Cervids use three main types of communication: vocal, chemical, and visual. Vocal communication is used primarily during times of fear or excitement. The most common form of vocal communication is barking, which is typically used in response to a disturbance, such as visual contact with a predator or a disturbing noise. Barking is also used as an expression of victory after a competitive interaction between two males. Cervids also communicate through a variety of hormone and pheromone signals. For example, male cervids demarcate territory with glandular secretions rubbing their face, head, neck, and sides against trees, shrubs, or tall grasses. Cervids also use visual communication, known as scraping. Scraping is primarily used during mating season by males to advertise their presence and availability to females. To create a scape, males paw the ground with the forelimbs, producing patches of bare ground about 0.5 m to 1.0 m in width. Typically, scrapes are marked with a secretion from the interdigital glands located between their hooves. In response to a potential threat, some species stand with their body tensed and rigid, while leaning slightly forward, which signals the potential threat to conspecifics.
Communication Channels: visual ; acoustic ; chemical
Other Communication Modes: pheromones ; scent marks
Perception Channels: visual ; tactile ; acoustic ; chemical
The IUCN's Red List of Threatened Species lists 55 species of Cervidae, 2 of which are listed as extinct and 1 is considered critically endangered. Of the remaining 52 species, 8 are endangered, 16 are vulnerable, and 17 are listed as "least concern". The remaining 10 species are listed as "data deficient". Many more local deer population are on the cusp of extirpation, which could lead to inbreeding in adjacent populations. According to the IUCN, major threats of extinction for cervids includes over exploitation due to hunting, habitat loss (e.g., logging, conversion to agriculture, and landscape development), and resource competition with domestic and invasive animals. In addition, climate change has begun to contract species ranges and forced some species of cervid to move poleward. For example, moose, which are an important ecological component of the boreal ecosystem, are notoriously heat intolerant and are at the southern edge of their circumpolar distribution in the north central United States. Since the mid to late 1980's, demographic studies of this species have revealed sharp population declines at its southernmost distribution in response to increasing temperatures. In addition, climate change has allowed more southerly species to move poleward, which increases competition and disease transmission at range interfaces of various species (e.g., white-tailed deer and moose). Finally, cervids are an important food source for a number of different carnivores. As cervid populations decline, so too will those animals that depend on them. CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) lists 25 species of cervid under appendix I.
The family Cervidae, commonly referred to as "the deer family", consists of 23 genera containing 47 species, and includes three subfamilies: Capriolinae (brocket deer, caribou, deer, moose, and relatives), Cervinae elk, muntjacs, and tufted deer), and Hydropotinae, which contains only one extant species, Chinese water deer. However, classification of cervids has been controversial and a single well-supported phylogenetic and taxonomic history has yet to be established. Cervids range in mass from 20 lbs to 1800 lbs, and all but one species, Chinese water deer, have antlers. With the exception of caribou, only males have antlers and some species with smaller antlers have enlarged upper canines. In addition to sexually dimorphic ornamentation, most deer species are size-dimorphic as well with males commonly being 25% larger than their female counterparts. Cervids have a large number of morphological synapomorphies (e.g., characteristics that are shared within a taxonomic group), and range in color from dark to very light brown; however, young are commonly born with cryptic coloration, such as white spots, that helps camouflage them from potential predators. Cervids can be found in a wide range of habitats, from extremely cold to the tropics. They have been introduced nearly world wide, but are native throughout most of the New World, Europe, Asia and northwestern Africa, with Eurasia exhibiting the greatest species diversity. Although most cervids live in herds, some species, such as South American marsh deer, are solitary. The majority of species have social hierarchies that have a positive correlation with body size (e.g., large males are dominant to small males).
Many species of cervid are viewed as agricultural pests, especially in areas where they have become overpopulated due to habitat alterations and lack of natural predators. The effects of deer on crops can be devastating. Most cervid species are forest dwellers and as a result, they can cause damage to timber by browsing, bark-stripping, and velvet cleaning. In addition, deer-vehicle collisions result in significant harm to the health and personal property of those involved. Many cervids carry diseases that can be transmitted to domestic livestock and certain species, including white-tailed deer, elk, and Javan rusa, have been introduced outside of their geographic ranges, causing significant harm to native plant and animal communities.
Negative Impacts: crop pest; causes or carries domestic animal disease
Humans have a long history of exploiting both native and exotic deer species, having hunted them in every geographic region in which they occur. They are often hunted for their meat, hides, antlers, velvet, and other products. As humans began to rely more on agriculture, their dependence on deer species as a food source decreased. However, in areas where climate prohibits wide-scale agriculture, such as in the Arctic, deer species such as caribou are still relied upon for food, clothing, and other resources. In the past, caribou have even been domesticated by nomadic peoples in the high Arctic. Today, many cervid species are hunted for sport rather than necessity. Several species have also been domesticated as harness animals, including caribou and elk. Finally, cervids play an important role in the global ecotourism movement as various species of deer are readily observable throughout much of their native habitat.
Positive Impacts: food ; body parts are source of valuable material; ecotourism
Cervids are an important food source for many predators throughout their geographic range. For example, one study showed that over 80% of the feces of gray wolves in Algonquin Park in Canada contained the remains of white-tailed deer. Cervids are host to a variety of endoparasites, including parasitic flatworms (Cestoda and Trematoda) and many species of roundworm (Nematoda) spend at least part of their lifecycle in the tissues of cervid hosts. Cervids are also vulnerable to various forms of parasitic arthropods including ticks (Ixodoidea), lice (Phthiraptera), mites (Psoroptes and Sarcoptes), keds (Hippoboscidae), fleas (Siphonaptera), mosquitoes (Culicidae), and flies (Diptera). In addition, cervids compete with other species for food and other resources, which can effectually limit both inter- and intraspecific population growth.
Cervids play an integral role in the structure and function of the ecosystems in which they reside, and some species have been shown to alter the density and composition of local plant communities. For example, on Isle Royale National Park, MI, moose (Alces alces) have been shown to alter the density and composition of foraged aquatic plant communities, and fecal nitrogen transferred from aquatic to terrestrial habitats via the ingestion of aquatic macrophytes increases terrestrial nitrogen availability in summer core areas. Foraging by cervids has been shown to have a significant impact on plant succession, and plant diversity is greater in areas subjected to foraging. As a result, foraging might lead to shifts from one plant community type to another (e.g., hardwoods to conifers). In addition, moderate levels of foraging by cervids may increase habitat suitability for conspecifics. For example, litter from foraged plants decomposes more quickly than non-browsed, thus increasing nutrient availability to the surrounding plant community. Moreover, nutrient inputs from urine and feces have been shown to contribute to longer stem growth and larger leaves in the surrounding plant community, which are preferentially fed upon during subsequent foraging bouts. Finally, research has shown that the decomposition of cervid carcasses can result in elevated soil macronutrients and leaf nitrogen for a minimum of two years.
Although cervids can be host to numerous species of pathogenic bacteria and protozoa, in conjunction with anaerobic fungi, similar classes of microorganisms are one of the major reasons that cervids are as abundant and diverse as they are today. Bacteria comprise between 60 and 90% of the microbial community present in the ruminant's gastrointestinal (GI) tract and help break down cellulose. Ciliated protozoa, which makes up 10 to 40% of the microbe community within the rumen, help break down cellulose, while also feeding on starches, proteins and bacteria. The presence of anaerobic fungi in the rumen has only been known since the early 1970's. These fungi make up between 5 to 10% of the rumen's microbial abundance and are thought to help break down the cell wall of ingested plant material. Bacteria and protozoa that pass from the upper to the lower regions of the GI tract represent a significant portion of the dietary nitrogen required by their host.
Ecosystem Impact: disperses seeds
Mutualist Species:
Commensal/Parasitic Species:
All cervids are obligate herbivores with diets including grass, small shrubs, and leaves. In addition to the true stomach, or abomasum, cervids have 3 additional chambers, or false stomachs, in which bacterial fermentation takes place. In ruminants, the digestion of high-fiber, poor-quality food occurs via four different pathways. First, gastric fermentation extracts lipids, proteins, and carbohydrates, which are then absorbed and distributed throughout the body via the intestines. Second, large undigested food particles form into a bolus, or ball of cud, which is regurgitated and re-chewed to help break down the cell wall of ingested plant material. Third, cellulose digestion via bacterial fermentation results in high nitrogen microbes that are occasionally flushed into the intestine, which are subsequently digested by their host. These high-nitrogen microbes serve as an important protein source. Finally, cervids can store large amounts of forage in their stomachs for later digestion. All cervids chew their cud, have three or four-chambered stomachs, and support microorganisms that breakdown cellulose. Unlike many other ruminants, cervids selectively forage on easily digestible vegetation rather than consuming all available food.
Foraging Behavior: stores or caches food
Primary Diet: herbivore (Folivore , Lignivore)
Cervids are widely distributed and are native to all continents except Australia, Antarctica, and most of Africa, which contains only a single sub-species of native deer, Barbary red deer. Cervids have been introduced nearly worldwide and there are now 6 introduced species of deer in Australia and New Zealand that have been established since the mid 1800s.
Biogeographic Regions: nearctic (Native ); palearctic (Native ); oriental (Native ); ethiopian (Native ); neotropical (Native ); australian (Introduced ); oceanic islands (Introduced )
Cervids live in a variety of habitats, ranging from the frozen tundra of northern Canada and Greenland to the equatorial rain forests of India, which has the largest number of deer species in the world. They inhabit deciduous forests, wetlands, grasslands, arid scrublands, rain forests, and are particularly well suited for boreal and alpine ecosystems. Many species are particularly fond of forest-grassland ecotones and are known to reside a variety of urban and suburban settings.
Habitat Regions: temperate ; tropical ; polar ; terrestrial
Terrestrial Biomes: tundra ; taiga ; desert or dune ; savanna or grassland ; chaparral ; forest ; rainforest ; scrub forest ; mountains
Wetlands: marsh ; swamp ; bog
Other Habitat Features: urban ; suburban ; agricultural
The lifespan of most cervid ranges from 11 to 12 years, however, many are killed before their fifth birthday due to various causes including hunting, predation, or motor vehicle collisions. In most species, males have shorter lifespans than females and this is likely a result of intrasexual competition for mates and the solitary nature of most sexually dimorphic males, resulting in increased risk of predation. However, recent studies show that sex-biased mortality rates are tightly linked to local environmental conditions. Captive deer tend to outlive their wild counterparts as they are subjected to little or no predation and have access to an abundant supply of food. The lifespan of cervids decreases as the number of deer exceeds the local environments carrying capacity. In this case, young and old cervids tend to suffer from starvation, as stronger, middle-aged deer outcompete them for forage.
There is a great deal of physical diversity within the family Cervidae. Moose, the largest extant member of the family, can reach up to 1800 lbs and the smallest, northern pudu, reach a maximum size of roughly 20 lbs. Typically members have compact torsos and very powerful elongated legs that are well suited for woody or rocky terrain. With the exception of Chinese water deer, all male cervids have deciduous antlers and caribou are the only species in which both males and females have antlers. Deer are primarily browsers (foraging on broad leaf plant material), and their low- (brachydont) to medium-crowned (mesodont) selenodont cheek teeth are highly specialized for browsing. Cervids lack upper incisors and instead have a hard palate. The anterior portion of the palate is covered with a hardened tissue against which the lower incisors and canines occlude. They have a 0/3, 0-1/1, 3/3, 3/3 dental formula. Other notable features of cervids include the lack of a sagittal crest and the presence of a postorbital bar.
Antlers grow from pedicels, boney supporting structures that grow on the lateral regions of the frontal bones. In temperate-zone cervids, antlers begin growing in the spring as skin-covered projections from the pedicels. The dermal covering, or "velvet," is rich in blood vessels and nerves. When antlers reach full size, the velvet dies and is rubbed off as the animal thrashes its antlers against vegetation. Antlers are used during male-male competition for mates during breeding season, and are shed soon afterwards. Typically, only males bear antlers however, both genders bear antlers in caribou. Antlers vary from simple spikes, such as those in munjacs, to enormous, complexly branched structures, such as those in moose. Antler structure changes depending on species and the age of the individual bearing them. Males of the genus Muntiacuc have both antlers and long, fang-like upper canines that are used in social displays. Although Chinese water deer are the only species without antlers, they have elongated upper canines that are used to attract mates. Antlers typically emerge at one year of age.
Other Physical Features: endothermic ; homoiothermic; bilateral symmetry
Sexual Dimorphism: male larger; sexes shaped differently; ornamentation
In areas where large carnivore populations have not been significantly reduced by humans, predation represents an important cause of mortality for cervids. For many species, predation is the primary means of controlling population densities. For many cervids, predation on calves is especially important in limiting population size, and much of this predation is accomplished by smaller carnivores (e.g., Canada lynx, caracal, and coyote). It is difficult, however, to estimate the natural effect of predation on cervids, as predator populations in many locations have been significantly reduced or eliminated by humans. To avoid predation, gregarious species foraging in open habitats group together to face potential threats. Solitary species avoid predators by foraging in or near the protective cover of woodland or brush habitat. The young of most cervids have spots or stripes on their pelage, which helps camouflage them in dense vegetation. All species give a harsh bark, which serves as an alarm to conspecifics. Pronking (i.e., continuously jumping high into the air) and tail-flaring is a known response to predators at close range, as well as when individuals are startled. Cervids also have acute senses of sight, hearing, and smell, which helps them avoid potential predators.
Known Predators:
Anti-predator Adaptations: cryptic
Although most cervids are polygynous, some species are monogamous (e.g., European Roe deer). The breeding season of most cervids is short, with females coming into estrus in synchrony. In some species, males establish territories, which encompass those of one or more females. Males may then mate with those females who have territories within his own. In some cervids, females may form small groups known as harems, which are guarded and maintained by males, and in other species males simply travel between herds looking for estrus females. Sexual segregation is not uncommon in cervids; however, in some species permanent mixed-sex groups result in male-male competition for potential mates. In sexually segregating species, males join females only to copulate, leaving at the end of breeding season. Males establish dominance hierarchies among themselves, with the most dominant males achieving the most copulations. Males may hold dominance over a harem or territory and are often challenged by rival males. Male cervids significantly decrease forage intake during breeding season, which, in conjunction with being continually challenged by rivals males, ensures that dominance by any one individual is short lived. Antler growth is dependent on individual nutrition and evidence suggests that the size and symmetry of male antlers serves as an indicator of mate quality for females.
Mating System: monogamous ; polygynous
Cervids living in temperate zones typically breed during late autumn or early winter. Seasonal breeders at lower latitudes, such as the chital, breed from late spring into early summer (e.g., April or May). Conception usually occurs during the first estrus cycle of the breeding season, and those that do not conceive will re-enter estrus every 18 days until they become pregnant. Species living in tropical climates, such as grey brocket deer, often do not have a fixed breeding season, and females may come in to estrus multiple times throughout the year. Gestation in cervids ranges from 180 days in Chinese water deer to 240 days for elk, with larger species tending to have longer gestational periods. Roe deer are the only cervid known to have delayed implantation. Cervids typically have from 1 to 3 offspring, and often, not all fetuses are carried to term, as the number of offspring born each year is dependent on population density and resource abundance. Age at weaning varies among species, with smaller species nursing for only 2 to 3 months and larger species nursing for much longer. For example Bornean yellow muntjacs are weaned by about 2 months of age and North American moose are weaned by about 5 months, however, erratic nursing may continue for up to 7 months after birth.
Body weight is more importance in determining sexual maturity in cervids than actual age; therefore, an individual's reproductive activity is dependent on environmental conditions and resource quality and abundance. Due to the energetic costs of lactation, this is especially true for females. In males, testes begin producing hormones at the end of the first year, and consequently, antler growth occurs during the end of the first year or the beginning of the second. However, because male-male competition plays a dominant role in cervid mating behavior, most males do not mate until they can outcompete rivals for access to females.
Although some cervids are solitary, most are gregarious and live in herds that vary in size from a few individuals to more than 100,000 (e.g., caribou. Average group size depends on the demographic composition (i.e., sex and age) of the immediate population, the degree of inter- and intraspecific competition, and resource quality and abundance. Habitat segregation in cervids tends to peak during calving and significantly decreases soon afterward. Most species are polygynous, and males use their antlers in combat to obtain and defend females. Sexual-size dimorphism is common in cervids. Males are larger than females in most species, and sexual dimorphism is more pronounced in the most highly polygynous species. Cervids have a number of glands on their feet, legs, and faces that are used during intraspecific communication. Males of many cervid species significantly decrease forage intake during mating season, and evidence suggests that feeding cessation in males is linked to various physiological processes associated with chemical communication during the breeding season.
Key Reproductive Features: iteroparous ; seasonal breeding ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; viviparous
As with many artiodactyls, cervids can be classified as either hiders or followers. Altricially born cervids are highly vulnerable to predation for the first few weeks of life. As a result, mothers hide their young in the surrounding vegetation as they forage nearby. Hider mothers periodically return to their young throughout the day to nurse and clean their calves. Females that give birth to multiple offspring hide each individual in separate locations, presumably to decrease the chance of losing multiple young to a predator. Once young become strong enough to escape potential predators they join their mother during foraging bouts. Some species are precocially born and are able to run only a few hours after birth (e.g., Rangifer tarandus). These species are often referred to as followers.
Lactation is one of the most energetically expensive activities possible for female mammals and lactating cervids are often not able to consume enough food to maintain their body weight, especially during the first weeks of lactation. Typically, young are weaned earlier in smaller species; however, sporadic nursing may occur for up to 7 months after birth. Young cervids may stay with their mother until she is about to give birth to the subsequent season’s offspring. In many species, females stay within their mother’s range after maturation, while males are forced to disperse. In most species, males do not provide any parental care to their offspring.
Parental Investment: female parental care ; pre-hatching/birth (Provisioning: Female, Protecting: Female); pre-weaning/fledging (Provisioning: Female, Protecting: Female); pre-independence (Provisioning: Female, Protecting: Female); post-independence association with parents
Diversity of Living Deer
The artiodactyl family Cervidae (deer) has a rich fossil record going back to the early Miocene, around 20 million years ago, and includes several species of very large deer that persisted through the Pleistocene. The cervids still with us today include a number of well known and widespread species, as well as some very poorly known and endangered species.Mattioli (2011) recognized 53 cervid living species placed in 18 genera. He noted, however, that cervid taxonomy is still evolving and that a list of living cervid species 30 years earlier would likely have included only around 34 species. This change is due to the availability of new taxonomic data (notably, DNA sequence data) and approaches, as well as the discovery of entirely new forms. Many taxonomic discoveries likely still lie ahead.
There are two distinct subfamilies within the Cervidae:
1) Subfamily Cervinae (8 genera with 30 species). This subfamily includes two tribes, Muntiacini and Cervini.
a) Tribe Muntiacini. This tribe includes two genera, Elaphodus (with just the single species E. cephalophus, the Tufted Deer) and Muntiacus (muntjacs, 11 spp.), both of which are composed of deer that are relatively small and stocky with males whose antlers are fairly short and simple. Muntiacini are well known for having karyotypes with very few chromosomes.
b) Tribe Cervini. This tribe includes six genera: Axis (4 spp.), Dama (2 spp.), Rusa (4 spp.), Cervus (5 spp.), Elaphurus (1 spp.) and Rucervus (2 spp.). Axis and Rusa deer have three-pointed antlers. Dama (fallow deer) have palmate antlers. Cervus have more complex, four-to-six-pointed antlers. Elaphurus has unusual antlers with a foreshaft and hindshaft. Rucervus is composed of graminivorous deer with specialized molars.
2) Subfamily Capreolinae (or Odocoileinae) (10 genera with 23 species).Nearly all deer in the Capreolinae exhibit a precocious development of the first set of antlers and their permanent dentition is in place by 18 months. This subfamily includes three tribes: Capreolini, Alceini, and Odocoileini.
a) Tribe Capreolini. This tribe includes the Chinese Water Deer (1 species, Hydropotes inermis), which are unusual antlerless deer in which males have long upper canines, and roe deer (Capreolus, 2 spp.).
b) Tribe Alceini. This tribe includes only the Moose (Alces alces).
c) Tribe Odocoileini. This tribe includes the Caribou or Reindeer (Rangifer tarandus) and all the New World deer (known as the neocervines). There are six genera of New World deer: Odocoileus (2 species), Blastocerus (only Marsh Deer, B. dichotomus), Ozotoceros (only Pampas Deer, O. bezoarticus), Hippocamelus (2 species), Pudu (2 species), Mazama (brocket deer, 10 species; some genetic evidence suggests that Mazama should be split into two genera). In many species in this tribe, there is a time lag of a month or two between the shedding of antlers and their regrowth. Some species are multiparous, i.e., females can give birth to more than one offspring per litter. In White-tailed Deer, first-time breeders, as well as does in the tropics, usually produce singletons, whereas adults in temperate regions typically have twins. With the exception of the Caribou, deer fawns are "hiders" rather than "followers", remaining concealed in vegetation for the first few days, or even weeks, of life (in contrast, newborn Caribou can stand an hour after birth and follow their mothers after 5 to 7 hours). Newborn deer of most species have a spotted coat, which may help them remain unnoticed in vegetation.
Some species formerly considered to belong in the Cervidae are now recognized not to fall within this group based on new genetic and other data, e.g., the musk-deer (now placed in their own family, Moschidae). Some deer once thought to have retained various traits from ancient lineages, such as the antlerless Chinese Water Deer, are now recognized as members of recent lineages in which these apparently "retained" traits, such as lack of antlers, were actually secondarily derived.
Ecology and Behavior
The extant cervids vary considerably in body size, ranging from the 5.5 kg Northern Pudu (Pudu mephistophiles) to the 770 kg Moose. In some species, males and females are the same size (e.g., Red Muntjac, Muntiacus muntjac), but most cervids show some degree of sexual size dimorphism. In Chinese Water Deer and Fea's Munjac (Muntiacus feae), females are slightly heavier than males, but in most cases males are larger. In some Caribou populations, the mean body weight of males can be twice that of females. In addition to size dimorphism, other sex-specific characteristics seen in some cervid species include differences in antlers, neck manes, dewlaps, and nuptial coats. Sexual dimorphism tends to be more pronounced in more strongly polygynous species, in which a male tends to monopolize a group of females. In Chital (Axis axis), Western Red Deer (Cervus elaphus), Common Fallow Deer (Dama dama), and Barasingha (Rucervus duvaucelii), males are on average 70-90% heavier than females. In Wapiti (Cervus canadensis) of Siberia and North America, males weigh 30-40% more than females. Some cervid species exhibit a high degree of geographic variation in body size. In White-tailed Deer, for example, body size ranges from 100-130 kg in Canada to 30-35 kg on some islands in the Florida Keys (U.S.A.) and in South America. In Western Red Deer, there are ecotypes adapted to different regional habitats with adult stags ranging in size from 110 kg to 300 kg. Other types of geographic variation occur as well. For example, during the last glacial maximum, 18,000 years ago, Mule Deer populations in western North America were separated and diverged, with those now in the Pacific Northwest, known as "Black-tailed Deer", having a tail that is black above, whereas other Mule Deer have a conspicuous white rump patch and a white tail with a black tip. Mule Deer run with a four-footed bounding gait known as "stotting" and can briefly reach a speed of 40km/h. Their large ears are around two thirds the length of the face.
Among the most distinctive characteristics seen in cervids is the presence of antlers. These paired cranial appendages are outgrowths of the frontal bone that grow and are shed each year (these are quite distinct from the horns of Bovidae, which are permanent appendages consisting of a bony core covered by a hollow keratinized sheath). In most deer species, only males grow antlers and the annual antler cycle is closely tied to the testosterone cycle. The only known exception is the Caribou, in which a large fraction of females develop antlers each year (although males shed their antlers from November to January whereas female antlers are retained through the winter and shed from March to May, during the calving period). Chinese Water Deer never grow antlers, although phylogenetic evidence suggests that their ancestors did.
Deer occur in a wide range of habitats, including forests, woodlands, and wood edges. The broad habitat use of some species can result in very large geographic ranges. For example, White-tailed Deer are found from the tropical forests of South America to the boreal forests of Canada. Other deer species showing broad geographic and habitat ranges include Western Red Deer, Hog Deer (Axis porcinus), and Chital. Some species (muntjacs, brockets) spend most of their time in dense vegetation; a few species are found only in open habitats; Barasingha, Brow-antlered Deer (Rucervus eldii), Pere David's Deer (Elaphurus davidianus), and Chinese Water Deer live in the tall grassy vegetation around marshes. Caribou are found in circumpolar barren tundras and high Arctic deserts. Several high-elevation species (White-lipped Deer [Cervus albirostris]; huemuls [Hippocamelus]; Central Asian Red Deer [Cervus wallichii]; pudus [Pudu]; and the three South American dwarf deer, the Little Red Brocket [Mazama rufina], Common Dwarf Brocket [Mazama chuny], and Merida Brocket [Mazama bricenii) spend most of their time above the treeline on summit meadows and scrublands, sometimes up to 5100 m above sea level. Living at high elevations requires special adaptations to cope with limited oxygen availability, intense solar radiation, and low temperatures.
Deer first reached South America via the Panamanian Land Bridge around 2.5 million years ago. Some of the deer that evolved in South America are quite specialized. For example, Marsh Deer (the largest deer in South America) are found in swamps and other wetlands, usually with water around a half meter deep. Their legs are long for wading and, like most deer, they swim well. Pampas Deer are the only deer specialized to live in savannas and prairies. As is the case for most deer species living in open habitats, the size dimorphism between males and females is not very great.
Many cervids, especially medium- and large-sized species, have a well developed vocal repertoire. Olfactory communication is also very important. Every species has at least three different kinds of scent glands. Glands between the pads of Pampas Deer hooves produce a substance with an onion-like smell which can be detected over long distances.
Deer must fill their rumens every few hours, so feeding dominates their time budget. Many deer are browsers and some species (such as many brockets) are largely frugivorous (fruit-eating). Some deer are predominantly grazers (e.g., Pere David's Deer, Barasingha, and Brow-antlered Deer, all characteristic of wet grasslands). Wapiti of Siberia and North America and White-lipped Deer, which have colonized dry grasslands, are mainly grazers but include leaves and twigs in their diet. Common Fallow Deer and Sika Deer (Cervus nippon) have a relatively large rumen and are able to feed on coarse plants, but may switch to a browsing diet when necessary.
In all deer, parental care is provided exclusively by the female.
Deer and Humans
Humans have always hunted deer in Europe, Asia, and the Americas. Subsistence hunting of deer is still still significant in Southeast Asia and South America. Deer are hunted for meat as well as for their skins (for clothing ) and antlers (for tools).
Around the globe, deer species have often been translocated by humans. For example, Persian Fallow Deer (Dama mesopotamica) were brought from Lebanon to Cyprus in the 9th millenium BC, the Portugese are believed to have introduced Hog Deer to Sri Lanka in the 16th century, and Dutch sailors and traders likely brought Javan Deer (Rusa timorensis) to Mauritius in the 17th century. In the 1920s and 1930s, Caribou were released on the sub-Antarctic islands of South Georgia and Kerguelen to provide meat for the crews of whaling vessels. Australia now has six established species of non-native deer and New Zealand has nine. The Western Red Deer was transported to Sardinia around 8000 years ago, probably from the Italian Peninsula. Some species, such as Common Fallow Deer and Javan Deer, have been moved around so much by humans that it is now difficult to identify the native range. In addition to being moved to new regions to establish populations for hunting, live deer have been collected as novelties and these deer have sometimes escaped and established populations. Thus, for example, there are now feral populations in Great Britain of Sika Deer, Reeve's Muntjac (Muntiacus reevesi), and Chinese Water Deer. Since the late 1970s, deer farming has become common in China, Korea, Taiwan, Europe (especially Great Britain), Australia, and New Zealand, with the meat going mainly to European markets and velvet to Asia.
The only deer species that has been successfully domesticated is the Reindeer (domesticated Caribou), with Reindeer husbandry dating back several thousand years. Attempts were made to tame Moose in the former Soviet Union during the 20th century.
Although some deer species have been very well studied (e.g., Western Red Deer, Wapiti, Western Roe Deer, Moose, Caribou, White-tailed Deer, Mule Deer), others are very poorly known (e.g., some Southeast Asian muntjacs, South American brockets, pudus, and Philippine Brown Deer [Rusa marianna]).
Conservation Status of Deer
Although populations of several deer species in some western countries are excessive given the available habitat, on a global scale many deer species are threatened by habitat loss and hunting (for food, traditional medicine, and other uses), conflicts with domestic livestock, and other causes. Only one deer species is known to have gone extinct since 1600, Schomburgk's Deer (Rucervus schomburgki), which was known only from seasonally flooded swampy plains in central Thailand. This species went extinct as a result of habitat destruction (following the extensive conversion to rice production in the late 19th century) and persecution in the early 20th century). A number of deer are listed as Endangered or Vulnerable by IUCN. The only species listed as Critically Endangered (as of 2011) is Bawean Deer (Axis kuhlii), found only on Bawean Island between Java and Borneo. However, two other island species are listed as Endangered: Calamian Deer (Axis calamienensis,found on three main islands of the Calamian Islands in the Philippines) and the Philippine Spotted Deer (Rusa alfredi, restricted to two islands of the Western Visayas). Persian Fallow Deer, Giant Muntjac (Muntiacus vuquangensis), Hog deer, Brow-antlered Deer, and South Andean Huemul (Hippocamelus bisulcus) are also Endangered. Another 16 species are listed as Vulnerable (many of these are island species or species with very fragmented distributions). Tufted Deer (from China) and Pampas Deer (from South America) are listed as Near Threatened. Even some species listed as Least Concern are rapidly decreasing due to overhunting and deforestation (e.g., Common Brown Brocket [Mazama gouazoubira] and Amazonian Brown Brocket [Mazama nemorivaga] in the tropics and Eastern Roe Deer [Capreolus pygargus] in temperate and boreal regions). Many large populations of Caribou may be exhibiting long-term declines (apparently as a consequence of ecological changes resulting from a warming climate). Recovery efforts for some species, such as Pere David's Deer and Persian Fallow Deer, have achieved significant success through captive breeding, although populations remain vulnerable and Persian Fallow Deer is still listed by IUCN as Endangered. Hybridization with introduced species poses a threat to some species (e.g., introduced Sika breeding with native Western Red Deer in the British Isles).
(Mattioli 2011 and referenes therein)
A deer (PL: deer) or true deer is a hoofed ruminant mammal of the family Cervidae. The two main groups of deer are the Cervinae, including muntjac, elk (wapiti), red deer, and fallow deer; and the Capreolinae, including reindeer (caribou), white-tailed deer, roe deer, and moose. Male deer of all species (except the water deer), as well as female reindeer, grow and shed new antlers each year. In this, they differ from permanently horned antelope, which are part of a different family (Bovidae) within the same order of even-toed ungulates (Artiodactyla).
The musk deer (Moschidae) of Asia and chevrotains (Tragulidae) of tropical African and Asian forests are separate families that are also in the ruminant clade Ruminantia; they are not especially closely related to Cervidae.
Deer appear in art from Paleolithic cave paintings onwards, and they have played a role in mythology, religion, and literature throughout history, as well as in heraldry, such as red deer that appear in the coat of arms of Åland.[2] Their economic importance includes the use of their meat as venison, their skins as soft, strong buckskin, and their antlers as handles for knives. Deer hunting has been a popular activity since the Middle Ages and remains a resource for many families today.
The word deer was originally broad in meaning, becoming more specific with time. Old English dēor and Middle English der meant a wild animal of any kind. Cognates of Old English dēor in other dead Germanic languages have the general sense of animal, such as Old High German tior, Old Norse djur or dȳr, Gothic dius, Old Saxon dier, and Old Frisian diar.[3] This general sense gave way to the modern English sense by the end of the Middle English period, around 1500. All modern Germanic languages save English and Scots retain the more general sense: for example, Dutch/Frisian dier, German Tier, and Norwegian dyr mean animal.[4]
For many types of deer in modern English usage, the male is a buck and the female a doe, but the terms vary with dialect, and according to the size of the species. The male red deer is a stag, while for other large species the male is a bull, the female a cow, as in cattle. In older usage, the male of any species is a hart, especially if over five years old, and the female is a hind, especially if three or more years old.[5] The young of small species is a fawn and of large species a calf; a very small young may be a kid. A castrated male is a havier.[6] A group of any species is a herd. The adjective of relation is cervine; like the family name Cervidae, this is from Latin: cervus, meaning stag or deer.
Deer live in a variety of biomes, ranging from tundra to the tropical rainforest. While often associated with forests, many deer are ecotone species that live in transitional areas between forests and thickets (for cover) and prairie and savanna (open space). The majority of large deer species inhabit temperate mixed deciduous forest, mountain mixed coniferous forest, tropical seasonal/dry forest, and savanna habitats around the world. Clearing open areas within forests to some extent may actually benefit deer populations by exposing the understory and allowing the types of grasses, weeds, and herbs to grow that deer like to eat. Access to adjacent croplands may also benefit deer. Adequate forest or brush cover must still be provided for populations to grow and thrive.
Deer are widely distributed, with indigenous representatives in all continents except Antarctica and Australia, though Africa has only one native deer, the Barbary stag, a subspecies of red deer that is confined to the Atlas Mountains in the northwest of the continent. Another extinct species of deer, Megaceroides algericus, was present in North Africa until 6000 years ago. Fallow deer have been introduced to South Africa. Small species of brocket deer and pudús of Central and South America, and muntjacs of Asia generally occupy dense forests and are less often seen in open spaces, with the possible exception of the Indian muntjac. There are also several species of deer that are highly specialized and live almost exclusively in mountains, grasslands, swamps, and "wet" savannas, or riparian corridors surrounded by deserts. Some deer have a circumpolar distribution in both North America and Eurasia. Examples include the caribou that live in Arctic tundra and taiga (boreal forests) and moose that inhabit taiga and adjacent areas. Huemul deer (taruca and Chilean huemul) of South America's Andes fill the ecological niches of the ibex and wild goat, with the fawns behaving more like goat kids.
The highest concentration of large deer species in temperate North America lies in the Canadian Rocky Mountain and Columbia Mountain regions between Alberta and British Columbia where all five North American deer species (white-tailed deer, mule deer, caribou, elk, and moose) can be found. This region has several clusters of national parks including Mount Revelstoke National Park, Glacier National Park (Canada), Yoho National Park, and Kootenay National Park on the British Columbia side, and Banff National Park, Jasper National Park, and Glacier National Park (U.S.) on the Alberta and Montana sides. Mountain slope habitats vary from moist coniferous/mixed forested habitats to dry subalpine/pine forests with alpine meadows higher up. The foothills and river valleys between the mountain ranges provide a mosaic of cropland and deciduous parklands. The rare woodland caribou have the most restricted range living at higher altitudes in the subalpine meadows and alpine tundra areas of some of the mountain ranges. Elk and mule deer both migrate between the alpine meadows and lower coniferous forests and tend to be most common in this region. Elk also inhabit river valley bottomlands, which they share with White-tailed deer. The White-tailed deer have recently expanded their range within the foothills and river valley bottoms of the Canadian Rockies owing to conversion of land to cropland and the clearing of coniferous forests allowing more deciduous vegetation to grow up the mountain slopes. They also live in the aspen parklands north of Calgary and Edmonton, where they share habitat with the moose. The adjacent Great Plains grassland habitats are left to herds of elk, American bison, and pronghorn.
The Eurasian Continent (including the Indian Subcontinent) boasts the most species of deer in the world, with most species being found in Asia. Europe, in comparison, has lower diversity in plant and animal species. Many national parks and protected reserves in Europe have populations of red deer, roe deer, and fallow deer. These species have long been associated with the continent of Europe, but also inhabit Asia Minor, the Caucasus Mountains, and Northwestern Iran. "European" fallow deer historically lived over much of Europe during the Ice Ages, but afterwards became restricted primarily to the Anatolian Peninsula, in present-day Turkey.
Present-day fallow deer populations in Europe are a result of historic man-made introductions of this species, first to the Mediterranean regions of Europe, then eventually to the rest of Europe. They were initially park animals that later escaped and reestablished themselves in the wild. Historically, Europe's deer species shared their deciduous forest habitat with other herbivores, such as the extinct tarpan (forest horse), extinct aurochs (forest ox), and the endangered wisent (European bison). Good places to see deer in Europe include the Scottish Highlands, the Austrian Alps, the wetlands between Austria, Hungary, and the Czech Republic, and some National Parks, including Doñana National Park in Spain, the Veluwe in the Netherlands, the Ardennes in Belgium, and Białowieża National Park in Poland. Spain, Eastern Europe, and the Caucasus Mountains have forest areas that are not only home to sizable deer populations but also other animals that were once abundant such as the wisent, Eurasian lynx, Iberian lynx, wolves, and brown bears.
The highest concentration of large deer species in temperate Asia occurs in the mixed deciduous forests, mountain coniferous forests, and taiga bordering North Korea, Manchuria (Northeastern China), and the Ussuri Region (Russia). These are among some of the richest deciduous and coniferous forests in the world where one can find Siberian roe deer, sika deer, elk, and moose. Asian caribou occupy the northern fringes of this region along the Sino-Russian border.
Deer such as the sika deer, Thorold's deer, Central Asian red deer, and elk have historically been farmed for their antlers by Han Chinese, Turkic peoples, Tungusic peoples, Mongolians, and Koreans. Like the Sami people of Finland and Scandinavia, the Tungusic peoples, Mongolians, and Turkic peoples of Southern Siberia, Northern Mongolia, and the Ussuri Region have also taken to raising semi-domesticated herds of Asian caribou.
The highest concentration of large deer species in the tropics occurs in Southern Asia in India's Indo-Gangetic Plain Region and Nepal's Terai Region. These fertile plains consist of tropical seasonal moist deciduous, dry deciduous forests, and both dry and wet savannas that are home to chital, hog deer, barasingha, Indian sambar, and Indian muntjac. Grazing species such as the endangered barasingha and very common chital are gregarious and live in large herds. Indian sambar can be gregarious but are usually solitary or live in smaller herds. Hog deer are solitary and have lower densities than Indian muntjac. Deer can be seen in several national parks in India, Nepal, and Sri Lanka of which Kanha National Park, Dudhwa National Park, and Chitwan National Park are most famous. Sri Lanka's Wilpattu National Park and Yala National Park have large herds of Indian sambar and chital. The Indian sambar are more gregarious in Sri Lanka than other parts of their range and tend to form larger herds than elsewhere.
The Chao Praya River Valley of Thailand was once primarily tropical seasonal moist deciduous forest and wet savanna that hosted populations of hog deer, the now-extinct Schomburgk's deer, Eld's deer, Indian sambar, and Indian muntjac. Both the hog deer and Eld's deer are rare, whereas Indian sambar and Indian muntjac thrive in protected national parks, such as Khao Yai. Many of these South Asian and Southeast Asian deer species also share their habitat with other herbivores, such as Asian elephants, the various Asian rhinoceros species, various antelope species (such as nilgai, four-horned antelope, blackbuck, and Indian gazelle in India), and wild oxen (such as wild Asian water buffalo, gaur, banteng, and kouprey). One way that different herbivores can survive together in a given area is for each species to have different food preferences, although there may be some overlap.
As a result of acclimatisation society releases in the 19th century, Australia has six introduced species of deer that have established sustainable wild populations. They are fallow deer, red deer, sambar, hog deer, rusa, and chital. Red deer were introduced into New Zealand in 1851 from English and Scottish stock. Many have been domesticated in deer farms since the late 1960s and are common farm animals there now. Seven other species of deer were introduced into New Zealand but none are as widespread as red deer.[7]
Deer constitute the second most diverse family of artiodactyla after bovids.[8] Though of a similar build, deer are strongly distinguished from antelopes by their antlers, which are temporary and regularly regrown unlike the permanent horns of bovids.[9] Characteristics typical of deer include long, powerful legs, a diminutive tail and long ears.[10] Deer exhibit a broad variation in physical proportions. The largest extant deer is the moose, which is nearly 2.6 metres (8 ft 6 in) tall and weighs up to 800 kilograms (1,800 lb).[11][12] The elk stands 1.4–2 metres (4 ft 7 in – 6 ft 7 in) at the shoulder and weighs 240–450 kilograms (530–990 lb).[13] The northern pudu is the smallest deer in the world; it reaches merely 32–35 centimetres (12+1⁄2–14 in) at the shoulder and weighs 3.3–6 kilograms (7+1⁄4–13+1⁄4 lb). The southern pudu is only slightly taller and heavier.[14] Sexual dimorphism is quite pronounced – in most species males tend to be larger than females,[15] and, except for the reindeer, only males possess antlers.[16]
Coat colour generally varies between red and brown,[17] though it can be as dark as chocolate brown in the tufted deer[18] or have a grayish tinge as in elk.[13] Different species of brocket deer vary from gray to reddish brown in coat colour.[19] Several species such as the chital,[20] the fallow deer[21] and the sika deer[22] feature white spots on a brown coat. Coat of reindeer shows notable geographical variation.[23] Deer undergo two moults in a year;[17][24] for instance, in red deer the red, thin-haired summer coat is gradually replaced by the dense, greyish brown winter coat in autumn, which in turn gives way to the summer coat in the following spring.[25] Moulting is affected by the photoperiod.[26]
Deer are also excellent jumpers and swimmers. Deer are ruminants, or cud-chewers, and have a four-chambered stomach. Some deer, such as those on the island of Rùm,[27] do consume meat when it is available.[28]
Nearly all deer have a facial gland in front of each eye. The gland contains a strongly scented pheromone, used to mark its home range. Bucks of a wide range of species open these glands wide when angry or excited. All deer have a liver without a gallbladder. Deer also have a tapetum lucidum, which gives them sufficiently good night vision.
All male deer possess antlers, with the exception of the water deer, in which males have long tusk-like canines that reach below the lower jaw.[29] Females generally lack antlers, though female reindeer bear antlers smaller and less branched than those of the males.[30] Occasionally females in other species may develop antlers, especially in telemetacarpal deer such as European roe deer, red deer, white-tailed deer and mule deer and less often in plesiometacarpal deer. A study of antlered female white-tailed deer noted that antlers tend to be small and malformed, and are shed frequently around the time of parturition.[31]
The fallow deer and the various subspecies of the reindeer have the largest as well as the heaviest antlers, both in absolute terms as well as in proportion to body mass (an average of eight grams per kilogram of body mass);[30][32] the tufted deer, on the other hand, has the smallest antlers of all deer, while the pudú has the lightest antlers with respect to body mass (0.6 g per kilogram of body mass).[30] The structure of antlers show considerable variation; while fallow deer and elk antlers are palmate (with a broad central portion), white-tailed deer antlers include a series of tines sprouting upward from a forward-curving main beam, and those of the pudú are mere spikes.[14] Antler development begins from the pedicel, a bony structure that appears on the top of the skull by the time the animal is a year old. The pedicel gives rise to a spiky antler the following year, that is replaced by a branched antler in the third year. This process of losing a set of antlers to develop a larger and more branched set continues for the rest of the life.[30] The antlers emerge as soft tissues (known as velvet antlers) and progressively harden into bony structures (known as hard antlers), following mineralisation and blockage of blood vessels in the tissue, from the tip to the base.[33]
Antlers might be one of the most exaggerated male secondary sexual characteristics,[34] and are intended primarily for reproductive success through sexual selection and for combat. The tines (forks) on the antlers create grooves that allow another male's antlers to lock into place. This allows the males to wrestle without risking injury to the face.[35] Antlers are correlated to an individual's position in the social hierarchy and its behaviour. For instance, the heavier the antlers, the higher the individual's status in the social hierarchy, and the greater the delay in shedding the antlers;[30] males with larger antlers tend to be more aggressive and dominant over others.[36] Antlers can be an honest signal of genetic quality; males with larger antlers relative to body size tend to have increased resistance to pathogens[37] and higher reproductive capacity.[38]
In elk in Yellowstone National Park, antlers also provide protection against predation by wolves.[39]
Homology of tines, that is, the branching structure of antlers among species, have been discussed before the 1900s.[40][41][42] Recently, a new method to describe the branching structure of antlers and determining homology of tines was developed.[43]
Most deer bear 32 teeth; the corresponding dental formula is: 0.0.3.33.1.3.3. The elk and the reindeer may be exceptions, as they may retain their upper canines and thus have 34 teeth (dental formula: 0.1.3.33.1.3.3).[44] The Chinese water deer, tufted deer, and muntjac have enlarged upper canine teeth forming sharp tusks, while other species often lack upper canines altogether. The cheek teeth of deer have crescent ridges of enamel, which enable them to grind a wide variety of vegetation.[45] The teeth of deer are adapted to feeding on vegetation, and like other ruminants, they lack upper incisors, instead having a tough pad at the front of their upper jaw.
Deer are browsers, and feed primarily on foliage of grasses, sedges, forbs, shrubs and trees, secondarily on lichens in northern latitudes during winter.[46] They have small, unspecialized stomachs by ruminant standards, and high nutrition requirements. Rather than eating and digesting vast quantities of low-grade fibrous food as, for example, sheep and cattle do, deer select easily digestible shoots, young leaves, fresh grasses, soft twigs, fruit, fungi, and lichens. The low-fibered food, after minimal fermentation and shredding, passes rapidly through the alimentary canal. The deer require a large amount of minerals such as calcium and phosphate in order to support antler growth, and this further necessitates a nutrient-rich diet. There are some reports of deer engaging in carnivorous activity, such as eating dead alewives along lakeshores[47] or depredating the nests of northern bobwhites.[48]
Nearly all cervids are so-called uniparental species: the young, known in most species as fawns, are only cared for by the mother, most often called a doe. A doe generally has one or two fawns at a time (triplets, while not unknown, are uncommon). Mating season typically begins in later August and lasts until December. Some species mate until early March. The gestation period is anywhere up to ten months for the European roe deer. Most fawns are born with their fur covered with white spots, though in many species they lose these spots by the end of their first winter. In the first twenty minutes of a fawn's life, the fawn begins to take its first steps. Its mother licks it clean until it is almost free of scent, so predators will not find it. Its mother leaves often to graze, and the fawn does not like to be left behind. Sometimes its mother must gently push it down with her foot.[49] The fawn stays hidden in the grass for one week until it is strong enough to walk with its mother. The fawn and its mother stay together for about one year. A male usually leaves and never sees his mother again, but females sometimes come back with their own fawns and form small herds.
In some areas of the UK, deer (especially fallow deer due to their gregarious behaviour) have been implicated as a possible reservoir for transmission of bovine tuberculosis,[50][51] a disease which in the UK in 2005 cost £90 million in attempts to eradicate.[52] In New Zealand, deer are thought to be important as vectors picking up M. bovis in areas where brushtail possums Trichosurus vulpecula are infected, and transferring it to previously uninfected possums when their carcasses are scavenged elsewhere.[53] The white-tailed deer Odocoileus virginianus has been confirmed as the sole maintenance host in the Michigan outbreak of bovine tuberculosis which remains a significant barrier to the US nationwide eradication of the disease in livestock.[54] Moose and deer can carry rabies.[55]
Docile moose may suffer from brain worm, a helminth which drills holes through the brain in its search for a suitable place to lay its eggs. A government biologist states that "They move around looking for the right spot and never really find it." Deer appear to be immune to this parasite; it passes through the digestive system and is excreted in the feces. The parasite is not screened by the moose intestine, and passes into the brain where damage is done that is externally apparent, both in behaviour and in gait.[55]
Deer, elk and moose in North America may suffer from chronic wasting disease, which was identified at a Colorado laboratory in the 1960s and is believed to be a prion disease. Out of an abundance of caution hunters are advised to avoid contact with specified risk material (SRM) such as the brain, spinal column or lymph nodes. Deboning the meat when butchering and sanitizing the knives and other tools used to butcher are amongst other government recommendations.[56]
Deer are believed to have evolved from antlerless, tusked ancestors that resembled modern duikers and diminutive deer in the early Eocene, and gradually developed into the first antlered cervoids (the superfamily of cervids and related extinct families) in the Miocene. Eventually, with the development of antlers, the tusks as well as the upper incisors disappeared. Thus, evolution of deer took nearly 30 million years. Biologist Valerius Geist suggests evolution to have occurred in stages. There are not many prominent fossils to trace this evolution, but only fragments of skeletons and antlers that might be easily confused with false antlers of non-cervid species.[14][57]
The ruminants, ancestors of the Cervidae, are believed to have evolved from Diacodexis, the earliest known artiodactyl (even-toed ungulate), 50–55 Mya in the Eocene.[58] Diacodexis, nearly the size of a rabbit, featured the talus bone characteristic of all modern even-toed ungulates. This ancestor and its relatives occurred throughout North America and Eurasia, but were on the decline by at least 46 Mya.[58][59] Analysis of a nearly complete skeleton of Diacodexis discovered in 1982 gave rise to speculation that this ancestor could be closer to the non-ruminants than the ruminants.[60] Andromeryx is another prominent prehistoric ruminant, but appears to be closer to the tragulids.[61]
The formation of the Himalayas and the Alps brought about significant geographic changes. This was the chief reason behind the extensive diversification of deer-like forms and the emergence of cervids from the Oligocene to the early Pliocene.[62] The latter half of the Oligocene (28–34 Mya) saw the appearance of the European Eumeryx and the North American Leptomeryx. The latter resembled modern-day bovids and cervids in dental morphology (for instance, it had brachyodont molars), while the former was more advanced.[63] Other deer-like forms included the North American Blastomeryx and the European Dremotherium; these sabre-toothed animals are believed to have been the direct ancestors of all modern antlered deer, though they themselves lacked antlers.[64] Another contemporaneous form was the four-horned protoceratid Protoceras, that was replaced by Syndyoceras in the Miocene; these animals were unique in having a horn on the nose.[57] Late Eocene fossils dated approximately 35 million years ago, which were found in North America, show that Syndyoceras had bony skull outgrowths that resembled non-deciduous antlers.[65]
Fossil evidence suggests that the earliest members of the superfamily Cervoidea appeared in Eurasia in the Miocene. Dicrocerus, Euprox and Heteroprox were probably the first antlered cervids.[66] Dicrocerus featured single-forked antlers that were shed regularly.[67] Stephanocemas had more developed and diffuse ("crowned") antlers.[68] Procervulus (Palaeomerycidae) also possessed antlers that were not shed.[69] Contemporary forms such as the merycodontines eventually gave rise to the modern pronghorn.[70]
The Cervinae emerged as the first group of extant cervids around 7–9 Mya, during the late Miocene in central Asia. The tribe Muntiacini made its appearance as † Muntiacus leilaoensis around 7–8 Mya;[71] The early muntjacs varied in size–as small as hares or as large as fallow deer. They had tusks for fighting and antlers for defence.[14] Capreolinae followed soon after; Alceini appeared 6.4–8.4 Mya.[72] Around this period, the Tethys Ocean disappeared to give way to vast stretches of grassland; these provided the deer with abundant protein-rich vegetation that led to the development of ornamental antlers and allowed populations to flourish and colonise areas.[14][62] As antlers had become pronounced, the canines were either lost or became poorly represented (as in elk), probably because diet was no longer browse-dominated and antlers were better display organs. In muntjac and tufted deer, the antlers as well as the canines are small. The tragulids possess long canines to this day.[59]
With the onset of the Pliocene, the global climate became cooler. A fall in the sea-level led to massive glaciation; consequently, grasslands abounded in nutritious forage. Thus a new spurt in deer populations ensued.[14][62] The oldest member of Cervini, † Cervocerus novorossiae, appeared around the transition from Miocene to Pliocene (4.2–6 Mya) in Eurasia;[73] cervine fossils from early Pliocene to as late as the Pleistocene have been excavated in China[74] and the Himalayas.[75] While Cervus and Dama appeared nearly 3 Mya, Axis emerged during the late Pliocene–Pleistocene. The tribes Capreolini and Rangiferini appeared around 4–7 Mya.[72]
Around 5 Mya, the rangiferina † Bretzia and † Eocoileus were the first cervids to reach North America.[72] This implies the Bering Strait could be crossed during the late Miocene–Pliocene; this appears highly probable as the camelids migrated into Asia from North America around the same time.[76] Deer invaded South America in the late Pliocene (2.5–3 Mya) as part of the Great American Interchange, thanks to the recently formed Isthmus of Panama, and emerged successful due to the small number of competing ruminants in the continent.[77]
Large deer with impressive antlers evolved during the early Pleistocene, probably as a result of abundant resources to drive evolution.[14] The early Pleistocene cervid † Eucladoceros was comparable in size to the modern elk.[78] † Megaloceros (Pliocene–Pleistocene) featured the Irish elk (M. giganteus), one of the largest known cervids. The Irish elk reached 2 metres (6+1⁄2 ft) at the shoulder and had heavy antlers that spanned 3.6 metres (11 ft 10 in) from tip to tip.[79] These large animals are thought to have faced extinction due to conflict between sexual selection for large antlers and body and natural selection for a smaller form.[80] Meanwhile, the moose and reindeer radiated into North America from Siberia.[81]
Deer constitute the artiodactyl family Cervidae. This family was first described by German zoologist Georg August Goldfuss in Handbuch der Zoologie (1820). Three subfamilies were recognised: Capreolinae (first described by the English zoologist Joshua Brookes in 1828), Cervinae (described by Goldfuss) and Hydropotinae (first described by French zoologist Édouard Louis Trouessart in 1898).[8][82]
Other attempts at the classification of deer have been based on morphological and genetic differences.[57] The Anglo-Irish naturalist Victor Brooke suggested in 1878 that deer could be bifurcated into two classes on the according to the features of the second and fifth metacarpal bones of their forelimbs: Plesiometacarpalia (most Old World deer) and Telemetacarpalia (most New World deer). He treated the musk deer as a cervid, placing it under Telemetacarpalia. While the telemetacarpal deer showed only those elements located far from the joint, the plesiometacarpal deer retained the elements closer to the joint as well.[83] Differentiation on the basis of diploid number of chromosomes in the late 20th century has been flawed by several inconsistencies.[57]
In 1987, the zoologists Colin Groves and Peter Grubb identified three subfamilies: Cervinae, Hydropotinae and Odocoileinae; they noted that the hydropotines lack antlers, and the other two subfamilies differ in their skeletal morphology.[84] They reverted from this classification in 2000.[85]
Molecular phylogenetic analyses since the latter half of the 2000s all show that hydropotes is a sister taxon of Capreolus, and “Hydropotinae” became outdated subfamily.[86][87][88][89][90]
Until 2003, it was understood that the family Moschidae (musk deer) was sister to Cervidae. Then a phylogenetic study by Alexandre Hassanin (of National Museum of Natural History, France) and colleagues, based on mitochondrial and nuclear analyses, revealed that Moschidae and Bovidae form a clade sister to Cervidae. According to the study, Cervidae diverged from the Bovidae-Moschidae clade 27 to 28 million years ago.[91] The following cladogram is based on the 2003 study.[91]
Ruminantia Tragulina PecoraA 2006 phylogenetic study of the internal relationships in Cervidae by Clément Gilbert and colleagues divided the family into two major clades: Capreolinae (telemetacarpal or New World deer) and Cervinae (plesiometacarpal or Old World deer). Studies in the late 20th century suggested a similar bifurcation in the family. This as well as previous studies support monophyly in Cervinae, while Capreolinae appears paraphyletic. The 2006 study identified two lineages in Cervinae, Cervini (comprising the genera Axis, Cervus, Dama and Rucervus) and Muntiacini (Muntiacus and Elaphodus). Capreolinae featured three lineages, Alceini (Alces species), Capreolini (Capreolus and the subfamily Hydropotinae) and Rangiferini (Blastocerus, Hippocamelus, Mazama, Odocoileus, Pudu and Rangifer species). The following cladogram is based on the 2006 study.[72]
Cervidae Cervinae (Old World deer) Muntiacini CerviniElk (Wapiti)
Capreolinae (New World deer) RangiferiniReindeer (Caribou)
Capreolini AlceiniDeer were an important source of food for early hominids. In China, Homo erectus fed upon the sika deer, while the red deer was hunted in Germany. In the Upper Palaeolithic, the reindeer was the staple food for Cro-Magnon people,[92] while the cave paintings at Lascaux in southwestern France include some 90 images of stags.[93] In China, deer continued to be a main source of food for millennia even after people began farming, and it is possible that sika and other deer benefited from the frequently abandoned field sites.[94]
Deer had a central role in the ancient art, culture and mythology of the Hittites, the ancient Egyptians, the Celts, the ancient Greeks, the Asians and several others. For instance, the Stag Hunt Mosaic of ancient Pella, under the Kingdom of Macedonia (4th century BC), possibly depicts Alexander the Great hunting a deer with Hephaestion.[95] In Japanese Shintoism, the sika deer is believed to be a messenger to the gods. In China, deer are associated with great medicinal significance; deer penis is thought by some in China to have aphrodisiac properties.[96] Spotted deer are believed in China to accompany the god of longevity. Deer was the principal sacrificial animal for the Huichal Indians of Mexico. In medieval Europe, deer appeared in hunting scenes and coats-of-arms. Deer are depicted in many materials by various pre-Hispanic civilizations in the Andes.[92][97]
The common male first name Oscar is taken from the Irish Language, where it is derived from two elements: the first, os, means "deer"; the second element, cara, means "friend". The name is borne by a famous hero of Irish mythology—Oscar, grandson of Fionn Mac Cumhail. The name was popularised in the 18th century by James Macpherson, creator of 'Ossianic poetry'.
Deer have been an integral part of fables and other literary works since the inception of writing. Stags were used as symbols in the latter Sumerian writings. For instance, the boat of Sumerian god Enki is named the Stag of Azbu. There are several mentions of the animal in the Rigveda as well as the Bible. In the Indian epic Ramayana, Sita is lured by a golden deer which Rama tries to catch. In the absence of both Rama and Lakshman, Ravana kidnaps Sita. Many of the allegorical Aesop's fables, such as "The Stag at the Pool", "The One-Eyed Doe" and "The Stag and a Lion", personify deer to give moral lessons. For instance, "The Sick Stag" gives the message that uncaring friends can do more harm than good.[92] The Yaqui deer song accompanies the deer dance which is performed by a pascola [from the Spanish 'pascua', Easter] dancer (also known as a deer dancer). Pascolas would perform at religious and social functions many times of the year, especially during Lent and Easter.[92][98]
In one of Rudolf Erich Raspe's 1785 stories of Baron Munchausen's Narrative of his Marvellous Travels and Campaigns in Russia, the baron encounters a stag while eating cherries and, without ammunition, fires the cherry-pits at the stag with his musket, but it escapes. The next year, the baron encounters a stag with a cherry tree growing from its head; presumably this is the animal he had shot at the previous year. In Christmas lore (such as in the narrative poem "A Visit from St. Nicholas"), reindeer are often depicted pulling the sleigh of Santa Claus.[99] Marjorie Kinnan Rawlings's Pulitzer Prize-winning 1938 novel The Yearling was about a boy's relationship with a baby deer. The fiction book Fire Bringer is about a young fawn who goes on a quest to save the Herla, the deer kind.[100] In the 1942 Walt Disney Pictures film, Bambi is a white-tailed deer, while in Felix Salten's original 1923 book Bambi, a Life in the Woods, he is a roe deer. In C. S. Lewis's 1950 fantasy novel The Lion, the Witch and the Wardrobe the adult Pevensies, now kings and queens of Narnia, chase the White Stag on a hunt, as the Stag is said to grant its captor a wish. The hunt is key in returning the Pevensies to their home in England. In the 1979 book The Animals of Farthing Wood, The Great White Stag is the leader of all the animals.
Deer of various types appear frequently in European heraldry. In the British armory, the term "stag" is typically used to refer to antlered male red deer, while "buck" indicates an antlered male fallow deer. Stags and bucks appear in a number of attitudes, referred to as "lodged" when the deer is lying down, "trippant" when it has one leg raised, "courant" when it is running, "springing" when in the act of leaping, "statant" when it is standing with all hooves on the ground and looking ahead, and "at gaze" when otherwise statant but looking at the viewer. Stags' heads are also frequently used; these are typically portrayed without an attached neck and as facing the viewer, in which case they are termed "caboshed".[101]
Examples of deer in coats of arms can be found in the arms of Hertfordshire, England, and its county town of Hertford; both are examples of canting arms. A deer appears on the arms of the Israeli Postal Authority. Coats of arms featuring deer include those of Dotternhausen, Thierachern, Friolzheim, Bauen, Albstadt, and Dassel in Germany; of the Earls Bathurst in England;[102] of Balakhna, Russia; of Åland, Finland; of Gjemnes, Hitra, Hjartdal, Rendalen and Voss in Norway; of Jelenia Góra, Poland; of Umeå, Sweden; of Queensland, Australia; of Cervera, Catalonia; of Northern Ireland; of Selonia and Semigallia in Latvia; and of Chile.
Other types of deer used in heraldry include the hind, portrayed much like the stag or buck but without antlers, as well as the reindeer and winged stags. Winged stags are used as supporters in the arms of the de Carteret family. The sea-stag, possessing the antlers, head, forelegs and upper body of a stag and the tail of a mermaid, is often found in German heraldry.[101]
Deer have long had economic significance to humans. Deer meat, known as venison, is highly nutritious.[103][104] Due to the inherently wild nature and diet of deer, venison is most often obtained through deer hunting. In the United States, it is produced in small amounts compared to beef, but still represents a significant trade. Deer hunting is a popular activity in the U.S. that can provide the hunter's family with high quality meat and generates revenue for states and the federal government from the sales of licenses, permits and tags. The 2006 survey by the U.S. Fish and Wildlife Service estimates that license sales generate approximately $700 million annually. This revenue generally goes to support conservation efforts in the states where the licenses are purchased. Overall, the U.S. Fish and Wildlife Service estimates that big game hunting for deer and elk generates approximately $11.8 billion annually in hunting-related travel, equipment and related expenditures.[105] Conservation laws prevent the sale of unlicensed wild game meat, although it may be donated.
Deer have often been bred in captivity as ornaments for parks, but only in the case of reindeer has thorough domestication succeeded.[106] By 2012, some 25,000 tons of red deer were raised on farms in North America. The Sami of Scandinavia and the Kola Peninsula of Russia and other nomadic peoples of northern Asia use reindeer for food, clothing, and transport. Others are bred for hunting are selected based on the size of the antlers.[107] The major deer-producing countries are New Zealand, the market leader, with Ireland, Great Britain and Germany. The trade earns over $100 million annually for these countries.[108]
Automobile collisions with deer can impose a significant cost on the economy. In the U.S., about 1.5 million deer-vehicle collisions occur each year, according to the National Highway Traffic Safety Administration. Those accidents cause about 150 human deaths and $1.1 billion in property damage annually.[109] In Scotland, several roads including the A82, the A87 and the A835 have had significant enough problems with deer vehicle collisions (DVCs) that sets of vehicle activated automatic warning signs have been installed along these roads.[110]
The skins make a peculiarly strong, soft leather, known as buckskin. There is nothing special about skins with the fur still on since the hair is brittle and soon falls off. The hooves and antlers are used for ornamental purposes, especially the antlers of the roe deer, which are utilized for making umbrella handles, and for similar purposes; elk antlers is often employed in making knife handles. Among the Inuit, the traditional ulu women's knife was made with an antler or ivory handle.[111] In China, a traditional chinese medicine is made from stag antler, and the antlers of certain species are eaten when "in the velvet".[106] Antlers can also be boiled down to release the protein gelatin, which is used as a topical treatment for skin irritation and is also used in cooking.[112]
Since the early 20th century, deer have become commonly thought of as pests in New Zealand due to a lack of predators on the island causing population numbers to increase and begin encroaching on more populated areas. They compete with livestock for resources, as well as cause excess erosion and wreak havoc on wild plant species and agriculture alike. They can also have an effect on the conservation efforts of other plant and animal species, as they can critically offset the balance within an environment by drastically depleting diversity within forests.[113]
{{cite journal}}
: Cite journal requires |journal=
(help) A deer (PL: deer) or true deer is a hoofed ruminant mammal of the family Cervidae. The two main groups of deer are the Cervinae, including muntjac, elk (wapiti), red deer, and fallow deer; and the Capreolinae, including reindeer (caribou), white-tailed deer, roe deer, and moose. Male deer of all species (except the water deer), as well as female reindeer, grow and shed new antlers each year. In this, they differ from permanently horned antelope, which are part of a different family (Bovidae) within the same order of even-toed ungulates (Artiodactyla).
The musk deer (Moschidae) of Asia and chevrotains (Tragulidae) of tropical African and Asian forests are separate families that are also in the ruminant clade Ruminantia; they are not especially closely related to Cervidae.
Deer appear in art from Paleolithic cave paintings onwards, and they have played a role in mythology, religion, and literature throughout history, as well as in heraldry, such as red deer that appear in the coat of arms of Åland. Their economic importance includes the use of their meat as venison, their skins as soft, strong buckskin, and their antlers as handles for knives. Deer hunting has been a popular activity since the Middle Ages and remains a resource for many families today.