modern and extinct synapsids possess a variety of modified skin coverings, including osteoderms (bony armor embedded in the skin), scutes (protective structures of the dermis often with a horny covering), hair or fur, and scale-like structures (often formed from modified hair, as in pangolins and some rodents). While the skin of reptiles is rather thin, that of mammals has a thick dermal layer.[20]

The ancestral skin type of synapsids has been subject to discussion. Among the early synapsids, only two species of small varanopids have been found to possess scutes;[21] fossilized rows of osteoderms indicate horny armour on the neck and back, and skin impressions indicate some possessed rectangular scutes on their undersides and tails.[22][23] The pelycosaur scutes probably were nonoverlapping dermal structures with a horny overlay, like those found in modern crocodiles and turtles. These differed in structure from the scales of lizards and snakes, which are an epidermal feature (like mammalian hair or avian feathers).[24] Recently, skin impressions from the genus Ascendonanus suggest that at least varanopsids developed scales similar to those of squamates.[25]

It is currently unknown exactly when mammalian characteristics such as body hair and mammary glands first appeared, as the fossils only rarely provide direct evidence for soft tissues. An exceptionally well-preserved skull of Estemmenosuchus, a therapsid from the Upper Permian, preserves smooth skin with what appear to be glandular depressions,[26] an animal noted as being semi-aquatic.[27] The oldest known fossil showing unambiguous imprints of hair is the Callovian (late middle Jurassic) Castorocauda and several contemporary haramiyidans, both non-mammalian mammaliaform[28][29] (see below, however). More primitive members of the Cynodontia are also hypothesized to have had fur or a fur-like covering based on their inferred warm-blooded metabolism.[30] While more direct evidence of fur in early cynodonts has been proposed in the form of small pits on the snout possibly associated with whiskers, such pits are also found in some reptiles that lack whiskers.[30] There is evidence that some other non-mammalian cynodonts more basal than Castorocauda, such as Morganucodon, had Harderian glands, which are associated with the grooming and maintenance of fur. The apparent absence of these glands in non-mammaliaformes may suggest that fur did not originate until that point in synapsid evolution.[30] It is possible that fur and associated features of true warm-bloodedness did not appear until some synapsids became extremely small and nocturnal, necessitating a higher metabolism.[30] The oldest examples of nocturnality in synapsids is believed to have been in species that lived more than 300 million years ago.[31]

However, Permian coprolites from Russia showcase that at least some synapsids did already have fur in this epoch. These are the oldest impressions of hair on synapsids.[32]

Mammary glands

Early synapsids, as far back as their known evolutionary debut in the Late Carboniferous period,[33] may have laid parchment-shelled (leathery) eggs,[34] which lacked a calcified layer, as most modern reptiles and monotremes do. This may also explain why there is no fossil evidence for synapsid eggs to date.[35] Because they were vulnerable to desiccation, secretions from apocrine-like glands may have helped keep the eggs moist.[33]

According to Oftedal, early synapsids may have buried the eggs into moisture laden soil, hydrating them with contact with the moist skin, or may have carried them in a moist pouch, similar to that of monotremes (echidnas carry their eggs and offspring via a temporary pouch[36][37]), though this would limit the mobility of the parent. The latter may have been the primitive form of egg care in synapsids rather than simply burying the eggs, and the constraint on the parent's mobility would have been solved by having the eggs "parked" in nests during foraging or other activities and periodically be hydrated, allowing higher clutch sizes than could fit inside a pouch (or pouches) at once, and large eggs, which would be cumbersome to carry in a pouch, would be easier to care for. The basis of Oftedal's speculation is the fact that many species of anurans can carry eggs or tadpoles attached to the skin, or embedded within cutaneous "pouches" and how most salamanders curl around their eggs to keep them moist, both groups also having glandular skin.[35]

The glands involved in this mechanism would later evolve into true mammary glands with multiple modes of secretion in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which the secretions from these glands evolved into a complex, nutrient-rich milk long before true mammals arose (with some of the constituents possibly predating the split between the synapsid and sauropsid lines). Cynodonts were almost certainly able to produce this, which allowed a progressive decline of yolk mass and thus egg size, resulting in increasingly altricial hatchlings as milk became the primary source of nutrition, which is all evidenced by the small body size, the presence of epipubic bones, and limited tooth replacement in advanced cynodonts, as well as in mammaliaforms.[33][34]

Patagia

Aerial locomotion first began in non-mammalian haramiyidan cynodonts, with Arboroharamiya, Xianshou, Maiopatagium and Vilevolodon both bearing exquisitely preserved, fur-covered wing membranes that stretch across the limbs and tail. Their fingers are elongated, similar to those of bats and colugos and likely sharing similar roles both as wing supports and to hang on tree branches.[38]

Within true mammals, aerial locomotion first occurs in volaticotherian eutriconodonts. Volaticotherium preserves an exquisitely preserved furry patagium with delicate wrinkles and that is very extensive, "sandwiching" the poorly preserved hands and feet and extending to the base of the tail.[39] Argentoconodon, a close relative, shares a similar femur adapted for flight stresses, indicating a similar lifestyle.[40]

Therian mammals would only achieve powered flight and gliding long after these early aeronauts became extinct, with the earliest-known gliding metatherians and bats evolving in the Paleocene.[41]

Metabolism

Recently, it has been found that endothermy was present as far back as the late carboniferous, with Ophiacodon. The presence of fibrolamellar, a specialised type of bone that can grow quickly while maintaining a stable structure, shows that Ophiacodon would have used its high internal body temperature to fuel a fast growth comparable to modern endotherms.[42]

Evolutionary history

 src=
Archaeothyris, one of the oldest synapsids found
 src=
Cotylorhynchus (background), Ophiacodon and Varanops were early synapsids that lived until the Early Permian.

Asaphestera, Archaeothyris and Clepsydrops, the earliest-known synapsids,[43][44] lived in the Pennsylvanian subperiod (323–299 mya) of the Carboniferous period and were one of many types of primitive synapsids that are now informally grouped together as stem mammals or sometimes as protomammals (previously known as pelycosaurs). The early synapsids spread and diversified, becoming the largest terrestrial animals in the latest Carboniferous and Early Permian periods, ranging up to 6 metres (20 ft) in length. They were sprawling, bulky, possibly cold-blooded, and had small brains. Some, such as Dimetrodon, had large sails that might have helped raise their body temperature. A few relict groups lasted into the later Permian but, by the middle of the Late Permian, all had either died off or evolved into their successors, the therapsids.[45]

 src=
Moschops was a tapinocephalian from the Middle Permian of South Africa.

The therapsids, a more advanced group of synapsids, appeared during the Middle Permian and included the largest terrestrial animals in the Middle and Late Permian. They included herbivores and carnivores, ranging from small animals the size of a rat (e.g.: Robertia), to large, bulky herbivores a ton or more in weight (e.g.: Moschops). After flourishing for many millions of years, these successful animals were all but wiped out by the Permian–Triassic mass extinction about 250 mya, the largest known extinction in Earth's history, possibly related to the Siberian Traps volcanic event.

 src=
Nikkasaurus was an enigmatic synapsid from the Middle Permian of Russia.
 src=
Lystrosaurus was the most common synapsid shortly after the Permian–Triassic extinction event.

Only a few therapsids went on to be successful in the new early Triassic landscape; they include Lystrosaurus and Cynognathus, the latter of which appeared later in the early Triassic. However, they were accompanied by the early archosaurs (soon to give rise to the dinosaurs). Some of these archosaurs, such as Euparkeria, were small and lightly built, while others, such as Erythrosuchus, were as big as or bigger than the largest therapsids.

After the Permian extinction, the synapsids did not count more than three surviving clades. The first comprised the therocephalians, which only lasted the first 20 million years of the Triassic period. The second were specialised, beaked herbivores known as dicynodonts (such as the Kannemeyeriidae), which contained some members that reached large size (up to a tonne or more). And finally there were the increasingly mammal-like carnivorous, herbivorous, and insectivorous cynodonts, including the eucynodonts from the Olenekian age, an early representative of which was Cynognathus.

 src=
Cynognathus was the largest predatory cynodont of the Triassic.

Unlike the dicynodonts, which were large, the cynodonts became progressively smaller and more mammal-like as the Triassic progressed, though some forms like Trucidocynodon remained large. The first mammaliaforms evolved from the cynodonts during the early Norian age of the Late Triassic, about 225 mya.

During the evolutionary succession from early therapsid to cynodont to eucynodont to mammal, the main lower jaw bone, the dentary, replaced the adjacent bones. Thus, the lower jaw gradually became just one large bone, with several of the smaller jaw bones migrating into the inner ear and allowing sophisticated hearing.

 src=
Repenomamus was the largest mammal of the Mesozoic.

Whether through climate change, vegetation change, ecological competition, or a combination of factors, most of the remaining large cynodonts (belonging to the Traversodontidae) and dicynodonts (of the family Kannemeyeriidae) had disappeared by the Rhaetian age, even before the Triassic–Jurassic extinction event that killed off most of the large non-dinosaurian archosaurs. The remaining Mesozoic synapsids were small, ranging from the size of a shrew to the badger-like mammal Repenomamus.

 src=
Tritylodon was a cynodont that lived in the Early Jurassic.

During the Jurassic and Cretaceous, the remaining non-mammalian cynodonts were small, such as Tritylodon. No cynodont grew larger than a cat. Most Jurassic and Cretaceous cynodonts were herbivorous, though some were carnivorous. The family Tritheledontidae, which first appeared near the end of the Triassic, was carnivorous and persisted well into the Middle Jurassic. The other, Tritylodontidae, first appeared at the same time as the tritheledonts, but was herbivorous. This group became extinct at the end of the Early Cretaceous epoch. Dicynodonts are thought to have become extinct near the end of the Triassic period, but there is evidence this group survived. New fossil finds have been found in the Cretaceous rocks of Gondwana.

Today, the 5,500 species of living synapsids, known as the mammals, include both aquatic (whales) and flying (bats) species, and the largest animal ever known to have existed (the blue whale). Humans are synapsids, as well. Most mammals are viviparous and give birth to live young rather than laying eggs with the exception being the monotremes.

Triassic and Jurassic ancestors of living mammals, along with their close relatives, had high metabolic rates. This meant consuming food (generally thought to be insects) in much greater quantity. To facilitate rapid digestion, these synapsids evolved mastication (chewing) and specialized teeth that aided chewing. Limbs also evolved to move under the body instead of to the side, allowing them to breathe more efficiently during locomotion.[46] This helped make it possible to support their higher metabolic demands.

Relationships

Below is a cladogram of the most commonly accepted phylogeny of synapsids, showing a long stem lineage including Mammalia and successively more basal clades such as Theriodontia, Therapsida and Sphenacodontia:[47][48]

Synapsida

Caseasauria Ennatosaurus BW.jpg

Eupelycosauria

Varanopidae Varanops brevirostris.jpg

     

Ophiacodontidae Archaeothyris BW.jpg

     

Edaphosauridae Ianthasaurus BW.jpg

Sphenacodontia

Sphenacodontidae Palaeohatteria DB.jpg

Therapsida

Biarmosuchia Biarmosuchus.jpg

Eutherapsida

Dinocephalia Struthiocephalus DB.jpg

Neotherapsida

Anomodontia Eodicynodon BW.jpg

Theriodontia

Gorgonopsia Gorgonops whaitsii1.jpg

Eutheriodontia

Therocephalia Moschorhinus DB.jpg

Cynodontia

Cynognathia Cynognathus BW.jpg

Probainognathia

MammaliaRuskea rotta.png

                         

Most uncertainty in the phylogeny of synapsids lies among the earliest members of the group, including forms traditionally placed within Pelycosauria. As one of the earliest phylogenetic analyses, Brinkman & Eberth (1983) placed the family Varanopidae with Caseasauria as the most basal offshoot of the synapsid lineage. Reisz (1986) removed Varanopidae from Caseasauria, placing it in a more derived position on the stem. While most analyses find Caseasauria to be the most basal synapsid clade, Benson's analysis (2012) placed a clade containing Ophiacodontidae and Varanopidae as the most basal synapsids, with Caseasauria occupying a more derived position. Benson attributed this revised phylogeny to the inclusion of postcranial characteristics, or features of the skeleton other than the skull, in his analysis. When only cranial or skull features were included, Caseasauria remained the most basal synapsid clade. Below is a cladogram modified from Benson's analysis (2012):[49]

   

Tseajaia campi

   

Limnoscelis paludis

Amniota    

Captorhinus spp.

   

Protorothyris archeri

    SynapsidaOphiacodontidae

Archaeothyris florensis

     

Varanosaurus acutirostris

     

Ophiacodon spp.

   

Stereophallodon ciscoensis

        Varanopidae

Archaeovenator hamiltonensis

     

Pyozia mesenensis

       

Mycterosaurus longiceps

     

?Elliotsmithia longiceps (BP/1/5678)

   

Heleosaurus scholtzi

   

Mesenosaurus romeri

           

Varanops brevirostris

     

Watongia meieri

   

Varanodon agilis

         

Ruthiromia elcobriensis

     

Aerosaurus wellesi

   

Aerosaurus greenleorum

                  Caseasauria Eothyrididae

Eothyris parkeyi

   

Oedaleops campi

    Caseidae

Oromycter dolesorum

     

Casea broilii

     

Trichasaurus texensis

     

Euromycter rutenus (="Casea" rutena)

     

Ennatosaurus tecton

     

Angelosaurus romeri

     

Cotylorhynchus romeri

     

Cotylorhynchus bransoni

   

Cotylorhynchus hancocki

                       

Ianthodon schultzei

    Edaphosauridae

Ianthasaurus hardestiorum

     

Glaucosaurus megalops

   

Lupeosaurus kayi

     

Edaphosaurus boanerges

   

Edaphosaurus novomexicanus

        Sphenacodontia

Haptodus garnettensis

     

Pantelosaurus saxonicus

    Therapsida

Raranimus dashankouensis

     

Biarmosuchus tener

     

Biseridens qilianicus

   

Titanophoneus potens

        Sphenacodontidae

Cutleria wilmarthi

     

Secodontosaurus obtusidens

     

Cryptovenator hirschbergeri

     

Dimetrodon spp.

   

Sphenacodon spp.

                           

However, more recent examination of the phylogeny of basal synapsids, incorporating newly described basal caseids and eothyridids,[50] returned Caseasauria to its position as the sister to all other synapsids. Brocklehurst et al. (2016)[50] demonstrated that many of the postcranial characters used by Benson (2012) to unite Caseasauria with Sphenacodontidae and Edaphosauridae were absent in the newly discovered postcranial material of eothyridids, and were therefore acquired convergently.

See also

Notes

  1. ^ Greek: συν- (syn-) "together" + ἁψίς (apsís) "arch"> *συναψίδης (synapsídes) "being with a fused arch"; synonymous with theropsids (Greek, "beast-face")

References

  1. ^ a b Steen, Margaret C. (1934). "The amphibian fauna from the South Joggins. Nova Scotia". Journal of Zoology. 104 (3): 465–504. doi:10.1111/j.1096-3642.1934.tb01644.x.
  2. ^ David S. Berman (2013). "Diadectomorphs, amniotes or not?". New Mexico Museum of Natural History and Science Bulletin. 60: 22–35.
  3. ^ Jozef Klembara; Miroslav Hain; Marcello Ruta; David S. Berman; Stephanie E. Pierce; Amy C. Henrici (2019). "Inner ear morphology of diadectomorphs and seymouriamorphs (Tetrapoda) uncovered by high‐resolution x‐ray microcomputed tomography, and the origin of the amniote crown group". Palaeontology. 63: 131–154. doi:10.1111/pala.12448.
  4. ^ Brocklehurst, N. (2021). "The First Age of Reptiles? Comparing Reptile and Synapsid Diversity, and the Influence of Lagerstätten, During the Carboniferous and Early Permian". Frontiers in Ecology and Evolution. 9: 669765. doi:10.3389/fevo.2021.669765.
  5. ^ Seeley, Harry Govier (1895). "Researches on the Structure, Organisation, and Classification of the Fossil Reptilia. Part X. On the Complete Skeleton of an Anomodont Reptile (Aristodesmus rutimeyeri, Wiedersheim), from the Bunter Sandstone of Reihen, near Basel, Giving New Evidence of the Relation of the Anomodontia to the Monotremata". Proceedings of the Royal Society of London. 59: 167–169. doi:10.1098/rspl.1895.0070.
  6. ^ Laurin, Michel, and Robert R. Reisz: Synapsida: Mammals and their extinct relatives. Version 14, 2011. In: The Tree of Life Web Project.
  7. ^ a b Romer, A.S. & Parsons, T.S. (1985): The Vertebrate Body. (6th ed.) Saunders, Philadelphia.
  8. ^ a b c Carroll, Robert L. (1988). Vertebrate Paleontology and Evolution. New York: W.H. Freeman & Co. ISBN 0-7167-1822-7. p. 397.
  9. ^ a b Benton, Michael J. (2005). Vertebrate Palaeontology, 3rd ed. Oxford: Blackwell Science Ltd. ISBN 0-632-05637-1. p. 122.
  10. ^ "Jaws to ears in the ancestors of mammals". evolution.berkeley.edu. Retrieved 2020-02-20.
  11. ^ "New proto-mammal fossil sheds light on evolution of earliest mammals". University of Chicago. August 7, 2013.
  12. ^ Naish, Darren. "The Stem-Mammals--a Brief Primer". Scientific American Blog Network. Retrieved 2022-02-27.
  13. ^ "Greatest mass extinction responsible for the making of modern mammals". Archived from the original on 2019-03-28. Retrieved 2015-08-22.
  14. ^ Angielczyk, Kenneth D. (2009). "Dimetrodon is Not a Dinosaur: Using Tree Thinking to Understand the Ancient Relatives of Mammals and their Evolution". Evolution: Education and Outreach. 2 (2): 257–271. doi:10.1007/s12052-009-0117-4. S2CID 24110810.
  15. ^ Modesto, S.P.; Anderson, J.S. (2004). "The phylogenetic definition of Reptilia". Systematic Biology. 53 (5): 815–821. doi:10.1080/10635150490503026. PMID 15545258.
  16. ^ Benton, Michael J. (2005). Vertebrate Paleontology, 3rd ed. Oxford: Blackwell Science Ltd. ISBN 0-632-05637-1. p. 120.
  17. ^ Angielczch, Kennenth; Kammerer, Christian F.; Frobisch, Jorg. (2013). Early Evolutionary History of Synapsida. Springer Science & Business Media. ISBN 978-94-007-6841-3, p. 11
  18. ^ Salentijn, L. Biology of Mineralized Tissues: Prenatal Skull Development, Columbia University College of Dental Medicine post-graduate dental lecture series, 2007
  19. ^ Hopson, James A. (1987). "The Mammal-Like Reptiles: A Study of Transitional Fossils". The American Biology Teacher. 49 (1): 16–26. doi:10.2307/4448410. JSTOR 4448410.
  20. ^ Hildebran, M.; Goslow, G. (2001). Analysis of Vertebrate Structure (5th ed.). New York: John Wiley & Sons. ISBN 0-471-29505-1.
  21. ^ Vickaryous, Matthew K. & Sire, Jean-Yves (2009). "The integumentary skeleton of tetrapods: origin, evolution, and development". Journal of Anatomy. 214 (4): 441–464. doi:10.1111/j.1469-7580.2008.01043.x. PMC 2736118. PMID 19422424.
  22. ^ Botha-Brink, J.; Modesto, S.P. (2007). "A mixed-age classed 'pelycosaur' aggregation from South Africa: earliest evidence of parental care in amniotes?". Proceedings of the Royal Society B. 274 (1627): 2829–2834. doi:10.1098/rspb.2007.0803. PMC 2288685. PMID 17848370.
  23. ^ Niedźwiedzki, G.; Bojanowski, M. (2012). "A supposed eupelycosaur body impression from the early Permian of the Intra-Sudetic basin, Poland". Ichnos. 19 (3): 150–155. doi:10.1080/10420940.2012.702549. S2CID 129567176.
  24. ^ Carroll, R.L. (1969). "Problems of the origin of reptiles". Biological Reviews. 44 (3): 393–432. doi:10.1111/j.1469-185X.1969.tb01218.x. S2CID 84302993.
  25. ^ Spindler, Frederik; Werneburg, Ralf; Schneider, Joerg W.; Luthardt, Ludwig; Annacker, Volker; Rößler, Ronny (2018). "First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny". PalZ. 92 (2): 315–364. doi:10.1007/s12542-018-0405-9. S2CID 133846070.
  26. ^ Kardong, K.V. (2002). Vertebrates: Comparative Anatomy, Function, Evolution (3rd ed.). Boston: McGraw-Hill. ISBN 0-07-112235-4.
  27. ^ Kemp, T.S. (2006). "The origin and early radiation of the therapsid mammal-like reptiles: A palaeobiological hypothesis". Journal of Evolutionary Biology. 19 (4): 1231–1247. doi:10.1111/j.1420-9101.2005.01076.x. PMID 16780524. S2CID 3184629.
  28. ^ Ji, Q.; Luo, Z-X; Yuan, Chong-Xi; Tabrum, Alan R. (February 2006). "A swimming mammaliaform from the middle Jurassic and ecomorphological diversification of early mammals". Science. 311 (5764): 1123–7. Bibcode:2006Sci...311.1123J. doi:10.1126/science.1123026. PMID 16497926. S2CID 46067702.
    See also the news item at "Jurassic "beaver" found; rewrites history of mammals". National Geographic. Feb 2006.
  29. ^ Meng, Qing-Jin; Grossnickle, David M.; Di, Liu; Zhang, Yu-Guang; Neander, April I.; Ji, Qiang; Luo, Zhe-Xi (2017). "New gliding mammaliaforms from the Jurassic". Nature. 548 (7667): 291–296. Bibcode:2017Natur.548..291M. doi:10.1038/nature23476. PMID 28792929. S2CID 205259206.
  30. ^ a b c d Ruben, J.A.; Jones, T.D. (2000). "Selective factors associated with the origin of fur and feathers". Am. Zool. 40 (4): 585–596. doi:10.1093/icb/40.4.585.
  31. ^ Gaare, Megan (7 October 2014). "An Early Nocturnal Ancestor". Field Museum of Natural History. Retrieved 11 March 2022.
  32. ^ Bajdek, Piotr; Qvarnström, Martin; Owocki, Krzysztof; Sulej, Tomasz; Sennikov, Andrey G.; Golubev, Valeriy K.; Niedźwiedzki, Grzegorz (2016). "Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia". Lethaia. 49 (4): 455–477. doi:10.1111/let.12156.
  33. ^ a b c Oftedal, Olav T. (2002-07-01). "The mammary gland and its origin during synapsid evolution". Journal of Mammary Gland Biology and Neoplasia. 7 (3): 225–252. doi:10.1023/a:1022896515287. ISSN 1083-3021. PMID 12751889. S2CID 25806501.
  34. ^ a b Oftedal, O.T. (2012-03-01). "The evolution of milk secretion and its ancient origins". Animal. 6 (3): 355–368. doi:10.1017/S1751731111001935. ISSN 1751-732X. PMID 22436214.
  35. ^ a b Oftedal, Olav T. (2002-07-01). "The origin of lactation as a water source for parchment-shelled eggs". Journal of Mammary Gland Biology and Neoplasia. 7 (3): 253–266. doi:10.1023/A:1022848632125. ISSN 1083-3021. PMID 12751890. S2CID 8319185.
  36. ^ "Monotremes and marsupials". www.life.umd.edu. Retrieved 2018-08-23.
  37. ^ "Life History and Ecology of the Monotremata". www.ucmp.berkeley.edu. Retrieved 2018-08-23.
  38. ^ Luo, Zhe-Xi; Meng, Qing-Jin; Grossnickle, David M.; Di, Liu; Neander, April I.; Zhang, Yu-Guang; Ji, Qiang (2017). "New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem". Nature. 548 (7667): 326–329. Bibcode:2017Natur.548..326L. doi:10.1038/nature23483. PMID 28792934. S2CID 4463476.
  39. ^ Meng, J.; Hu, Y.-M.; Wang, Y.-Q.; Wang, X.-L.; Li, C.-K. (2007). "Corrigendum: A Mesozoic gliding mammal from northeastern China". Nature. 446 (7131): 102. Bibcode:2007Natur.446Q.102M. doi:10.1038/nature05639.
  40. ^ Gaetano, L.C.; Rougier, G.W. (2011). "New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny". Journal of Vertebrate Paleontology. 31 (4): 829–843. doi:10.1080/02724634.2011.589877. S2CID 85069761.
  41. ^ Szalay, FS; Sargis, EJ; Stafford, BJ (2000). Small marsupial glider from the Paleocene of Itaboraí, Brazil. Meeting of the Society of Vertebrate Paleontology. Journal of Vertebrate Paleontology. Supplement 73A. Vol. 20.
  42. ^ "Ancestry of mammalian 'warm-bloodedness' revealed". www.sciencedaily.com. Society of Vertebrate Paleontology. October 29, 2015. Retrieved October 29, 2015.
  43. ^ Lambert, David (2001). Dinosaur Encyclopedia. ISBN 0-7894-7935-4. pp. 68–69.
  44. ^ Mann, Arjan; Gee, Bryan M.; Pardo, Jason D.; Marjanović, David; Adams, Gabrielle R.; Calthorpe, Ami S.; Maddin, Hillary C.; Anderson, Jason S. (2020). "Reassessment of historic 'microsaurs' from Joggins, Nova Scotia, reveals hidden diversity in the earliest amniote ecosystem". Papers in Palaeontology. Wiley. 6 (4): 605–625. doi:10.1002/spp2.1316. S2CID 218925814.
  45. ^ Modesto, Sean P.; Smith, Roger M. H.; Campione, Nicolás E.; Reisz, Robert R. (2011). "The last 'pelycosaur': a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa". Naturwissenschaften. 98 (12): 1027–34. Bibcode:2011NW.....98.1027M. doi:10.1007/s00114-011-0856-2. PMID 22009069. S2CID 27865550.
  46. ^ Bramble, D. M.; Jenkins, F. A. (1993). "Mammalian locomotor-respiratory integration: Implications for diaphragmatic and pulmonary design". Science. 262 (5131): 235–240. Bibcode:1993Sci...262..235B. doi:10.1126/science.8211141. PMID 8211141.
  47. ^ Laurin, M.; Reisz, R.R. (2011). "Synapsida. Mammals and their extinct relatives". The Tree of Life Web Project. Retrieved 26 April 2012.
  48. ^ Kemp, T.S. (2011). "The origin and radiation of therapsids". In Chinsamy-Turan, A. (ed.). Forerunners of Mammals. Bloomington: Indiana University Press. pp. 3–30. ISBN 978-0-253-35697-0.
  49. ^ Benson, R.J. (2012). "Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies". Journal of Systematic Palaeontology. 10 (4): 601–624. doi:10.1080/14772019.2011.631042. S2CID 84706899.
  50. ^ a b Neil Brocklehurst, Robert Reisz, Vincent Fernandez, and Jörg Fröbisch (2016). "A Re-Description of 'Mycterosaurus' smithae, an Early Permian Eothyridid, and Its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids". PLOS ONE. 11 (6): e0156810. Bibcode:2016PLoSO..1156810B. doi:10.1371/journal.pone.0156810. PMC 4917111. PMID 27333277.{{cite journal}}: CS1 maint: uses authors parameter (link)
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Synapsid: Brief Summary

provided by wikipedia EN

Synapsids are one of the two major groups of animals that evolved from basal amniotes, the other being the sauropsids, the group that includes reptiles, dinosaurs, and birds. The group includes mammals and every animal more closely related to mammals than to sauropsids. Unlike other amniotes, synapsids have a temporal fenestra, an opening low in the skull roof behind each eye, leaving a bony arch beneath each; this accounts for their name. The distinctive temporal fenestra developed about 318 million years ago during the Late Carboniferous period, when synapsids and sauropsids diverged.

Traditionally, non-mammalian synapsids were believed to have evolved from reptiles, and therefore described as mammal-like reptiles in classical systematics, and more primitive (non-therapsid) synapsids were also referred to as pelycosaurs, or pelycosaur-grade synapsids. These paraphyletic terms have now fallen into disfavor and are only used informally (if at all) in modern literature, because we now know that synapsids are not reptiles, nor are they part of reptilian lineage in a cladistical sense. They are now more correctly referred to as stem mammals, and sometimes as proto-mammals, or paramammals.

Synapsids were the largest terrestrial vertebrates in the Permian period, 299 to 251 million years ago, equalled only by some large pareiasaurs at the end of the Permian. Their numbers and variety were severely reduced by the Permian–Triassic extinction. By the time of the extinction at the end of the Permian, only the therapsid dicynodonts and eutheriodonts (consisting of the Eutherocephalia (Therocephalia) and Epicynodontia (Cynodontia)) are known to have continued into the Triassic period, and were the only surviving therapsids and synapsids. There were still some large bodied synapsids: Lisowicia bojani, a large dicynodont from the Late Triassic, was the size of an elephant. However, the cynodont group Probainognathia, which includes Mammaliaformes (mammals and their closer ancestors), were the only synapsids to survive beyond the Triassic.

During the Triassic, the sauropsid archosaurs became the largest and most numerous land vertebrates, and gave rise to the dinosaurs. When all non-avian dinosaurs were wiped out by the Cretaceous–Paleogene extinction event, the mammalian synapsids diversified again to become the largest land and marine animals on Earth.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Synapsida

provided by wikipedia FR

Synapsides

Les synapsides (Synapsida) forment un groupe de tétrapodes qui inclut les mammifères et tous les représentants plus proches de ces derniers que des autres membres du clade des amniotes, comme le groupe frère des sauropsidesreptiles » et oiseaux), avec lequel ils partagent un ancêtre commun. Ils sont caractérisés par le fait que leurs crânes possèdent une seule fosse temporale, bordée par l’os jugal, l’os postorbitaire, l’os squamosal, ainsi que l’os quadratojugal pour les plus anciens. Ces mêmes caractéristiques se retrouvent toujours dans le crâne des mammifères (Homo sapiens inclus).

Les synapsides basaux sont généralement désignées sous le nom de « pélycosaures », terme informel comprenant tous les représantants qui ne sont pas classé au sein des thérapsides, un groupe monophylétique plus avancé incluant les mammifères et le formes apparentés. Les représentants non mammaliens sont souvent décrits comme des « reptiles mammaliens » dans la systématique classique, mais cette terminologie trompeuse n'est plus utilisée, car les synapsides dans leurs ensembles ne sont pas considérées comme des reptiles. Désormais, ils sont plus correctement référencés par les termes « mammifères souches » ou « proto mammifères ».

Les synapsides descendent d'amniotes basaux et les plus vieux représentants connus du groupe à ce jour datent des archives fossiles datant du Carbonifère supérieur, c'est à dire environ 318 millions d'années avant notre ère.

Les synapsides incarnent les plus grands tétrapodes connus du Permien, égalés seulement par quelques grands paréiasaures de la fin de cette période. Leurs nombres et leurs variétés réduisent sévèrement lors de l'extinction Permien-Trias, seuls que les dicynodontes et les euthériodontes (clade réunissant les thérocéphales et les cynodontes) ayant existé durant le Trias en tant que seuls thérapsides survivants connus, les archosaures devenant les vertébrés terrestres les plus grands et les plus nombreux au cours des périodes suivantes. Il existe encore quelques grandes formes datant de cette période comme par exemple Lisowicia, un dicynodonte du Trias supérieur ayant une taille comparable à celle d'un d'un éléphant d'Asie. Les cynodontes probainognathiens, qui comprend les mammaliaformes, sont les seuls synapsides à survivre au-delà du Trias. Après l'extinction Crétacé-Paléogène, les synapsides, uniquement représentés par les mammifères, se diversifient à nouveau pour devenir les plus grands animaux terrestres et marins du Cénozoïque.

Étymologie

Le nom du taxon fusionne les termes provenant du grec ancien συν / syn « ensemble » et ἁψίς / apsís « arc » pour donner συναψίδης / synapsídes, qui veut littéralement dire « être avec un arc fusionné » en raison de leurs fosses temporales unique situé à chaque coté du crâne[2].

Classifications linnéennes et cladistiques

Synapsides en tant que sous-classe de reptiles

Au courant du XXe siècle, les synapsides étaient considérés comme l'une des quatre principales sous-classes de reptiles. Ils se différenciaient des autres membre du groupe par leurs ouvertures temporelles distinctives. Ces ouvertures dans les os du crâne ont permis la fixation de muscles au sein d'une plus grosse mâchoire, d'où une morsure plus efficace. Les synapsides étaient considérés comme la lignée reptilienne qui est devenue celles des mammifères en évoluant progressivement de caractéristiques de plus en plus mammaliennes, d'où le célèbre nom de « reptiles mammaliens » qui est devenu la description large et traditionnelle de tout les synapsides du Paléozoïque[3],[4].

Les « reptiles mammaliens »

Le terme « reptiles mammaliens » est encore utilisé familièrement, mais il est de plus en plus rare dans la littérature technique, car il reflète une compréhension dépassée des relations évolutives de ces animaux[3],[4]. Du point de vue phylogénétique, il est maintenant compris que les synapsides constituent une branche indépendante de l'arbre de la vie[5]. Cette terminologie reflète l'approche cladistique moderne des relations animales, selon laquelle les seuls groupes valides sont ceux qui incluent tous les descendants d'un ancêtre commun : ceux-ci sont connus sous le nom de groupes monophylétiques, ou clades. Le terme « reptiles mammaliens » comprend des groupes qui ne sont pas ainsi unis, ce qui en fait un groupe paraphylétique. La monophylie des synapsides ne fait cependant aucun doute et les expressions telles que « les synapsides contient les mammifères » ou « les synapsides ont donné naissance aux mammifères » expriment toutes deux la même hypothèse phylogénétique. C'est d'ailleurs pour cette raison que des surnoms comme « mammifères souches » ou « proto mammifères » est régulièrement proposée dans la littérature scientifique[6].

De plus, Reptilia (aujourd'hui synonyme de Sauropsida) est révisé en un groupe monophylétique qui est considéré comme entièrement distinct de Synapsida, étant le groupe frère de ce dernier au sein d'Amniota[7],[8],[9].

Bien que les synapsides comprennent les mammifères, le terme est le plus souvent utilisé pour désigner les synapsides non mammaliens et parfois même non thérapsides.

Synapsides primitifs et avancés

Les synapsides sont traditionnellement divisés en un groupe primitif et un groupe avancé, appelés respectivement « pélycosaures » et thérapsides. Les « pélycosaures » constituent les six familles de synapsides les plus primitives[10]. Ils ressemblaient tous plutôt à des lézards, avec une démarche tentaculaire et possédait peut-être des écailles cornées. Les thérapsides contiennent les synapsides les plus avancées, ayant une pose plus dressée et éventuellement de la foururres, du moins sous certaines formes. Dans la taxonomie traditionnelle, la Synapsida comprend deux grades distincts successivement plus proche des mammifères : les pélycosaures surbaissés ont donné naissance aux thérapsides plus dressés, qui à leur tour ont donné naissance aux mammifères. Dans la classification traditionnelle des vertébrés, Pelycosauria et Therapsida étaient tous deux considérés comme des ordres au sein de la sous-classe Synapsida[2],[3].

Dans la classification phylogénétique, les termes sont utilisés quelque peu différemment, car les sous-groupes sont incluses. La plupart des articles publiés au cours du XXIe siècle ont qualifié « Pelycosauria » comme un groupe informel de membres primitifs. Therapsida est resté utilisé comme un clade contenant à la fois les familles traditionnelles de thérapsides et des mammifères. Cependant, dans l'usage pratique, les termes sont utilisés presque exclusivement pour désigner les membres les plus basaux qui se trouvent à l'extérieur des Mammaliaformes.

Caractéristiques

Ouvertures temporales

 src=
Crâne de synapside avec une fosse temporale au-dessous de l'arcade squamoso-postorbitaire.
*j : os jugal ; *p : pariétal ; *po : postorbitaire ;
*q : carré ; *qj : quadratojugal ; *sq : squamosal

Les synapsides ont développé une fenêtre temporale derrière chaque orbite oculaire sur la surface latérale du crâne[2]. Il a peut-être fourni de nouveaux sites d'attache pour les muscles de la mâchoire. Un développement similaire s'est produit chez les diapsides, qui ont évolué à deux au lieu d'une ouverture derrière chaque œil. À l'origine, les ouvertures dans le crâne laissaient l'intérieur du crâne couvert uniquement par les muscles de la mâchoire, mais chez les thérapsides et leurs descendants mammifères, l'os sphénoïde s'est élargi pour fermer l'ouverture. Cela a laissé la marge inférieure de l'ouverture comme un arc s'étendant des bords inférieurs de la boîte crânienne.

Dentitions

 src=
Eothyris, une synapside précoce possédant plusieurs canines.

Les synapsides se caractérisent par des dents différenciées. Il s'agit notamment des canines, des molaires et des incisives[11]. La tendance à la différenciation se retrouve chez certains labyrinthodontes et reptiles anapsides précoces sous la forme d'un élargissement des premières dents du maxillaire, formant une forme de protocanines. Ce trait a ensuite été perdu dans la lignée des sauropsides, mais s'est développé davantage dans les synapsides. Les premièrs synapsides pouvaient avoir deux ou même trois « canines » élargies, mais chez les thérapsides, le motif s'était installé à une canine dans chaque moitié de mâchoire supérieure. Les canines inférieures se sont développées plus tard.

Mâchoires

La transition de la mâchoire est un bon outil de classification, car la plupart des autres caractéristiques fossilisées qui font une progression chronologique d'un état de type reptile à un état de mammifère suivent la progression de la transition de la mâchoire. La mandibule, ou mâchoire inférieure, se compose d'un seul os portant des dents chez les mammifères (le dentaire), tandis que la mâchoire inférieure des reptiles modernes et préhistoriques se compose d'un conglomérat d'os plus petits (y compris le dentaire, articulaire et autres). Au fur et à mesure qu'ils évoluaient chez les synapsides, ces os de la mâchoire ont été réduits en taille et soit perdus, soit, dans le cas de l'articulaire, se sont progressivement déplacés dans l'oreille, formant l'un des os de l'oreille moyenne : alors que les mammifères modernes possèdent le marteau, l'enclume et l'étrier, les synapsides basaux (comme tous les autres tétrapodes) ne possèdent qu'un étrier. Le marteau est dérivé de l'articulaire (un os de la mâchoire inférieure), tandis que l'enclume est dérivé de l'os carré (un os crânien)[12].

Les structures de la mâchoire des mammifères sont également mises à part par l'articulation de la mâchoire dentaire-squamosale. Dans cette forme d'articulation de la mâchoire, le dentaire forme une connexion avec une dépression dans le squamosal connue sous le nom de cavité glénoïde. En revanche, tous les autres vertébrés à mâchoires, y compris les reptiles et les synapsides non mammaliens, possèdent une articulation de la mâchoire dans laquelle l'un des plus petits os de la mâchoire inférieure, l'articulaire, établit une connexion avec un os du crâne appelé os carré pour former l'articulation de la mâchoire quadruple-articulaire. Dans les formes transitionnelles jusqu'aux mammifères, l'articulation de la mâchoire est composée d'un gros os de la mâchoire inférieure (semblable au dentaire trouvé chez les mammifères) qui ne se connecte pas au squamosal, mais se connecte au carré avec un os articulaire fuyant.

Palais

Au fil du temps, au fur et à mesure que les synapsides sont devenues plus de forme mammaliennes et moins « reptiliennes », elles ont commencé à développer un palais secondairepalais secondaire, séparant la bouche et la cavité nasale. Chez les premièrs synapsides, un palais secondaire a commencé à se former sur les côtés du maxillaire, laissant toujours la bouche et la narine connectées.

Finalement, les deux côtés du palais ont commencé à se courber ensemble, formant une forme en « U » au lieu d'une forme en « C ». Le palais a également commencé à s'étendre vers la gorge, sécurisant toute la bouche et créant un os palatin complet. Le maxillaire est également complètement fermé. Dans les fossiles de l'un des premiers euthériodontes, les débuts d'un palais sont clairement visibles. Le genre plus tardif Thrinaxodon a une bouche pleine et complètement fermée, formant une nette progression[13].

Peaux et fourrures

 src=
La loutre de mer a la fourrure la plus dense parmi les mammifères modernes.

En plus de la peau glandulaire recouverte de fourrure que l'on trouve chez la plupart des mammifères modernes, les synapsides modernes et éteintes possèdent une variété de revêtements cutanés modifiés, notamment des ostéodermes (armure osseuse incrustée dans la peau), des écailles (structures protectrices du derme souvent avec un revêtement corné), des poils ou de la fourrure et des structures ressemblant à des écailles (souvent formées de poils modifiés, comme chez les pangolins et certains rongeurs ). Alors que la peau des reptiles est plutôt fine, celle des mammifères a une couche dermique épaisse[14].

Le type de peau ancestral des synapsides a fait l'objet de discussions. Parmi les premiers synapsides, seules deux espèces de petits varanopidés possèdent des écailles[15], des rangées d'ostéodermes fossilisés indiquent une armure cornée sur le cou et le dos, et des empreintes cutanées indiquent des écailles rectangulaires possédées sur le dessous et la queue[16],[17]. Les écailles des pélycosaures étaient probablement des structures dermiques sans chevauchement avec une couche cornée, comme celles des crocodiliens et les tortues. Celles-ci différaient par leur structure des écailles des lézards et des serpents, qui sont une caractéristique épidermique[18] (comme les poils de mammifères ou les plumes d'oiseaux). Récemment, des empreintes cutanées du genre Ascendonanus suggèrent qu'au moins les varanopidés ont développé des écailles similaires à celles des squamates[19].

 src=
Vue d'artiste par Nobu Tamura d'un Estemmenosuchus mirabilis, un thérapside dont l'un des fossiles indique la présence d'une peau glandulaire non couverte de poils ou d'écailles[20].

On ne sait actuellement pas exactement quand les caractéristiques des mammifères telles que les poils et les glandes mammaires sont apparues pour la première fois, car les fossiles ne fournissent que rarement des preuves directes des tissus mous. Un crâne exceptionnellement bien conservé d'Estemmenosuchus, un grand thérapside du Permien supérieur, préserve une peau lisse avec ce qui semble être des dépressions glandulaires[20], un animal noté comme étant semi-aquatique[21]. Les plus anciens fossiles connus montrant sans ambiguïté la présences de fourrures viennent de Castorocauda, datant du Callovien (Jurassique moyen tardif) et celles plusieurs contemporains haramiyidiens, tous deux des mammaliaformes qui ne sont pas considérés comme des mammifères au sens strict[22],[23].

 src=
Vue d'artiste par Nobu Tamura d'un Castorocauda lutrasimilis, un des plus vieux synapsides à montrer la présence de poils dans les fossiles[24].

Les membres plus primitifs des Cynodontia sont également supposés avoir eu une fourrure ou un revêtement semblable à de la fourrure sur la base de leur métabolisme à sang chaud inféré[24]. Bien que des preuves plus directes de fourrure chez les premiers cynodontes aient été proposées sous la forme de petites fosses sur le museau éventuellement associées à des vibrisses, de telles fosses sont également trouvées chez certains reptiles dépourvus de ces derniers[24]. Il existe des preuves que certains autres cynodontes non mammaliens plus basaux que Castorocauda, tels Morganucodon, avaient des glandes de Harder (en), qui sont associés au toilettage et à l'entretien de la fourrure. L'absence apparente de ces glandes chez les non-mammaliaformes peut suggérer que la fourrure n'est pas apparue avant ce point de l'évolution des synapsides[24]. Il est possible que la fourrure et les caractéristiques associées du véritable sang chaud ne soient pas apparues jusqu'à ce que certains synapsides soient devenus extrêmement petits et nocturnes, nécessitant un métabolisme plus élevé[24].

Cependant, des coprolithes datant du Permien et provenant de Russie montrent qu'au moins certains synapsides avaient déjà de la fourrure à cette époque. Ce sont les plus anciennes impressions de fourrures chez ces derniers[25].

Glandes mammaires

Les premiers synapsides, dès leurs débuts évolutifs connus à la fin de la période du Carbonifère[26], peuvent avoir pondu des œufs à coquille de parchemin[27] (cuireux et qui n'avaient pas de couche calcifiée[27]), comme le font la plupart des reptiles et des monotrèmes. Cela peut également expliquer pourquoi aucun œufs de synapsides fossilisés n'a été découvert à ce jour[28], probablement en raison de leurs vulnérabilités à la dessiccation, les sécrétions des glandes apocrines peuvent avoir aidé à garder les œufs humides[26].

Selon Oftedal, les premiers synapsides peuvent avoir enterré les œufs dans un sol chargé d'humidité, les hydratant au contact de la peau humide, ou peuvent les avoir transportés dans une poche humide, semblable à celle des monotrèmes (les échidnés transportent leurs œufs et leurs progénitures via un pochette[29],[30]), bien que cela limiterait la mobilité du parent. Ce dernier peut avoir été la forme primitive de soin des œufs dans les synapsides plutôt que de simplement enterrer les œufs, et la contrainte sur la mobilité des parents aurait été résolue en ayant les œufs « parqués » dans des nids pendant la recherche de nourriture ou d'autres activités et périodiquement hydratés, permettant des tailles de couvées plus élevées que celles qui pourraient tenir dans une poche (ou des poches) à la fois, et les gros œufs, qui seraient encombrants à transporter dans une poche, seraient plus faciles à entretenir. La base de la spéculation d'Oftedal est le fait que de nombreuses espèces d'anoures peuvent porter des œufs ou des têtards attachés à la peau, ou incrustés dans des « poches » cutanées et comment la plupart des salamandres s'enroulent autour de leurs œufs pour les garder humides, les deux groupes ayant également une peau glandulaire[28].

Les glandes impliquées dans ce mécanisme évolueraient plus tard en véritables glandes mammaires avec de multiples modes de sécrétion en association avec les follicules pileux. Des analyses comparatives de l'origine évolutive des constituants du lait soutiennent un scénario dans lequel les sécrétions de ces glandes ont évolué en un lait complexe et riche en nutriments bien avant l'apparition des vrais mammifères (certains des constituants étant peut-être antérieurs à la scission entre les lignées des synapsides et des sauropsides). Les cynodontes étaient presque certainement capables de produire cela, ce qui a permis un déclin progressif de la masse vitelline et donc de la taille des œufs, entraînant des nouveau-nés de plus en plus nidicoles, le lait devenant la principale source de nutrition, ce qui est mis en évidence par la petite taille du corps, la présence d'os épipubiens et un remplacement dentaire limité chez les cynodontes avancés, ainsi que chez les mammaliaformes[26],[27].

Patagiums

La locomotion aérienne a d'abord commencé chez les cynodontes mammaliaformes du groupe des haramiyidiens, notamment avec Arboroharamiya, Xianshou, Maiopatagium et Vilevolodon portant tous deux des membranes alaires recouvertes de fourrure qui s'étendent sur les membres et la queue. Leurs doigts sont allongés, semblables à ceux des chauves-souris et des colugos et partagent probablement des rôles similaires à la fois comme supports d'aile et pour s'accrocher aux branches des arbres[31].

Chez les vrais mammifères, la locomotion aérienne se produit d'abord chez les eutriconodontes volaticotheriens (en). Volaticotherium préserve un patagium à fourrure extrêmement bien conservé avec des rides délicates et qui est très étendu et « prenant en sandwich » les mains et les pieds mal conservés, s'étendant jusqu'à la base de la queue[32]. Argentoconodon, un proche parent, partage un fémur similaire adapté aux contraintes de vol, indiquant un mode de vie similaire[33].

Les mammifères thériens n'accèderaient au vol propulsé et au vol plané que longtemps après l'extinction de ces premiers aéronautes, les premiers métathériens planeurs et chauves-souris évoluant au Paléocène[34].

Métabolisme

Récemment, il a été découvert que l'endothermie était présente dès le Carbonifère supérieur, avec le genre Ophiacodon. La présence de fibrolamellaire, un type d'os spécialisé qui peut croître rapidement tout en maintenant une structure stable, montre qu'Ophiacodon aurait utilisé sa température corporelle interne élevée pour alimenter une croissance rapide comparable aux endothermes modernes[35].

Histoire évolutive

 src=
Archaeothyris, un des plus anciens synapsides connus.
 src=
Cotylorhynchus (arrière-plan), Ophiacodon et Varanops étaient des synapsides précoces qui ont vécu jusqu'au Permien inférieur.

Les genres Asaphestera, Archaeothyris et Clepsydrops sont les plus anciens synapsides connus[36],[37],[38], ces derniers sont datées des archives fossiles de la fin du Carbonifère. Les pélycosaures se sont propagés et diversifiés, devenant les plus grands animaux terrestres des dernières périodes du Carbonifère supérieur et du Permien inférieur, mesurant jusqu'à 6 mètres de long pour certains. Ils étaient de postures tentaculaires, volumineux, peut-être de sang-froid et avaient un petit cerveau. Certains, comme le celebre Dimetrodon, avaient de grandes voiles qui auraient pu aider à élever leur température corporelle. Bien quelques groupes reliques ont duré du milieu jusqu'à la fin du Permien, tous les pélycosaures avaient disparu, ou avaient évolué pour devenir leurs successeurs, les thérapsides[39].

 src=
Comparaison de taille entre un humain avec un Moschops, un grand thérapside dinocéphale d'Afrique du Sud, vue d'artiste par Nobu Tamura.

Les thérapsides, un groupe plus avancé de synapsides, sont apparus au cours du Guadalupien et comprenaient les plus grands animaux terrestres du Permien moyen et supérieur. Ils comprenaient des herbivores et des carnivores, allant de la taille d'un rat (par exemple : Robertia) aux gros herbivores volumineux pesant une tonne ou plus (par exemple : Moschops). Après avoir prospéré pendant plusieurs millions d'années, ces animaux prospères ont été pratiquement anéantis par la plus grande extinction connue de l'histoire de la Terre, l'extinction Permien-Trias, survenue il y a environ 252 millions d'années, peut-être liée à l'événement volcanique des trapps sibériens.

 src=
Vue d'artiste par Dimitri Bogdanov d'un Lystrosaurus, un des synapsides les plus courant peu de temps après l'extinction du Permien-Trias.

Seuls quelques thérapsides ont connu du succès dans le nouveau paysage du Trias inférieur, ils comprennent Lystrosaurus et Cynognathus, ce dernier étant apparu plus tard durant le début du Trias. Cependant, ils étaient accompagnés des premiers archosauriformes (qui donneront bientôt naissance aux dinosaures). Certains de ces derniers, comme Euparkeria, étaient petits et légers, tandis que d'autres, comme Erythrosuchus, étaient aussi gros ou plus gros que les plus grands thérapsides de l'époque précédentes.

Après l'extinction du Permien, les synapsides ne comptaient plus que trois groupes survivants. Le premier comprenait les thérocéphales, qui n'ont duré que les 20 premiers millions d'années de la période du Trias. Les second étaient des herbivores spécialisés à bec connus sous le nom de dicynodontes (comme les Kannemeyeriiformes), qui contenaient certains membres qui atteignaient une grande taille (jusqu'à une tonne ou plus). Et enfin, il y avait les cynodontes de régimes alimentaire carnivores, herbivores et insectivores de plus en plus ressemblant à des mammifères, y compris les eucynodontes de l'âge Olénékien, dont l'un des représentants les plus connus était Cynognathus.

 src=
Vue d'artiste par Dimitri Bogdanov d'un Trucidocynodon, un plus grand cynodontes non mammaliens découvert à ce jour.

Contrairement aux dicynodontes, qui étaient de grande taille, les cynodontes sont devenus de plus en plus petits et ressemblaient davantage à des mammifères au fur et à mesure que le Trias progressait, bien que certaines formes comme Trucidocynodon soient restées de taille considérable. Les premiers mammifères ont évolué à partir des cynodontes probainognathiens au début de l'âge Norien du Trias supérieur, environ 225 millions d'années[40].

Au cours de la succession évolutive des thérapside précoces au cynodonte jusqu'aux mammifères, l'os principal de la mâchoire inférieure, le dentaire, a remplacé les os adjacents. Ainsi, la mâchoire inférieure est progressivement devenue un seul gros os, plusieurs des plus petits os de la mâchoire migrant dans l'oreille interne et permettant une audition sophistiquée.

Que ce soit à cause du changement climatique, du changement de végétation, de la compétition écologique ou d'une combinaison de facteurs, la plupart des grands cynodontes (appartenant aux Traversodontidae) et des dicynodontes (du groupe des Kannemeyeriiformes) avaient disparu lors du Rhétien, soit juste avant l'extinction Trias-Jurassique, événement qui a décimé la plupart des grands archosaures non dinosauriens. Les synapsides restants du Mésozoïque étaient petites, allant de la taille d'une musaraigne jusqu'à la taille d'un opossum, notamment pour le mammifère Repenomamus.

 src=
Repenomamus, un des plus grand mammifère du Mésozoique.

Au cours du Jurassique et du Crétacé, les cynodontes non mammaliens restants étaient petits, comme Tritylodon. Aucun cynodonte n'est devenu plus gros qu'un chat. La plupart des cynodontes du Jurassique et du Crétacé étaient herbivores, même si certains étaient carnivores. La famille des Tritheledontidae, carnivores, qui sont apparue vers le Trias supérieur et a existé jusqu'au Jurassique moyen. L'autre, les Tritylodontidae, herbivores, sont apparus en même temps que les trithéledontes, mais ces derniers se sont éteint à la fin du Crétacé inférieur.

Les ancêtres du Trias et du Jurassique des mammifères vivants, ainsi que leurs proches parents, avaient des taux métaboliques élevés. Cela signifiait qu'ils consommait de la nourriture (généralement des insectes) en beaucoup plus grande quantité. Pour faciliter une digestion rapide, ces synapsides ont développé des dents spécialisées qui ont facilité la mastication. Les membres ont également évolué pour se déplacer sous le corps plutôt que sur le côté, leur permettant de respirer plus efficacement pendant la locomotion[41]. Cela a permis de soutenir leurs exigences métaboliques plus élevées.

Aujourd'hui, les 5 500 espèces de synapsides vivants, connues sous le nom de mammifères, comprennent à la fois des espèces aquatiques et volantes, le plus grand animal jamais connu, a savoir la baleine bleue ainsi qu'Homo sapiens. La majorités des mammifères sont vivipares et donnent naissance à des petits vivants au lieu de pondre, à l'exception des monotrèmes.

Phylogénie

Ci-dessous, un cladogramme de la phylogénie des synapsides la plus communément acceptée, montrant une longue lignée de tiges comprenant Mammalia et successivement des clades plus basaux tels que Sphenacodontia, Therapsida et Theriodontia[42],[43] :

Synapsida

Caseasauria Ennatosaurus BW.jpg


Eupelycosauria

Varanopidae Varanops brevirostris.jpg




Ophiacodontidae Archaeothyris BW.jpg




Edaphosauridae Edaphosaurus NT small.jpg


Sphenacodontia

Sphenacodontidae Dimetrodon gigashomog DB.jpg


Therapsida

Biarmosuchia Biarmosuchus BW.jpg


Eutherapsida

Dinocephalia Ulemosaurus svijagensis.jpg


Neotherapsida

Anomodontia Eodicynodon BW.jpg


Theriodontia

Gorgonopsia Sauroctonus progressus09.jpg


Eutheriodontia

Therocephalia Moschorhinus DB.jpg


Cynodontia

Cynognathia Cynognathus BW.jpg


Probainognathia

MammaliaRuskea rotta.png














La plupart des incertitudes concernant la phylogénie des synapsides se trouvent parmi les premiers membres du groupe, y compris les formes traditionnellement placées au sein des Pelycosauria. Comme l'une des premières analyses phylogénétiques (Brinkman & Eberth (1983)), ont placé la famille Varanopidae avec Caseasauria comme ramification la plus basale de la lignée des synapsides. Reisz (1986) a retiré Varanopidae de Caseasauria, le plaçant dans une position plus dérivée sur la tige. Alors que la plupart des analyses trouvent que Caseasauria est le clade de synapside le plus basal, l'analyse de Benson (2012) a placé un clade contenant des Ophiacodontidae et Varanopidae comme les synapsides les plus basaux, Caseasauria occupant une position plus dérivée. Benson a attribué cette phylogénie révisée à l'inclusion de caractéristiques post-crâniennes, ou de caractéristiques du squelette autres que le crâne, dans son analyse. Lorsque seules les caractéristiques crâniennes ou crâniennes étaient incluses, Caseasauria restait le clade synapside le plus basal. Ci-dessous, un cladogramme modifié à partir de l'analyse de Benson datant de 2012[44] :



Tseajaia campi



Limnoscelis paludis


Amniota

Captorhinus spp.



Protorothyris archeri



Synapsida
Ophiacodontidae

Archaeothyris florensis




Varanosaurus acutirostris




Ophiacodon spp.



Stereophallodon ciscoensis





Varanopidae

Archaeovenator hamiltonensis




Pyozia mesenensis





Mycterosaurus longiceps




?Elliotsmithia longiceps (BP/1/5678)



Heleosaurus scholtzi



Mesenosaurus romeri







Varanops brevirostris




Watongia meieri



Varanodon agilis






Ruthiromia elcobriensis




Aerosaurus wellesi



Aerosaurus greenleorum










Caseasauria Eothyrididae

Eothyris parkeyi



Oedaleops campi



Caseidae

Oromycter dolesorum




Casea broilii




Trichasaurus texensis




Euromycter rutenus (="Casea" rutena)




Ennatosaurus tecton




Angelosaurus romeri




Cotylorhynchus romeri




Cotylorhynchus bransoni



Cotylorhynchus hancocki













Ianthodon schultzei



Edaphosauridae

Ianthasaurus hardestiorum




Glaucosaurus megalops



Lupeosaurus kayi




Edaphosaurus boanerges



Edaphosaurus novomexicanus





Sphenacodontia

Haptodus garnettensis




Pantelosaurus saxonicus



Therapsida

Raranimus dashankouensis




Biarmosuchus tener




Biseridens qilianicus



Titanophoneus potens





Sphenacodontidae

Cutleria wilmarthi




Secodontosaurus obtusidens




Cryptovenator hirschbergeri




Dimetrodon spp.



Sphenacodon spp.















Cependant, un examen plus récent de la phylogénie des synapsides basaux, incorporant des caséidés basaux et des éothyrididés nouvellement décrits[45], a ramené Caseasauria à sa position de groupe frère de tous les autres synapsides. Brocklehurst et al. (2016) ont démontré que de nombreux caractères postcrâniens utilisés par Benson (2012) pour unir Caseasauria avec Sphenacodontidae et Edaphosauridae étaient absents dans le matériel postcrânien nouvellement découvert des éothyridés, et ont donc été acquis de manière convergente[45].

Notes et références

Notes

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé .

Références

  1. Harry Govier Seeley, « Researches on the Structure, Organisation, and Classification of the Fossil Reptilia. Part X. On the Complete Skeleton of an Anomodont Reptile (Aristodesmus rutimeyeri, Wiedersheim), from the Bunter Sandstone of Reihen, near Basel, Giving New Evidence of the Relation of the Anomodontia to the Monotremata », Proceedings of the Royal Society of London, vol. 59,‎ 1895, p. 167–169 (DOI , lire en ligne)
  2. a b et c Romer, A.S. & Parsons, T.S. (1985): The Vertebrate Body. (6th ed.) Saunders, Philadelphia.
  3. a b et c (en) Carroll, Robert L. (1988). Vertebrate Paleontology and Evolution. New York: W.H. Freeman & Co. (ISBN 0-7167-1822-7). p. 397
  4. a et b (en) Benton, Michael J. (2005). Vertebrate Palaeontology, 3rd ed. Oxford: Blackwell Science Ltd. (ISBN 0-632-05637-1). p. 122
  5. Kenneth D. Angielczyk, « Dimetrodon is Not a Dinosaur: Using Tree Thinking to Understand the Ancient Relatives of Mammals and their Evolution », Evolution: Education and Outreach, vol. 2, no 2,‎ 2009, p. 257–271 (DOI , S2CID )
  6. (en) « New proto-mammal fossil sheds light on evolution of earliest mammals », University of Chicago, 7 août 2013
  7. (en) Laurin, Michel, and Robert R. Reisz: Synapsida: Mammals and their extinct relatives. Version 14, 2011. In: The Tree of Life Web Project
  8. S.P. Modesto et J.S. Anderson, « The phylogenetic definition of Reptilia », Systematic Biology, vol. 53, no 5,‎ 2004, p. 815–821 (PMID , DOI )
  9. « Jaws to ears in the ancestors of mammals », sur evolution.berkeley.edu (consulté le 20 février 2020)
  10. Benton, Michael J. (2005). Vertebrate Paleontology, 3rd ed. Oxford: Blackwell Science Ltd. (ISBN 0-632-05637-1). p. 120.
  11. Angielczch, Kennenth; Kammerer, Christian F.; Frobisch, Jorg. (2013). Early Evolutionary History of Synapsida. Springer Science & Business Media. (ISBN 978-94-007-6841-3), p. 11
  12. Salentijn, L. Biology of Mineralized Tissues: Prenatal Skull Development, Columbia University College of Dental Medicine post-graduate dental lecture series, 2007
  13. James A. Hopson, « The Mammal-Like Reptiles: A Study of Transitional Fossils », The American Biology Teacher, vol. 49, no 1,‎ 1987, p. 16–26 (DOI , JSTOR )
  14. M. Hildebran et G. Goslow, Analysis of Vertebrate Structure, New York, John Wiley & Sons, 2001, 5th éd. (ISBN 0-471-29505-1)
  15. Vickaryous, Matthew K. et Sire, Jean-Yves, « The integumentary skeleton of tetrapods: origin, evolution, and development », Journal of Anatomy, vol. 214, no 4,‎ 2009, p. 441–464 (PMID , PMCID , DOI )
  16. J. Botha-Brink et S.P. Modesto, « A mixed-age classed 'pelycosaur' aggregation from South Africa: earliest evidence of parental care in amniotes? », Proceedings of the Royal Society B, vol. 274, no 1627,‎ 2007, p. 2829–2834 (PMID , PMCID , DOI )
  17. G. Niedźwiedzki et M. Bojanowski, « A Supposed Eupelycosaur Body Impression from the Early Permian of the Intra-Sudetic Basin, Poland », Ichnos, vol. 19, no 3,‎ 2012, p. 150–155 (DOI , S2CID )
  18. R.L. Carroll, « Problems of the origin of reptiles », Biological Reviews, vol. 44, no 3,‎ 1969, p. 393–432 (DOI , S2CID )
  19. Frederik Spindler, Ralf Werneburg, Joerg W. Schneider, Ludwig Luthardt, Volker Annacker et Ronny Rößler, « First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny », PalZ, vol. 92, no 2,‎ 2018, p. 315–364 (DOI , S2CID )
  20. a et b K. V. Kardong, Vertebrates: Comparative Anatomy, Function, Evolution, Boston, McGraw-Hill, 2002, 3rd éd. (ISBN 0-07-112235-4, lire en ligne)
  21. T. S. Kemp, « The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis », Journal of Evolutionary Biology, vol. 19, no 4,‎ 2006, p. 1231–1247 (PMID , DOI , S2CID )
  22. Q. Ji, Luo, Z-X, Yuan, C-X, and Tabrum, A.R., Chong-Xi Yuan et Alan R. Tabrum, « A Swimming Mammaliaform from the Middle Jurassic and Ecomorphological Diversification of Early Mammals », Science, vol. 311, no 5764,‎ février 2006, p. 1123–7 (PMID , DOI , Bibcode , S2CID ) Voir aussi l'actualité sur « Jurassic "Beaver" Found; Rewrites History of Mammals »
  23. Qing-Jin Meng, David M. Grossnickle, Liu Di, Yu-Guang Zhang, April I. Neander, Qiang Ji et Zhe-Xi Luo, « New gliding mammaliaforms from the Jurassic », Nature, vol. 548, no 7667,‎ 2017, p. 291–296 (PMID , DOI , Bibcode , S2CID )
  24. a b c d et e J.A. Ruben et T.D. Jones, « Selective Factors Associated with the Origin of Fur and Feathers », Am. Zool., vol. 40, no 4,‎ 2000, p. 585–596 (DOI )
  25. Piotr Bajdek, Martin Qvarnström, Krzysztof Owocki, Tomasz Sulej, Andrey G. Sennikov, Valeriy K. Golubev et Grzegorz Niedźwiedzki, « Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia », Lethaia, vol. 49, no 4,‎ 2016, p. 455–477 (DOI )
  26. a b et c Olav T. Oftedal, « The mammary gland and its origin during synapsid evolution », Journal of Mammary Gland Biology and Neoplasia, vol. 7, no 3,‎ 1er juillet 2002, p. 225–252 (ISSN , PMID , DOI , S2CID )
  27. a b et c O. T. Oftedal, « The evolution of milk secretion and its ancient origins », Animal, vol. 6, no 3,‎ 1er mars 2012, p. 355–368 (ISSN , PMID , DOI )
  28. a et b Olav T. Oftedal, « The origin of lactation as a water source for parchment-shelled eggs », Journal of Mammary Gland Biology and Neoplasia, vol. 7, no 3,‎ 1er juillet 2002, p. 253–266 (ISSN , PMID , DOI , S2CID )
  29. « Monotremes and marsupials », sur www.life.umd.edu (consulté le 23 août 2018)
  30. « Life History and Ecology of the Monotremata », sur www.ucmp.berkeley.edu (consulté le 23 août 2018)
  31. Zhe-Xi Luo, Qing-Jin Meng, David M. Grossnickle, Liu Di, April I. Neander, Yu-Guang Zhang et Qiang Ji, « New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem », Nature, vol. 548, no 7667,‎ 2017, p. 326–329 (PMID , DOI , Bibcode , S2CID )
  32. J. Meng, Y.-M. Hu, Y.-Q. Wang, X.-L. Wang et C.-K. Li, « Corrigendum: A Mesozoic gliding mammal from northeastern China », Nature, vol. 446, no 7131,‎ 2007, p. 102 (DOI , Bibcode )
  33. L.C. Gaetano et G.W. Rougier, « New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny », Journal of Vertebrate Paleontology, vol. 31, no 4,‎ 2011, p. 829–843 (DOI , S2CID )
  34. Szalay, FS, Sargis, EJ, and Stafford, BJ (2000) Small marsupial glider from the Paleocene of Itaboraí, Brazil. Journal of Vertebrate Paleontology 20 Supplement: 73A. Presented at the Meeting of the Society of Vertebrate Paleontology.
  35. « Ancestry of mammalian 'warm-bloodedness' revealed », sur www.sciencedaily.com, Society of Vertebrate Paleontology, 29 octobre 2015 (consulté le 29 octobre 2015)
  36. Margaret C. Steen, « The amphibian fauna from the South Joggins. Nova Scotia », Journal of Zoology, vol. 104, no 3,‎ 1934, p. 465–504 (DOI )
  37. Lambert, David (2001). Dinosaur Encyclopedia. (ISBN 0-7894-7935-4). pp. 68–69.
  38. Arjan Mann, Bryan M. Gee, Jason D. Pardo, David Marjanović, Gabrielle R. Adams, Ami S. Calthorpe, Hillary C. Maddin et Jason S. Anderson, « Reassessment of historic 'microsaurs' from Joggins, Nova Scotia, reveals hidden diversity in the earliest amniote ecosystem », Wiley, vol. 6, no 4,‎ 2020, p. 605–625 (DOI , S2CID )
  39. Sean P. Modesto, Roger M. H. Smith, Nicolás E. Campione et Robert R. Reisz, « The last 'pelycosaur': a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa », Naturwissenschaften, vol. 98, no 12,‎ 2011, p. 1027–34 (PMID , DOI , Bibcode , S2CID )
  40. « Greatest mass extinction responsible for the making of modern mammals » (consulté le 22 août 2015)
  41. D. M. Bramble et Jenkins, F. A., « Mammalian locomotor-respiratory integration: Implications for diaphragmatic and pulmonary design », Science, vol. 262, no 5131,‎ 1993, p. 235–240 (PMID , DOI , Bibcode )
  42. M. Laurin et Reisz, R.R., « Synapsida. Mammals and their extinct relatives », sur The Tree of Life Web Project, 2011 (consulté le 26 avril 2012)
  43. T.S. Kemp, Forerunners of Mammals, Bloomington, Indiana University Press, 2011, 3–30 p. (ISBN 978-0-253-35697-0), « The origin and radiation of therapsids »
  44. R.J. Benson, « Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies », Journal of Systematic Palaeontology, vol. 10, no 4,‎ 2012, p. 601–624 (DOI , S2CID )
  45. a et b Neil Brocklehurst, Robert Reisz, Vincent Fernandez, and Jörg Fröbisch, « A Re-Description of 'Mycterosaurus' smithae, an Early Permian Eothyridid, and Its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids », PLOS ONE, vol. 11, no 6,‎ 2016, e0156810 (PMID , PMCID , DOI , Bibcode )

Voir aussi

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

Synapsida: Brief Summary

provided by wikipedia FR

Synapsides

Les synapsides (Synapsida) forment un groupe de tétrapodes qui inclut les mammifères et tous les représentants plus proches de ces derniers que des autres membres du clade des amniotes, comme le groupe frère des sauropsidesreptiles » et oiseaux), avec lequel ils partagent un ancêtre commun. Ils sont caractérisés par le fait que leurs crânes possèdent une seule fosse temporale, bordée par l’os jugal, l’os postorbitaire, l’os squamosal, ainsi que l’os quadratojugal pour les plus anciens. Ces mêmes caractéristiques se retrouvent toujours dans le crâne des mammifères (Homo sapiens inclus).

Les synapsides basaux sont généralement désignées sous le nom de « pélycosaures », terme informel comprenant tous les représantants qui ne sont pas classé au sein des thérapsides, un groupe monophylétique plus avancé incluant les mammifères et le formes apparentés. Les représentants non mammaliens sont souvent décrits comme des « reptiles mammaliens » dans la systématique classique, mais cette terminologie trompeuse n'est plus utilisée, car les synapsides dans leurs ensembles ne sont pas considérées comme des reptiles. Désormais, ils sont plus correctement référencés par les termes « mammifères souches » ou « proto mammifères ».

Les synapsides descendent d'amniotes basaux et les plus vieux représentants connus du groupe à ce jour datent des archives fossiles datant du Carbonifère supérieur, c'est à dire environ 318 millions d'années avant notre ère.

Les synapsides incarnent les plus grands tétrapodes connus du Permien, égalés seulement par quelques grands paréiasaures de la fin de cette période. Leurs nombres et leurs variétés réduisent sévèrement lors de l'extinction Permien-Trias, seuls que les dicynodontes et les euthériodontes (clade réunissant les thérocéphales et les cynodontes) ayant existé durant le Trias en tant que seuls thérapsides survivants connus, les archosaures devenant les vertébrés terrestres les plus grands et les plus nombreux au cours des périodes suivantes. Il existe encore quelques grandes formes datant de cette période comme par exemple Lisowicia, un dicynodonte du Trias supérieur ayant une taille comparable à celle d'un d'un éléphant d'Asie. Les cynodontes probainognathiens, qui comprend les mammaliaformes, sont les seuls synapsides à survivre au-delà du Trias. Après l'extinction Crétacé-Paléogène, les synapsides, uniquement représentés par les mammifères, se diversifient à nouveau pour devenir les plus grands animaux terrestres et marins du Cénozoïque.

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

단궁류

provided by wikipedia 한국어 위키백과
 src= 비슷한 이름의 단공류에 관해서는 해당 문서를 참조하십시오.

단궁류(單弓類, synapsid)는 척추동물 중에서 완전히 육상에 적응한 척추동물인 양막류(羊膜類, Amniote)의 두 분기군 중 하나이다. 포유류의 조상과 현생 포유류를 포함하는 그룹이며 다른 양막동물보다 포유류와 더 가까운 집단이다. 공통되는 특징으로 안와(眼窩, Orbit)와는 별개로 두개골의 좌우와 안쪽과 뒤쪽에 측두창(側頭窓, 눈의 뒤쪽에 있는 개구부)이라고 불리는 구멍이 각각 하나씩 나 있고, 그 아래쪽의 뼈가 가는 활모양을 이루고 있다. 이러한 특징 때문에 단궁류로 불린다. 중국에서는 '홑 단'자가 아닌 '합할 합'자를 써서 합궁강(合弓綱)으로 부르기도 한다. 원시적인 초기 단궁류는 반룡류(盤龍類, Pelycosaur)로 부르며, 반룡류보다 더 진보한(포유류와 유사한)무리를 수궁류(獸弓類, Therapsid)라고 부른다. 이 수궁류가 진화해서 포유류가 출현한 것으로 여겨진다.

전통적으로는 포유류가 아닌 단궁류 무리를 "포유류형 파충류"("mammal-like reptiles")라고 부르며 단궁류를 파충강의 아강(亞綱, subclass)으로 분류하였지만, 현재는 파충류와 구분지어 "stem-mammals"(또는 가끔 초기포유류("proto-mammals")로도 부른다.)라는 분지학 용어로 사용된다. 단궁류는 초기 양막류에서 진화했으며 양막류의 두 가지 주요 그룹 중 하나인 용궁류(Sauropsid. 파충류와 조류)와는 다른 주요 그룹이며(파충류, 조류와 자매군임), 석탄기 후기인 3억 2400만년전 쯤에 출현하였다.

단궁류는 페름기 초, 중기와 후기에 걸쳐(2억 9900만년전~2억 5100만년전)지배적인 육상 척추동물이었다. 단궁류 역시 다른 생물들과 마찬가지로 페름기 말의 대멸종으로 심각한 타격을 입기는 했으나, 초기 트라이아스기까지는 꽤 흔하게 번성하였다. 하지만 트라이아스기 후기에 걸쳐 다른 양막동물인 지배파충류가 번성하게 되었고, 일부 살아남은 몇몇 그룹(포유류가 아닌 단궁류 중에서)은 백악기 초기인 1억년 전까지 살아남았다. 그러나 이들은 계통학적으로 후손인 포유류를 포함하기 때문에 단궁류는 아직도 많은 종이 현존하는 척추동물의 집단이다. 포유류의 형태로, 단궁류(특히 가장 최근에 인간을 포함)는 6600만년전 백악기 후기 K-T 대멸종 이후에 새(조류)와 함께 현재까지 번성하고 있다.

 title=
license
ko
copyright
http://creativecommons.org/licenses/by-sa/3.0/