Actinopterygian fossils first appeared in deposits from the late Silurian (425 to 405 Ma) or early Devonian (405 to 345 Ma) period. While there is a need for more research to understand the evolutionary relationships among the earliest actinopterygians, ichthyologists have found that actinopterygians did not begin to dominate the fish fauna until the beginning of the Carboniferous period, 360 million years ago (Ma). The most derived forms (i.e. teleosts) were uncommon until the late Cretaceous (144 to 65 Mz) period. It was at this time that major diversification began and has continued to this day, as actinopterygians dominate the world’s fish fauna.
The earliest actinopterygians are grouped in the subclass Chondrostei, of which only sturgeons , bichirs and paddlefishes survive today. The rest of the actinopterygians, which includes the vast majority of species, are in the subclass Neopterygii, meaning ‘new fins’. Further, the large majority of neopterygians are placed in the group Teleostei (infraclass). The bowfin is the only surviving species of the halecomorphs, the largest group outside of the teleosts and gars (order Lepisosteiformes – also known as Semionotiformes), with seven species, are the only other surviving non-teleosts.
Ray-finned fishes have significant aesthetic, cultural, scientific and transformative value to humans. To many native people, especially in the United States, fish are symbols of cultural tradition and the subject of works of art. Snorkeling, scuba diving, and sport fishing are increasingly popular around the world and, of course, ray-finned fishes have significant scientific and educational value.
Ray-finned fishes perceive the external environment in five major ways – vision, mechanoreception, chemoreception, electroreception and magnetic reception, and to humans several of these sensory systems are entirely alien. Many types of perception are also used by ray-finned fishes to communicate with individuals of the same (conspecifics) or other species (heterospecifics).
Vision is the most important means of communication and foraging for many ray-finned fishes. The eyes of fish are very similar to terrestrial vertebrates so they are able to recognize a broad range of wavelengths. A species’ ability to perceive various wavelengths corresponds to the depth at which it lives since different wavelengths attenuate (become weaker) with depth. In addition to the normal spectrum perceived by most vertebrates, several shallow-water species are able to see ultraviolet light; others, such as anchovies , cyprinids , salmonids and cichlids , can even detect polarized light! Many fishes also have specially modified eyes adapted for sight in light-poor environments and even outside of water (e.g. mudskippers). For example, several families of deepsea fishes (deepsea hatchetfishes , pearleyes , giganturids , barreleyes) have elongate (long and narrow), upward-pointing, tubular eyes that enhance light gathering and binocular vision, providing better depth perception. Also, several deepwater, midwater and a few shallow species actually have internally generated lights around the eyes to find and attract prey and communicate with other species (see below). Light is usually produced in two ways: by special glandular cells embedded in the skin or by harnessing cultures of symbiotic luminous bacteria in special organs.
One way fishes communicate visually is simply through their static color pattern and body form. For instance, juveniles progress through a range of color and shape patterns as they mature, and sexes are often colored differently ( sexual dimorphism). In addition, some fishes are quite good at identifying other species; the Beau Gregory damselfish is apparently able to distinguish 50 different reef fish species that occur within its territory. A second way fishes communicate visually is through dynamic display, which involves color change and rapid, often highly stereotyped movements of the body, fins, operculae, and mouth. Such displays are often associated with changes in behavioral state, such as aggressive interactions, breeding interactions, pursuit and defense. A third form of visual communication is light production, found among numerous fishes in deepsea habitats. Midwater species, such as lanternfishes , hatchetfishes and dragonfishes have rows of lights along the underside of the body, probably for mating and identification as well as foraging. Even some shallow-water species, such as pineconefishes , cardinalfishes and flashlight fish (family Anomalopidae) of the Red Sea utilize internal light sources to form nighttime feeding shoals or for other behavioral interactions.
Mechanoreception includes equilibrium and balance, hearing, tactile sensation, and a ‘distance-touch-sense’ provided by the lateral line (Wheeler, Alwyne 1985:viii). Detecting sound in water can be difficult because waves pass through objects of similar density. Therefore, ray-finned fishes have otoliths, which have greater density than the rest of the fish, in the inner ear attached to sensory hair cells. Since gas bubbles increase sensitivity to sound, many ray-finned fish (e.g. herrings , elephantfishes and squirrelfishes) have modified gas bladders and swimbladders adjacent to the inner ear. Most ray-finned fishes have keen hearing ability and sound production is common but not universal. In groups that do utilize sound for communication, the most common purpose is territorial defense (e.g. damselfishes and European croakers) or prey defense (e.g. herrings , characins , catfishes , cods , squirrelfishes and porcupinefishes). Sound production is also used in mating (for attraction, arousal, approach or coordination) and communication between shoal mates. Stridulation, which involves rubbing together hard surfaces such as teeth (e.g. filefishes) or fins (e.g. sea catfishes), or the vibration of muscles (e.g. drums), is the most common way sound is produced. Often the latter structures have a muscular connection to the swimbladder to amplify sound. Accordingly, the swimbladder itself is the source of the most complex forms of sound production in many groups (e.g. toadfishes , searobins and flying gurnards). The lateral line is composed of a collection of sensory cells beneath the scales and is able to detect turbulence, vibrations and pressure in the water, acting as a close-quarters radar. This sensation is particularly important in the formation of schools (see Behavior) because consistent positioning is essential for turbulence reduction and smooth hydrodynamic functioning. Consequently, individuals are “so sensitive to the movements of companions that thousands of individuals can wheel and turn like a single organism” (Moyle and Cech 2004:206). Experiments have shown that the lateral line sensation can even compensate for loss of sight in some species, such as trout. The fact that several naturally sightless fish occupy caves (e.g. cavefishes) and other subterranean environments, making extensive use of distance-touch sensation, provides further evidence.
Chemoreception involves both smell (olfaction) and taste (gustation), but, as in terrestrial vertebrates , olfaction is much more sensitive and chemically specific than gustation, and each has a specific location and processing center in the brain. Many fishes use chemical cues to find food. Taste buds are scattered widely around the lips, mouth, pharynx, and even the gill arches; and barbels are used for taste reception in many families (most carps , catfishes and cod). However, the use of nares (like nostrils, located on the top of the head) to detect pheromones is probably the most important type of chemoreception in fishes. Pheromones are chemicals secreted by one fish and detected by conspecifics, and sometimes closely related species, producing a specific behavioral response. Pheromones allow fish to recognize specific habitats (such as natal streams in salmon), members of the same species, members of the opposite sex, individuals in a group or hierarchy, young, predators, etc. Some groups in dominance hierarchies even associate the scents of individuals with their particular ranking. Also, groups of closely related species, such as cyprinids , are able to detect ‘fear scents,’ which are pheromones released when the skin is broken (i.e. a predator has attacked), prompting others to adopt some type of predator avoidance behavior.
Some ray-finned fishes, usually inhabiting turbid environments, have specialized organs for electroreception. Several groups can detect weak electrical currents emitted by organs, such as the heart and respiratory muscles, and locate prey buried in sediment (catfish) or in extremely turbid waters (elephantfishes). Elephantfishes and naked-back knifefishes actually produce a constant, weak electrical field around their bodies that functions like radar, allowing them to navigate through their environment, find food, and communicate with mates. In fact, a diverse range of actinopterygian orders have developed the ability to use electricity for communication: Mormyriformes (elephantfishes and Gymnarchidae), Gymnotiformes (six families) , Siluriformes (electric catfishes), and Perciformes (stargazers). The key to electrical communication is not simply the ability to detect electrical fields, but to produce a mild electrical discharge and modify the amplitude, frequency, and pulse length of the signal. This makes electrical signals individually specific, in addition to being sex and species-specific. Consequently, “electrical discharges can have all the functions that visual and auditory signals have in other fishes, including courtship, agonistic behavior and individual recognition” (Moyle and Cech 2004:206). Finally, a few highly migratory ray-finned fishes can apparently detect earth-strength magnetic fields directly, in much the same way sensation occurs with the lateral line. While the specific mechanisms of magnetic reception are unknown, researchers have found magnetite in the heads of some tunas (e.g. yellowfin tuna) and in the nares of some anadromous salmon (subfamily Salmoninae). Presumably, magnetic perception helps fish locate long distance migration routes for both feeding and reproduction.
Clearly ray-finned fishes display considerable complexity in their ability to perceive their environment and communicate with other individuals, yet until recently it was assumed that fish had negligible cognitive ability. Current research, however, indicates that learning and memory are integral parts of fish development and rely on processes very similar to those of terrestrial vertebrates. Experiments have shown, for instance, that individuals can remember the exact location of holes in fishing net years after exposure, and that fish in schools learn faster by following the lead other individuals. Some researcher believe that the cognitive ability of some fishes is even comparable to that of non-human primates.
Communication Channels: visual ; tactile ; acoustic ; chemical ; electric
Other Communication Modes: photic/bioluminescent ; mimicry ; duets ; choruses ; pheromones ; scent marks ; vibrations
Perception Channels: visual ; infrared/heat ; ultraviolet; polarized light ; tactile ; acoustic ; vibrations ; chemical ; electric ; magnetic
The threat to aquatic habitats has grown steadily over the course of the twentieth century and continues today for a variety of reasons, most of which involve human intervention via overexploitation, introduced species, habitat alterations, pollution, and international trade. However, until recently, researchers did not fathom the scope of the problem among marine species because they assumed that broad distributions, the method of reproduction (pelagic dispersal), and the vastness of the marine environment might create a buffer to threats such as overexploitation and ecological decline. Unfortunately, there are worrying signs, such as collapses in many of the world’s fisheries and drastic declines in many large, mobile species (e.g. tunas). Additionally, researchers are finding that some species live quite long and have low reproduction and growth rates, meaning that removal of larger individuals can have significant impacts on populations. Another trade-related threat is excessive removal of exotic reef species using harsh chemicals, such as cyanide, for the aquarium trade.
Freshwater groups, however, account for the vast majority of actual extinctions in ray-finned fishes. The most significant threats are to families with restricted distribution (i.e. endemic) because localized threats can easily eliminate all individuals of a species. Introduced species, such as Nile perch and mosquitofish (genus Gambusia), combined with pollution and habitat alteration have proven particularly disastrous for groups of endemic ray-finned fishes (i.e. cichlids and many cyprinids). At this point, approximately 90 species of ray-finned fishes are known to be extinct or only survive in aquaria, 279 are critically endangered or endangered, and another 506 are listed as vulnerable or near threatened. Families of particular concern (in descending order) are cyprinids , cichlids , silversides , pupfishes , and especially sturgeons and paddlefishes since every member in the latter two families are threatened.
In general, five major developmental periods are recognized in fish: embryonic, larval, juvenile, adult, and senescent. Fish development is known for its confounding terminology, so there are many gray areas within these major categories, and, as with many other animals, many species tend to defy classification into discrete categories. For instance, species in several teleostean families bear live young (viviparous) – Poeciliidae, Scorpaenidae, and Embiotocidae (to name a few), and the young in some families (Salmonidae) seem to emerge as juveniles after hatching (externally) from the egg.
There are two important developmental characteristics that separate fish from most vertebrates: indeterminate growth (growing throughout life) and a larval stage. The fact that most fish (although there are always exceptions) are always growing means they constantly change in terms of anatomy, ecological requirements, and reproduction (i.e. larger size means larger clutches, more mates, better defense, etc. in most species). Increased age is also associated with better survivability, As physiological tolerances and sensitivity improve, familiarity with the local environment accrues, and behavior continues to develop. The larval stage is usually associated with a period of dispersal from the parental habitat. Also, the disappearance of the yolk sac (the beginning of the larval stage according to most researchers) marks a critical period in which most individuals die from starvation or predation.
Recently, researchers of coral reef fishes (mostly of the order Perciformes) have made significant advances concerning the life history of larvae. Nearly all bony coral reef fishes produce pelagic young (meaning they live in the water column for a period of time before settling on reefs), and the length of the stage is highly variable, from only a week in some damselfishes to greater than 64 weeks in some porcupine fishes . Initially, researchers made relatively simplistic assumptions about the pelagic phase, "portray[ing] larvae as little more than passive tracers of water movement that 'go with the flow,' doing nothing much until they bump into a reef by chance and settle at once" (Lies and McCormick 2002:171). Actually, the larvae of most coral reef fishes are endowed with good swimming abilities, good sensory systems, and sophisticated behavior that is quite flexible. And, while mortality rates are quite high at this stage (as with many other actinopterygian larvae), many larvae are able to detect predators at a considerable distance, and they are often transparent (usually larvae) or cryptically colored (many juveniles).
It is important to note that the young of reef fishes develop quite differently from most temperate fishes that have been studied. While the eggs of most temperate fishes hatch from 3 to 20 days after laying, the eggs of most coral reef species hatch within only a day. Also, at any given size, the larvae of reef fishes are more developed than most temperate, non-perciform fish: they have "more complete fins, develop scales at smaller size, [have] seemingly better sensory apparatus at any size, and are morphologically equipped for effective feeding within a few days of hatching" (173). Finally, the settling habitat for reef fishes (coral reefs) tends to be relatively fragmented and, therefore, much more difficult to locate, unlike the habitat of temperate fishes, which tends to have large expanses suitable for settling. This brief glimpse into the pelagic stage of reef fishes reveals the diversity and complexity of development in actinopterygians.
Development - Life Cycle: neotenic/paedomorphic; metamorphosis ; temperature sex determination; indeterminate growth
Actinopterygians, or ‘ray-finned fishes,’ are the largest and most successful group of fishes and make up half of all living vertebrates. While actinopterygians appeared in the fossil record during the Devonian period, between 400-350 million years ago (Ma), it was not until the Carboniferous period (360 Ma) that they had become dominant in freshwaters and started to invade the seas. At present, approximately 42 orders, 431 families, and nearly 24,000 species are recognized within this class but there are bound to be taxonomic revisions as research progresses. Teleosts comprise approximately 23,000 of the 24,000 species within the actinopterygians, and 96 percent of all living fish species (see Systematic/Taxonomic History). The latter estimates, however, will probably never be accurate because actinopterygian species are becoming extinct faster than they can be discovered in some areas, such as the Amazon and Congo Basins. Unfortunately, habitat destruction, pollution and international trade, among other human impacts, have contributed to the endangerment of many actinopterygians (see Conservation Status).
Clearly, given the enormous diversity of this class, entire books could be (and are) written for each of the categories below, so this account does not attempt an exhaustive summary of the diversity of habitats, body forms, behaviors, reproductive habits, etc. of actinopterygians. Instead, each section introduces important ichthyological concepts and terminology, as well as numerous examples from a diverse range of ray-finned fish families. A section of particular interest is Systematic/Taxonomic History because salient features of the evolutionary history of actinopterygians are discussed. The phylogenetic trends within early actinopterygians provide a basis for understanding why this group has been so successful, as more derived forms (i.e. neopterygians and teleosts), which make up nearly all existing ray-finned fishes, have repeated and extended early trends. Many of the sections, such as Physical Description, Reproduction, Behavior and Ecosystem Roles merely scratch the surface, but there are numerous links to family-level ray-finned fish accounts. (‘Fishes’ is used interchangeably with ‘ray-finned fishes’ and 'actinopterygians' from this point forward).
There was no specific information found on negative impacts to humans. However, many fish are poisonous and venomous, and when disturbed, like many other animals, they can inflict serious wounds and death in some cases. This is also true of predatory fishes that are attracted to shiny objects. Humans willingly eat poisonous species considered delicacy, such as pufferfishes. In some cases, people die from consuming poisonous fish. In the great majority of cases, however, fishes have positive or negligible impacts on humans.
Negative Impacts: injures humans (bites or stings, causes disease in humans , poisonous , venomous )
Fishes are obviously of enormous economic import to humans. Primarily, humans consume fish through fishing and aquaculture, and fish are an essential form of protein for millions of people around the world. The farmed salmon industry alone is valued at over 2 billion dollars a year, but unfortunately, aquaculture operations can have serious ecological consequences. Similarly, ray-finned fishes are quite popular in the aquarium trade, and those with high cash value, such as many tropical fishes, are removed in highly damaging (i.e. using poisons) and exploitive ways (see Conservation and Other Comments). Televised sport fishing events are also popular on rivers, lakes, coastal areas and reefs around the world. The fast-growing scuba industry relies heavily on thriving coral reefs with diverse and abundant communities of ray-finned fishes. Finally, of less direct (and severely underappreciated) economic importance are the ecological roles that fishes fill, like controlling insect populations (e.g. many still-water groups like gouramies) and ensuring healthy-functioning aquatic systems, which helps to ensure clean water and reduces the spread of disease.
Positive Impacts: pet trade ; food ; body parts are source of valuable material; ecotourism ; source of medicine or drug ; research and education; produces fertilizer; controls pest population
Ray-finned fishes are essential components of most ecosystems in which they occur. While many ray-finned fishes prey on each other, they can also have significant impacts on nearly all other animals in their habitats. Zooplanktivorous fishes, for instance, select for specific types and sizes of zooplankton when they feed, thus influencing the type and quantity of zooplankton, and, by extension, phytoplankton present in surface waters (zooplankton consume algae; together they are simply termed plankton). When non-native species invade new habitats (usually through human intervention), the fragility of this balance is dramatically illustrated. For instance, when alewives (family Clupeidae) invaded Lake Michigan, they decimated two larger species of zooplankton and dramatically reduced two midsize species, resulting in the increase of ten smaller species and higher algal content. Later, Pacific salmon (genus Oncorhynchus) were introduced into the lake and dramatically reduced alewife populations and the larger zooplankton species recovered. Because the larger species grazed on algae more efficiently, phytoplankton density decreased dramatically and the lake cleared. This is an example of a trophic cascade, and although the ecosystem achieved relative balance in this example, this is not always the case. For instance, the introduction of Nile perch , a voracious predator, into Lake Victoria (Africa) caused a precipitous decline of many small, planktivorous cichlids. These cichlid species exerted considerable predation pressure on zooplankton, and after they were eliminated the zooplankton community changed drastically, to the point that a new and very large cladoceran species appeared in the lake, Daphnia magna. Unfortunately, this introduction resulted in one of the largest mass extinctions of endemic species in modern times, and the repercussions did not stop with the perch introduction. Many local people consumed the smaller cichlid species and hung them in the sun to dry and preserve them. When Nile perch began to impact local cichlid fisheries, locals started to consume Nile perch, but this fish required firewood for drying and preservation because it is much larger. Consequently, deforestation started to occur around Lake Victoria, leading to increased runoff and siltation during rainy periods, and consequently, decreasing water quality. Decreasing water quality further endangered endemic cichlids, resulting in even more extinctions. The latter example illustrates the complexity of ecological interactions and the fact that ecological interactions are not confined to aquatic organisms. Because ray-finned fishes are often important food source to terrestrial organisms (see below), including humans (see Economic Importance and Conservation), changes in ray-finned fish communities can have significant ecological implications.
A variety of terrestrial vertebrates, such as mammals , amphibians , reptiles , and many marine and freshwater birds depend on ray-finned fishes as a primary source of food. Piscivorous ray-finned fishes compete with many of the organisms above and in some cases are involved in symbiotic relationships with them. A simultaneous competitive and commensal (one benefits and the other is unaffected) relationship is found between bluefish and common terns. These two species interact at a critical period of the terns’ feeding cycle, just after mating when there are chicks to feed. At this time, bluefish migrate to feed on anchovies, concentrating and driving them up in the water column, where terns can catch sight of the anchovies (commensalism). However, bluefish reduce anchovies’ populations considerably, and terns that breed after the bluefish migration are usually unsuccessful (competition). There are numerous other examples of symbiosis, mutualism, commensalism and parasitism between ray-finned fishes and other groups. For example, gobies share burrows with several shrimp-like crustaceans (mutualism) or live among sponges and corals (commensalism). Cardinalfishes and pearlfishes live inside large gastropods and mollusks , respectively (inquilism-sheltering inside living invertebrates). Recently, researchers have begun to appreciate the importance of fish in linking terrestrial and aquatic ecosystems. This is especially true of anadromous species, which grow primarily in the sea but return to aquatic areas before they, spreading nutrients from the ocean up and down rivers. During rainy periods in tropical watersheds, ray-finned fish forage in flooded areas, consuming seeds and dispersing them throughout the floodplain.
Several groups of invertebrates (mostly marine), such as cone shells , crabs , anemones , squids and siphonophores (colonies of organisms, e.g. man-o-war), also regularly consume various ray-finned fish. There is even some unlikely predators like dinoflagellates , that can cause large fish kills, known as “red tides”. Some dinoflagellates consume the scales of the dead fish as they sink. Ray-finned fishes also have significant impacts on a variety of plant species. The trophic cascade example (above) illustrated an indirect connection between microscopic plants (phytoplankton) and fish, but fish also excrete soluble nutrients into the water, such as phosphorus. Phosphorus is essential for phytoplankton growth, and fish secretions may provide significant amounts of nutrients in some lakes. A more direct connection is simply the consumption of numerous plant species (see Food Habits). Finally, fish may significantly alter the geological dynamics of their habitats. Many ray-finned fish build nests or burrows (e.g. several minnows , trout and salmon and tilefishes), while others break down substrates, such as dead coral, into sand (e.g. parrotfishes , wrasses , surgeonfishes , triggerfishes and pufferfishes).
Ecosystem Impact: disperses seeds; creates habitat; biodegradation ; keystone species ; parasite
Species Used as Host:
Mutualist Species:
Commensal/Parasitic Species:
Based on feeding habits, researchers broadly classify ray-finned fishes as herbivores, carnivores, omnivores, zooplanktivores and detrivores. There is considerable nuance within each of these categories because many fish are opportunistic feeders – they tend to consume whatever is around, especially when food is scarce. However, primary feeding habits are often associated with body form, mouth type and digestive apparatus, as well as teeth. For instance, gars , pike-characids , pike , needlefish , pike killifish and barracuda represent a diverse range of taxa, yet they all have elongate (long and narrow) bodies, long snouts, and sharp teeth with the fins placed toward the back of the body; this is the design of a fast-start predator, which often lurks motionless in the water column, slightly camouflaged and ready to lunge quickly at unsuspecting prey. These fishes are not made for sustained speed and maneuverability, whereas tunas and billfishes (suborder Scombroidei), with their rounded and highly tapered bodies, are streamlined pelagic chasers capable of very high speeds over long periods. These two fishes are termed ram feeders. Other predators avoid the extra energy expenditure of chasing prey, and instead wait passively, depending largely on good vision, explosive thrust and large mouths capable of forming strong vacuums and effectively inhaling prey (the latter method is termed suction feeding). These sit-in-wait predators are often completely hidden with elaborate camouflage or by burying themselves beneath sediment with only the eyes exposed. Fishes of this type include many scorpionfishes , flatheads , hawkfishes , sea basses , stonefishes , stargazers, flatfishes , frogfishes, and lizardfishes.
Herbivorous fishes posses specialized organs, such as extended guts, pharyngeal mills and gizzards, that allow them to exploit various reef plants and algae. Some of the most successful freshwater families (e.g. minnows , catfishes , cichlids), and most abundant coral reef families (e.g. halfbeaks , parrotfishes , blennies , surgeonfishes , rabbitfishes), include many species of herbivorous fishes. Several groups of herbivorous coral reef species defend territories or form feeding shoals (freshwater cichlids have many of the same behaviors). Some parrotfishes and surgeonfishes utilize shoals to overwhelm the defenses of territorial species, thus gaining access to areas with higher concentrations of plant material.
Zooplanktivores, which feed on small crustaceans like water fleas and copepods floating in the water column (termed zooplankton), abound in oceans throughout the world. Groups such as silversides , herrings and anchovies often congregate in feeding shoals numbering in the millions. Smaller shoals of zooplanktivores, such as rabbitfishes and the juvenile forms of many other reef species, are also found hovering above and around coral reefs. The characteristic features of zooplanktivorous fishes are small size, streamlined and compressed bodies, forked tails, few teeth, and a protrusible mouth that forms a circle when open. When patches of zooplankton are particularly high, many pelagic zooplanktivores keep their mouths agape, and when patches are low they pick animals out individually (the latter are also termed suction feeders).
As discussed in Communication, several groups of ray-finned fishes have quite peculiar methods of capturing prey. Deepsea anglerfishes , among many others in the Stomiiformes and Lophiiformes orders, have developed a luminous bait to attract prey in the deep, dark waters they inhabit. Turbid habitats are home to many fishes that utilize electroreception to find prey, and some predators (e.g. knifefishes and the electric eel) use intense electrical shocks of as much as 350 volts to stun prey before consuming them. Archerfishes exploit a food source that is unavailable to most other fishes: terrestrial insects in overlying vegetation. By shooting jets or bullets of water, and correcting for light refraction, archerfishes knock insects down to the water surface and quickly consume them. Finally, some boxfishes and triggerfishes use an equally novel technique for capturing prey. Both groups expel jets of water from their mouths to uncover buried animals, while triggerfishes use jets and their snouts to flip over and consume otherwise inedible prey, such as spiny sea urchins.
Foraging Behavior: stores or caches food ; filter-feeding
Primary Diet: carnivore (Eats terrestrial vertebrates, Piscivore , Eats eggs, Sanguivore , Eats body fluids, Insectivore , Eats non-insect arthropods, Molluscivore , Scavenger ); herbivore (Frugivore , Granivore ); omnivore ; planktivore ; detritivore
Ray-finned fishes inhabit a variety of extreme environments. These include high altitude lakes and streams, desert springs (e.g. pupfishes), subterranean caves (e.g. cavefishes), ephemeral pools, polar seas, and the depths of the ocean (e.g. deepsea anglerfishes). Across these habitats water temperatures may range from -1.8˚C to nearly 40˚C, pH levels from 4 to 10+, dissolved oxygen levels from zero to saturation, salinities from 0 to 90 parts per million and depths ranging from 0 to 7,000 m (Davenport and Sayer 1993 in Moyle and Cech 2004:1)! Some fish even spend considerable time outside of water: mudskippers prey on the invertebrates of mudflat habitats, while airbreathing catfishes and gouramies live in stagnant, low oxygen ponds (among other habitats) or migrate over land to colonize new areas. Another extreme example of habitat adaptation is found in hillstream loaches , which live in the steep, torrential watercourses of Asiatic hillstreams. Hillstream loaches have flattened bodies and utilize suckers, permanently clinging to rock faces so they are not swept downstream. Lanternfishes , hatchetfishes , dragonfishes , deep-sea codfishes , halosaurs and spiny eels all have lights (flashing or constant), created by luminescent bacteria or special glandular cells, to find prey, communicate with other individuals, or for defense in the blackness of their deepsea habitats (see Communication, Food Habits, and Predation).
Disparate localities may have similar geographic conditions, yet fish species composition varies widely across similar regions. In other words, patterns of fish distribution are not simply related to how well a fish is adapted to a particular type of environment, which is why invasive species can be so devastating (see Conservation). The study of zoogeography attempts to answer questions about how and why fish (and other animal) faunas differ across geographic regions. Zoogeography integrates a variety of disciplines within ichthyology (ecology, physiology, systematics , paleontology, geology and biogeography) to explain patterns of fish distribution. While ichthyologists certainly have incomplete knowledge in many of these areas, advances in plate tectonics and phylogenetic systematics have allowed them to define various zoogeographic (or biogeographic) regions (also subregions) and types.
Fresh water covers only a tiny fraction of the earth’s surface (.0093 percent), yet it is home to approximately 41 percent of all fish species. Most of these are concentrated in the tropics (1,500 different species in the Amazon Basin alone), and Southeast Asia probably has the most diverse assemblage of freshwater species. In marine areas, species concentrations are highest around coral reefs, where butterflyfishes and angelfishes , wrasses , parrotfishes and triggerfishes are common. In the arctic seas five notothenoid families dominate: thornfishes , plunderfishes, Antarctic dragonfishes , and notothens.
Biogeographic Regions: nearctic (Native ); palearctic (Native ); oriental (Introduced , Native ); ethiopian (Introduced , Native ); neotropical (Introduced , Native ); australian (Introduced , Native ); antarctica (Native ); oceanic islands (Introduced , Native ); arctic ocean (Native ); indian ocean (Native ); atlantic ocean (Native ); pacific ocean (Native ); mediterranean sea (Introduced , Native )
Other Geographic Terms: holarctic ; cosmopolitan ; island endemic
Ray-finned fishes inhabit a variety of extreme environments. These include high altitude lakes and streams, desert springs (e.g. pupfishes), subterranean caves (e.g. cavefishes), ephemeral pools, polar seas, and the depths of the ocean (e.g. deepsea anglerfishes). Across these habitats water temperatures may range from -1.8˚C to nearly 40˚C, pH levels from 4 to 10+, dissolved oxygen levels from zero to saturation, salinities from 0 to 90 parts per million and depths ranging from 0 to 7,000 m (Davenport and Sayer 1993 in Moyle and Cech 2004:1)! Some fish even spend considerable time outside of water: mudskippers prey on the invertebrates of mudflat habitats, while airbreathing catfishes and gouramies live in stagnant, low oxygen ponds (among other habitats) or migrate over land to colonize new areas. Another extreme example of habitat adaptation is found in hillstream loaches , which live in the steep, torrential watercourses of Asiatic hillstreams. Hillstream loaches have flattened bodies and utilize suckers, permanently clinging to rock faces so they are not swept downstream. Lanternfishes , hatchetfishes , dragonfishes , deep-sea codfishes , halosaurs and spiny eels all have lights (flashing or constant), created by luminescent bacteria or special glandular cells, to find prey, communicate with other individuals, or for defense in the blackness of their deepsea habitats (see Communication, Food Habits, and Predation).
Researchers have long divided freshwater and saltwater habitats. However, habitat boundaries are often crossed by migratory species, some of which are diadromous – meaning they migrate between fresh water and the sea. Depending on the type of migration, they can be anadromous (migrate up rivers to spawn), with a pattern of freshwater-ocean-freshwater (typical of salmon and lampreys), or catadromous (migrate from freshwater to the sea to spawn), which is characteristic of freshwater eels . In the latter family juveniles, carried to river mouths by ocean currents, migrate upstream and live for up to 10 years before returning to spawning grounds in the ocean and dying shortly after (see Behavior as well).
Fresh water covers only a tiny fraction of the earth’s surface (.0093 percent), yet it is home to approximately 41 percent of all fish species. Most of these are concentrated in the tropics (1,500 different species in the Amazon Basin alone), and Southeast Asia probably has the most diverse assemblage of freshwater species. In marine areas, species concentrations are highest around coral reefs, where butterflyfishes and angelfishes , wrasses , parrotfishes and triggerfishes are common. In the arctic seas five notothenoid families dominate: thornfishes , plunderfishes, Antarctic dragonfishes , and notothens.
Habitat Regions: temperate ; tropical ; polar ; saltwater or marine ; freshwater
Terrestrial Biomes: forest ; rainforest
Aquatic Biomes: pelagic ; benthic ; reef ; lakes and ponds; rivers and streams; temporary pools; coastal ; abyssal ; brackish water
Wetlands: marsh ; swamp ; bog
Other Habitat Features: urban ; suburban ; agricultural ; riparian ; estuarine ; intertidal or littoral
Not surprisingly, the lifespan of ray-finned fishes varies widely. In general, smaller fish have shorter lives and vice versa. For instance, many smaller species live for only a year or less, such as North American minnows in the genus Pimephales, a few galaxiids from Tasmania and New Zealand, Sundaland noodlefishes , a silverside , a stickleback , and a few gobies . However, researchers of coral reef fishes are beginning to find that this correlation does not hold for some families. While many people, especially in the business of fisheries, assumed short lifespans for many fish, researchers are starting to find that many live much longer than previously expected. For example, common species, such as the European perch (aka river perch) and largemouth bass can live 25 and 15 to 24 years respectively. Even more impressive, some sturgeons (which are severely threatened) can live between 80 to 150 years. Several species of rockfish (deepwater rockfish , silvergray rockfish and rougheye rockfish) live from 90 to 140 years! These long lifespans have quickly become a serious issue for some fisheries because populations can be decimated if individuals that naturally accumulate in older age classes are removed (see Conservation).
The truly spectacular array of body forms within this class can only be appreciated by familiarizing oneself with some of the more than 25,000 species of actinopterygians – the largest and most diverse of all vertebrate classes – that exist today. Consider the fact that actinopterygians may fly, walk, or remain immobile (in addition to 'swimming'), exist in virtually all types of habitats except constantly dry land (though some can walk over land), feed on nearly every type of organic matter, utilize several types of sensory systems (including chemoreception, electroreception, magnetic reception and a “distance-touch” sensation – see Communication), and some even produce their own light or electricity. In addition, color diversity in ray-finned fishes is “essentially unlimited, ranging from uniformly dark black or red in many deepsea forms, to silvery in pelagic and water-column fishes, to countershaded in nearshore fishes of most littoral [near-shore] communities, to the strikingly contrasted colors of tropical freshwater and marine fishes” (Helfman et al. 1997:367). Of course, extravagant coloration is not helpful for fish at risk of being eaten, yet bright coloration is environment-specific (see Helfman et al. 1997:367) and bright colors at one depth are cryptic at others due to light attenuation (see Communication). Further, color change is common in brightly colored (as well as many other) fishes and occurs under a variety of circumstances. Pigments are responsible for a many types of color change, but there are also structural colors, resulting from light reflecting off of crystalline molecules housed in special chromatophores (cells located mainly in the outer layer of skin). The silvery sheen displayed by many pelagic fishes is an example of structural color. Numerous actinopterygians are also sexually dimorphic (males and females look different), and body form changes drastically during development, so there is significant diversity within, as well as among, species.
Among the largest actinopterygians are the pirarucu (also known as giant arapaima , up to 2.5m in length) in freshwater and the black marlin (up to 900kg) in saltwater; the longest is the oarfish , Lampris immaculatus, which averages between 5 and 8m in length; and the smallest, a variety of diminutive gobies in saltwater and minnows , catfishes and characins in freshwater. At various points in this account, there is further discussion of physical characteristics as they relate to particular topics (i.e. Systematic/Taxonomic History, Communication, Food Habits and Predation), but for a technical description of actinopterygians, see below. (View an illustration of external fish parts or a fish skeleton).
Actinopterygians may have ganoid, cycloid, or ctenoid scales, or no scales at all in many groups. With the exception of Polypteriformes, the pectoral radials are attached to the scapulo-coracoid, a region of the pectoral girdle skeleton. (The pectoral radials are one of a series of endochondral - growing or developing within cartilage - bones in the pectoral and pelvic girdle on which the fin rays insert). Most have an interopercle and branchiostegal rays and the nostrils are positioned relatively high on the head. Finally, the spiracle (respiratory opening between the eye and the first gill slit – connects with the gill cavity) and gular plate (behind the chin and between the sides of the lower jaw) are usually absent, and internal nostrils are absent.
Other Physical Features: heterothermic ; bilateral symmetry ; polymorphic ; poisonous ; venomous
Sexual Dimorphism: sexes alike; female larger; male larger; sexes colored or patterned differently; female more colorful; male more colorful; sexes shaped differently; ornamentation
Ray-finned fishes generally avoid predators in two ways, through behavioral adaptation and physical structures, such as spines, camouflage and scents. Usually, several behavioral and structural tactics are integrated because it is advantageous for fishes to break the predation cycle (1-4) in as many places as possible, and the earlier the better. For instance, (1) the primary goal of most fish is to avoid detection, or avoid being exposed during certain times of the day. If detected, (2) a fish might try to hide very quickly, blend in with the surroundings, or school; (3) if the fish is about to be attacked then it must try to deflect the attack, and if attack is unavoidable (4) the fish will try to avoid being handled and possibly escape. Therefore, many fishes avoid even the chance of attack through particular cycles of activity, shading (or lighting, see below) and camouflage, mimicking, and warning coloration.
For example, fishes usually avoid dusk because predators often take advantage of quickly changing light conditions that make it difficult for prey to see predators. (Species that feed at dusk are termed crepuscular and include jacks snappers , tarpon , cornetfishes and groupers). Most ray-finned fishes feed during daylight hours (diurnal), when they can see predators. Zooplanktivores, cleaner fishes, and many herbivores are abundant and conspicuous by day but hide within the reef at night. Several wrasses and parrotfishes even secrete a foul-smelling mucous tent or bury themselves in the sediment for protection. Shoaling, which is common among many groups (found in sticklebacks , bluegills , gobies and many others), provides many benefits as a daytime defense. Some predators actually mistake shoals for large fish and avoid attacking. Also, when shoals detect predators they form a tight, polarized group, or school, that is able make synchronous motions. Attacking predators may find it difficult to isolate individuals as the school morphs around them, and some groups (snappers , goatfishes , butterflyfishes , damselfishes , etc.) even mob the predator, nipping and displaying, to thwart an attack.
Because many larger species of zooplankton and other invertebrates come out at night, several groups have developed nighttime feeding patterns (nocturnal) and associated defense mechanisms. Many of these groups, including flashlight fishes , ponyfishes , pineapple fishes and some cardinalfishes , have luminescent organs. While luminescence is likely used for communication (shoaling and mating) and catching prey (via luminescent eyes, which can be turned on and off (!), and baits), several species use luminescence for defense. Rows of lights along the bottom of the body make these fishes indistinguishable to benthic (living at the bottom) predators because they match the intensity of moonlight or dim sunlight shining down. This peculiar method of invisibility is similar to countershading, which is common in several other pelagic ray-finned fishes (as well as sharks and rays). Countershaded fishes are graded in color from dark on top to light on bottom, rendering them invisible from nearly any angle because their coloring is opposite that of downwelling light; the light reflected is equivalent to the background (as above). Two other methods by which pelagic fishes remain invisible are by having a shiny coating (mirror-sided), as in anchovies , minnows , smelts , herrings and silversides ; or by having transparent bodies, like glassfishes , African glass catfishes and Asian glass catfishes.
Benthic ray-finned fishes also utilize numerous methods of camouflage (for both hunting and predator avoidance). A common and elaborate method in tropical seas is mimicking the background of the habitat (protective resemblance), which involves variable color patterns as well as peculiar growths of the skin that may resemble pieces of dead vegetation, corals , and a variety of bottom types (e.g. flatfishes). There are numerous examples of this type of crypticity, from sargassumfishes and leafy seadragons that mimic the seaweed among which they hover, to clingfishes , shrimp fishes and cardinalfishes that have black stripes resembling the sea urchins they use for cover. Another method of camouflage is to look and behave like something inedible, but remain conspicuous. Juvenile sweetlips and batfishes mimic certain types of flatworms and nudibranchs that have toxins in their skin and associated bright coloration, making possible predators wary.
Bold or bright coloration in ray-finned fishes (termed aposematic) usually means that the species posses a structural or chemical defense, such as poisonous spines, or toxic chemicals in the skin and internal organs. Surgeonfishes and lionfishes , for instance, have bold coloration to match scalpel-like and poisonous spines, respectively. Aposematic fishes also advertise their inedibility by moving slowly, instead of darting away when predators are present. However, displays of aggression back up this behavior. When disturbed, weevers erect a dark-colored and highly venomous dorsal spine, while pufferfishes , also poisonous, puff up into a ball of spikes.
Known Predators:
Anti-predator Adaptations: mimic; aposematic ; cryptic
Ray-finned fishes exhibit quite a variety of mating systems. The four major types, along with a few examples, are: monogamy - maintains the same partner for an extended period or spawns repeatedly with one partner (damselfishes , hawkfishes , blennies); polygyny - male has multiple partners over each breeding season (sculpins , sea basses , sunfishes , darters); polyandry - female has multiple partners over each breeding season (anemonefishes); and polygynandry or promiscuity - both males and females have multiple partners during the breeding season (herrings , sticklebacks , wrasses , surgeonfishes). Polygyny is much more common than polyandry, and usually involves territorial males organized into harems (males breed exclusively with a group of females), as in numerous cichlid species and several families of reef fishes (parrotfishes , wrasses and damselfishes , tilefishes , surgeonfishes and triggerfishes).
There are also "alternative mating systems," which include alternative male strategies, hermaphroditism, and unisexuality (Moyle and Cech 2004:161). Alternative male strategies usually occur in species with large males dominating spawning, such as salmon , parrotfishes and wrasses . In this situation, smaller males attempt to 'sneak' fertilize the eggs of females as peak spawning is occurring; the smaller males release gametes simultaneously in the vicinity of the spawning pair. Hermaphroditism in ray-finned fishes involves individuals containing ovarian and testicular tissue (synchronous or simultaneous), as in the black hamlet, as well as individuals that change from one sex to another (sequential). Sequential hermaphrodites most commonly change from being female to male (protogynous), as in parrotfishes , wrasses and groupers . A much smaller number of actinopterygians, such as anemonefishes and some moray eels , change from being male to female (protandrous). Finally, unisexuality (egg development occurring with or without fertilization) can also occur in a variety of forms, and usually involves some male involvement, although at least ones species (Texas silverside) appears to utilize true parthenogenesis – females produce only female offspring with no participation from males. In most cases, however, there is at least some male involvement, either simply to commence fertilization (gynogenesis) or to produce true female hybrids (hybridogenesis).
The mating systems above do not necessarily represent discrete categories and, as with development, the discussion ignores much of the complexity and variety within each system. For instance, one unisexual species, which is actually part of a "species complex" (Mexican mollies), the Amazon molly , uses the sperm from two other bisexual species within the complex (shortfin molly and sailfin molly) to activate development of the eggs; only genetic material from the female lineage is retained (Moyle and Cech, 2004:162; Helfman et. al. 1997:352). This means that the unisexual females are actually parasitizing bisexual males of these other species. Also, many species exhibit a combination of major and alternative mating systems. For instance, hermaphroditism is known among some polygynous wrasses and parrotfishes (among others).
Mating System: monogamous ; polyandrous ; polygynous ; polygynandrous (promiscuous) ; cooperative breeder
Most ray-finned fishes reproduce continually throughout their lifetime (iteroparity), although some (e.g. Pacific salmon and lampreys) spawn only once and die shortly thereafter (semelparity). Fertilization occurs externally in the great majority of species, however in some mouthbrooding species (incubation occurs inside mouth for the purpose of protection, mostly among cichlids), fertilization occurs inside the mouth. In a few families, such as clinids , surfperches , scorpionfishes , liverbearers , eggs are fertilized internally.
During courtship ray-finned fishes exhibit a wide range of complex behaviors, reflecting their evolutionary heritage and the particular environments they inhabit. For instance, pelagic spawners tend to have more elaborate courtship rituals than benthic spawners. Some of the behaviors include sound production, nest building, rapid swimming patterns, the formation of large schools, and many others. In addition, ray-finned fishes frequently change color at specific points in their reproductive cycle, either intensifying or darkening depending on the species, release pheromones, or grow tubercles (tiny bumps of keratin) on the fins, head or body.
One of the more peculiar mating behaviors among actinopterygians is found in deepsea anglerfishes (superfamily Ceratioidea). Many female deepsea anglerfishes are essentially "passively floating food traps"; quite a useful adaptation in the dark, barren waters of the deep sea (Bertelson and Pietsch 1998:140). However, this makes it quite difficult to locate a mate. Finding a female, therefore, is the sole purpose of many males, which are dramatically smaller than females (from 3 to 13 times shorter) and unable to feed as they lack teeth and jaws. With good swimming capabilities and olfactory organs, they are guided to females by pheromones (a unique chemical odor). After finding their mate, males attach themselves to females with hooked denticles, and in some species (Haplophryne mollis) the tissue between the two fuses; the males become permanently attached and receive nourishment from the female while the testes develop.
Key Reproductive Features: semelparous ; iteroparous ; seasonal breeding ; year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); simultaneous hermaphrodite; sequential hermaphrodite (Protandrous , Protogynous ); parthenogenic ; sexual ; asexual ; fertilization (External , Internal ); viviparous ; ovoviviparous ; oviparous
While a surprising number of actinopterygian families exhibit parental care, it is not common, occurring only in approximately 22 percent. Unlike mammals , most parental care is the responsibility of males (11 percent), with 7 percent the sole responsibility of females and the rest carried out by both sexes. Not surprisingly, virtually no pelagic spawners, which release their gametes into the water column, exhibit parental care. However, among the fishes that do exhibit parental care, there is considerable diversity.
Some of the most extensive parental behaviors are found in cichlids. Many cichlids brood the eggs in the mouth and, although rare, the free-swimming young of some species also rush into the parent’s mouth for protection. Quite an elaborate form of parental care is found in spraying characin. At peak spawning, males and females of this species make simultaneous leaps out of the water, touching and briefly adhering to the underside of overlying vegetation (a leaf). Each time, a fertilized egg is stuck to the underside of the leaf, usually a dozen or so. Then, to keep the leaf moistened, the male, correcting for the refraction of the water surface, sprays the eggs at one- to two-minute intervals by splashing with his tail. After keeping this up for two to three days (!), the newly hatched young fall into the water. Several tidal species utilize similar methods to keep eggs from desiccating as the tide goes out. Two such methods include coiling the body around the eggs (pricklebacks and gunnels) and covering the eggs with algae (temperate sculpins and wrasses).
Parental Investment: no parental involvement; precocial ; male parental care ; female parental care
Actinopterygii is 'n klas gewerwelde beenvisse van die superklas Osteichthyes met meer as 27 000 spesies. Actinopterygii is afgelei van die Grieks (aktino = straal & pterygion = vin of vlerkie). Die gemeenskaplike faktor van die klas is dat al die visse straalvinvisse is. Dit beteken dat die vinne deur beenstrale ondersteun word. Dit is die strale wat so seer kan steek indien die visse verkeerd hanteer word. Die klas het ook slegs een dorsale vin - wat verdeel mag wees en die neussakke open slegs na buite.
Actinopterygii word in drie infraklasse ingedeel: chondrostei, holostei en teleostei. Laasgenoemde bevat die meeste lewende visse ter wêreld.
Actinopterygii is 'n klas gewerwelde beenvisse van die superklas Osteichthyes met meer as 27 000 spesies. Actinopterygii is afgelei van die Grieks (aktino = straal & pterygion = vin of vlerkie). Die gemeenskaplike faktor van die klas is dat al die visse straalvinvisse is. Dit beteken dat die vinne deur beenstrale ondersteun word. Dit is die strale wat so seer kan steek indien die visse verkeerd hanteer word. Die klas het ook slegs een dorsale vin - wat verdeel mag wees en die neussakke open slegs na buite.
Actinopterygii word in drie infraklasse ingedeel: chondrostei, holostei en teleostei. Laasgenoemde bevat die meeste lewende visse ter wêreld.
Los actinopterigios (Actinopterygii, del griegu ακτινος aktinοs, «rayu» y πτερυγιον pterygion, «aleta») son una clase de pexes óseos (Osteichthyes*). Son el grupu dominante de los vertebraos, con más de 27.000 especies actuales, y desenvolvieron estratexes adaptatives que-yos dexaron colonizar toa clase d'ambientes acuáticos, tantu Agua de mar marinos como d'agua duce y salobres. Les especies más conocíes de pexes pertenecen a esti grupu: truches, salmones, sardines, lucios, perques, sardines, atunes, cíclidos, pexes planos, carpes, anguiles, etc.
La carauterística principal de los actinopterigios ye la posesión d'un cadarma d'escayos ósees nos sos aletes. Ello ye que'l términu Actinopterygii significa "aletes radiaes". Tienen el craniu cartilaxinosu (en parte calcificado) recubiertu por güesos dérmicos, y un solu par d'abertures branquiacubrir por un opérculu. Tamién se caractericen por presentar escames ganoidees (calter autapomórfico, esto ye, esclusivu del grupu) que presenten ganoína, texíu óseo esponxosu y texíu óseo llaminar. Nos pexes actuales la escama ganoidea amenórgase (leptoidea) presentándose dos tipos: cicloideas y ctenoideas, nes cualos namái presentar texíu óseo llaminar, ensin ganoína nin esponxosu.
La taxonomía ye complexa pa un grupu con tantes especies y diversidá. Na mayoría de les clasificaciones taxonómiques reconociéronse tres subdivisiones de la clase Actinopterygii: Chondrostei, Holostei y Teleostei. Anguaño reagrupáronse en dos, pos los holósteos son un grupu parafilético, polo que tiende a ser abandonada polos sistemes taxonómicos modernos basaos na cladística, que namái almite grupos monofiléticos.
Anguaño acéptense dos subclases dientro de los actinopterigios:
Los actinopterigios arrexuntábense xuntu colos sarcopterigios na clase Osteictios, pero tal agrupación ye parafilética y tiende a ser abandonada.
De siguío inclúyese un llistáu de los grupos hasta'l nivel d'ordes, tabulados de la forma qu'aparenta coincidir cola secuencia evolutiva hasta'l nivel de superorde. La llista ta arrexuntada de FishBase[1] con anotaciones nes diverxencies al respective de Fishes of the World[2] y ITIS-Acinopterygii.[3]
Infraclase Holostei
Infraclase Teleostei
Los actinopterigios (Actinopterygii, del griegu ακτινος aktinοs, «rayu» y πτερυγιον pterygion, «aleta») son una clase de pexes óseos (Osteichthyes*). Son el grupu dominante de los vertebraos, con más de 27.000 especies actuales, y desenvolvieron estratexes adaptatives que-yos dexaron colonizar toa clase d'ambientes acuáticos, tantu Agua de mar marinos como d'agua duce y salobres. Les especies más conocíes de pexes pertenecen a esti grupu: truches, salmones, sardines, lucios, perques, sardines, atunes, cíclidos, pexes planos, carpes, anguiles, etc.
Şüaüzgəcli balıqlar (lat. Actinopterygii) — Sümüklü balıqların yarımsinfi. Müasir balıqlarn 20000-dən çox və ya 95% növü bu yarımsinfə daxildir.
Şüaüzgəclilər (Actinopterygi) - əksəriyyəti müasir dəniz və şirinsu hövzələrində yaşayan müxtəlif gövdə quruluşlu balıqlar yarımsinifi. Şüaüzgəclilər uzun sümük şüalı üzgəcləri olur. Şüaüzgəclilər yarımsinfinə daxil olan balıqların əsas qrupları: paleonisklər (Palaeoniscum), qığırdaqlı və sümüklü qanoidlər və irisümüklülərdir. Ən qədim şüaüzgəclilər şirin sularda yaşamış, paleozoyda meydana gəlmiş, mezozoy və kaynozoy dövrlərində bütün su hövzələrində üstünlük təşkil etmişlər. Qazıntı halında çoxlu nümayəndələri məlumdur.
Şüaüzgəcli balıqlar (lat. Actinopterygii) — Sümüklü balıqların yarımsinfi. Müasir balıqlarn 20000-dən çox və ya 95% növü bu yarımsinfə daxildir.
Şüaüzgəclilər (Actinopterygi) - əksəriyyəti müasir dəniz və şirinsu hövzələrində yaşayan müxtəlif gövdə quruluşlu balıqlar yarımsinifi. Şüaüzgəclilər uzun sümük şüalı üzgəcləri olur. Şüaüzgəclilər yarımsinfinə daxil olan balıqların əsas qrupları: paleonisklər (Palaeoniscum), qığırdaqlı və sümüklü qanoidlər və irisümüklülərdir. Ən qədim şüaüzgəclilər şirin sularda yaşamış, paleozoyda meydana gəlmiş, mezozoy və kaynozoy dövrlərində bütün su hövzələrində üstünlük təşkil etmişlər. Qazıntı halında çoxlu nümayəndələri məlumdur.
Els actinopterigis (Actinopterygii) són el clade dominant dels vertebrats, amb més de 27.000 espècies de peixos, distribuïdes per gairebé tots els ambients aquàtics marins, d'aigua dolça i salabrosos. Han desenvolupat estratègies d'adaptació que els han capacitat per colonitzar tota classe d'ambients aquàtics. Les espècies més conegudes de peixos són actinopterigis; per exemple, ho són la truita, el salmó, la carpa, la tonyina, el rap i la piranya.
La característica principal dels actinopterigis és la possessió d'un esquelet d'espines òssies en les seves aletes. De fet, el terme actinopterygii significa "aletes radiades". Tenen el crani cartilaginós i en part calcificat, recobert per fusos dèrmics, i un sol parell d'obertures branquials cobertes per un opercle. També es caracteritzen per presentar escates ganoides, que estan formades per un estrat ossi amb teixit ossi esponjós i teixit ossi laminar, i un estrat de ganoïdina. En els peixos actuals l'escata ganoide es redueix, i és leptoide, i existeixen dos tipus: Cicloidea i Ctenoidea, que presenten teixit ossi laminar, sense ganoïdina ni teixit esponjós.
La taxonomia és complexa per a un grup amb tantes espècies i diversitat. En la majoria de les classificacions taxonòmiques s'han reconegut tres subdivisions de la classe Actinopterygii:
Actualment s'han reagrupat en dues subdivisions, car els holostis eren un grup parafilètic, i aquests grups tendeixen a ser abandonats pels sistemes taxonòmics moderns basats en evidències filogenètiques.
Actualment s'accepten dues subclasses dins dels actinopterigis:
A continuació s'adjunta la classificació dels actinopterigis fins al nivell de subclasses i superordres; per al llistat ampliat amb els ordres vegeu la classificació dels actinopterigis. S'han ordenat de manera que coincideixi amb la seqüència evolutiva fins al nivell de superordre. La llista està recopilada de Froese i Pauly[1] amb anotacions en les divergències respecte a Nelson[2] i els llistat de la ITIS.[3]
Infraclasse Holostei
Infraclasse Teleostei
Els actinopterigis (Actinopterygii) són el clade dominant dels vertebrats, amb més de 27.000 espècies de peixos, distribuïdes per gairebé tots els ambients aquàtics marins, d'aigua dolça i salabrosos. Han desenvolupat estratègies d'adaptació que els han capacitat per colonitzar tota classe d'ambients aquàtics. Les espècies més conegudes de peixos són actinopterigis; per exemple, ho són la truita, el salmó, la carpa, la tonyina, el rap i la piranya.
Grup de carpes Cyprinus carpioPaprskoploutví (Actinopterygii) je třída prehistorických i moderních kostnatých ryb, která je velice velkou a velice úspěšnou skupinou. Tvoří více než polovinu žijících obratlovců. Vznik paprskoploutvých ryb je datován až do spodního devonu 400 miliónů let; ke konci devonu a počátkem karbonu byli již paprskoploutví vedoucí skupinou obratlovců.
Moderní systematika obvykle paprskoploutvé dělí na tři nadřády: chrupavčití (Chondrostei), mnohokostnatí (Neopterygii) a kostnatí (Teleostei). Třída má přibližně 42 řádů se 430 čeleděmi a více než 23 000 druhů.[1][2] Evoluční systematikové se však domnívají, že paprskoploutví mají pravděpodobně poněkud složitější evoluční historii, než aby byli rozčleněni na pouhé tři nadřády. Tato skupina ryb tvoří 96 % všech ryb. Vlivem vymírání ryb je však možné, že mnoho z paprskoploutvých vyhyne dříve, než budou pro vědu vůbec popsány. Celé dvě pětiny všech paprskoploutvých tvoří sladkovodní druhy.[zdroj?] Do června 2016 bylo popsáno 32 578 platných druhů paprskoploutvých ryb, které jsou aktuálně řazeny ve více než 500 čeledích a 72 řádech.[3]
Charakteristické pro paprskoploutvé ryby je vyztužení ploutví kostěnými paprsky.
Paprskoploutvé ryby obývají mnoho extrémních stanovišť. Mezi ty mohou být zahrnuta vysoko položená horská jezera a toky, pouštní prameny a teplé pouštní říčky (jako rod Cyprinodon), podzemní jeskyně, efemérní tůňky, polární moře a hlubiny oceánů. Výše uvedená stanoviště se nacházejí v rozsahu teplot prostředí od −1,8 °C až do 40 °C, v rozsahu pH od 4 do 10 a více, ve vodách s širokým rozsahem rozpuštěného kyslíku od 0 po plné nasycení, ve vodách se salinitou od 0 po 90 ppm a ve vodách s hloubkou 0 do 7 000 m.
Některé ryby stráví většinu času zcela mimo vodu: ryby z rodu lezců Periophthalmus chytají svou kořist tvořenou drobnými bezobratlými v přílivové zóně, zatímco jiné ryby žijí ve strnulém stavu. Jiné se adaptovaly svým přísavným ústrojím na extrémně rychle proudící vody horských oblastí Asie. Zajímavé jsou i svítící a světélkující ryby žijící v hlubinách oceánů z čeledí lampovníkovití, světlonošovití, moridovití a halosaurovití.
Největším zástupcem této skupiny byla zřejmě obří jurská ryba druhu Leedsichthys problematicus z vyhynulé čeledi Pachycormidae s délkou kolem 16 metrů a hmotností v řádu desítek tun[4].
Paprskoploutvé ryby představují významný zdroj lidské potravy.
Paprskoploutví (Actinopterygii) je třída prehistorických i moderních kostnatých ryb, která je velice velkou a velice úspěšnou skupinou. Tvoří více než polovinu žijících obratlovců. Vznik paprskoploutvých ryb je datován až do spodního devonu 400 miliónů let; ke konci devonu a počátkem karbonu byli již paprskoploutví vedoucí skupinou obratlovců.
De strålefinnede fisk (Actinopterygii) er en underklasse, der hører under hvirveldyrene og gælder for 96 % af alle nulevende fiskearter. Gruppen dækker vidt forskellige fisk, både i farve, form og adfærd. Ål, laks og søheste er bl.a. med i gruppen. Navnet kommer af at alle fiskene har finner, som stråler ud fra skelettet, i modsætning til de kvastfinnede fisk, hvor musklerne sidder ude i finnerne. Tilsammen udgør de overgruppen benfisk sammen med lungefisk og de blå fisk. Som en gruppe spiller de strålefinnede fisk en stor rolle i økosystemerne i både ferskvand og saltvand, både som rovdyr og som byttedyr.[1]
Actinopterygii placeres normalt under hvirveldyr [2], sammen med forældretaksonen Osteichthyes (benfisk) som en overgruppe. I nogle tilfælde listes Osteichthyes ikke som en overgruppe, men som en gruppe, mens Actinopterygii listes som en undergruppe.
Som gruppe er de strålefinnede fisk også vidt forskellige. Størrelsen varierer f.eks. kraftigt, lige fra den mindre undergruppe Paedocypris til den kæmpe klumpfisk. Fællestrækkene er bl.a. parrede finner, som afstives af en række benstråler. Det indre skelet består næsten udelukkende af benvæv og hvirvelsøjlen er helt forbenet.[3]
De strålefinnede fisk er yderst forskellige i form, farve, levested, adfærd m.m. De kan leve næsten alle steder i havet, og nogle af arterne kan også leve uden for vandet i et vist stykke tid, plus dybder ned til 7.000 m. Actinopterygia kan svømme, kravle, svæve og være immobile.[1]
De tidligst kendte fossiler er Andreolepis hedei, som går 420 mio. år tilbage (sent i Silur). Denne mikrovertebrat er blevet fundet i Rusland, Sverige og Estland.[4] Selv om Actinopterygia også eksisterede i Devon, var de ikke dominerende i ferskvand indtil i Karbon, da de begyndte at invadere havene.[1]
I følge Tree of Live web project: Teleostei og Lars Skipper: alverdens fisk er der følgende gruppering:
De strålefinnede fisk (Actinopterygii) er en underklasse, der hører under hvirveldyrene og gælder for 96 % af alle nulevende fiskearter. Gruppen dækker vidt forskellige fisk, både i farve, form og adfærd. Ål, laks og søheste er bl.a. med i gruppen. Navnet kommer af at alle fiskene har finner, som stråler ud fra skelettet, i modsætning til de kvastfinnede fisk, hvor musklerne sidder ude i finnerne. Tilsammen udgør de overgruppen benfisk sammen med lungefisk og de blå fisk. Som en gruppe spiller de strålefinnede fisk en stor rolle i økosystemerne i både ferskvand og saltvand, både som rovdyr og som byttedyr.
Die Strahlenflosser (Actinopterygii) sind eine Klasse der Knochenfische (Osteichthyes).
Bis auf die Fleischflosser (Sarcopterygii) gehören alle Knochenfische zu diesem Taxon, das sind insgesamt annähernd die Hälfte aller Wirbeltierarten.[1]
Die Strahlenflosser sind heute weltweit verbreitet und besiedeln alle aquatischen Habitate von der Tiefsee (bis etwa −8.400 Meter)[2] bis ins Hochgebirge (bis etwa 4.500 Meter) und von Thermalquellen (+43 °C) bis zu den Polarmeeren (−1,8 °C). Sie sind in morphologischer, ökologischer und verhaltensbiologischer Hinsicht sehr variabel.[1]
Der wissenschaftliche Name „Actinopterygii“ ist zusammengesetzt aus den altgriechischen Wörtern ἀκτίς (aktís, ‚Strahl‘) und πτερύγιον (pterýgion, ‚Flügel‘ bzw. ‚Flosse‘), entspricht also dem deutschen Trivialnamen „Strahlenflosser“. Er bezieht sich auf die typische Anatomie der Flossen (siehe unten).
Eines der charakteristischsten Merkmale der Strahlenflosser und namensgebend für das Taxon ist die Ausbildung der paarigen Flossen (Brust- und Bauchflossen) in Form sogenannter Strahlenflossen (Actinopterygia, Sg. Actinopterygium). Die Schwestergruppe der Strahlenflosser, die Fleischflosser (Sarcopterygii), besitzen hingegen sogenannte Fleischflossen (Sarcopterygia, Sg. Sarcopterygium). Der überwiegende Teil dieser Strahlenflossen besteht aus den knöchernen Flossenstrahlen (Radii, Sg. Radius) und der Schwimmhaut (Patagium), die von den Radien aufgespannt wird. Die relativ langen Radien sitzen auf einem vergleichsweise kurzen Flossenbasisskelett, wobei proximale (rumpfnahe) Basalia von distalen (rumpffernen), stabförmigen Radialia unterschieden werden. Bei fast allen heute lebenden Strahlenflosser-Taxa fehlen jedoch die Basalia. Die Muskeln für die Flossenbewegung sitzen bei allen Knochenfischen nur am Flossenbasisskelett an. Entsprechend ist die gesamte Flossenbasis, d. h. Flossenbasisskelett nebst Muskeln, bei Strahlenflossern eher unscheinbar. Bei den Fleischflossern ist die Flossenbasis, teilweise auch der unpaaren Flossen, im Vergleich zu den Flossenstrahlen wesentlich länger und kräftiger ausgebildet,[3] sodass ein relativ großer Teil der Flosse beim lebenden Tier „fleischig“ ist.
Die Zahnkronen der Actinopterygier zeichnen sich neben dem Überzug aus normalem Zahnschmelz (Ganoin) durch eine zusätzliche kleine Kappe oder „Warze“ aus Acrodin, einer sehr harten, transparenten, schmelzartigen Substanz, an der Spitze der Krone (Apex) aus.
Die vordere der beiden Rückenflossen im Grundbauplan der Knochenfische fehlt: Diese primär einzelne Rückenflosse der Strahlenflosser kann aber sekundär in mehrere Flossen geteilt sein.
Die Schuppen sind durch ein Hakensystem gelenkig miteinander verbunden. Sie sind ursprünglich stark mineralisiert, d. h. mit einer Schicht aus Ganoin überzogen (Ganoidschuppe).[1] Dieser Zustand ist bei fossilen Strahlenflossern des Paläozoikums und Mesozoikums weit verbreitet, findet sich heute aber nur noch bei Stören (Acipenseridae) und Knochenhechten (Lepisosteidae). Der mit Abstand häufigste Schuppentyp bei den heute lebenden Strahlenflossern ist jedoch die Elasmoidschuppe. Bei dieser ist das Ganoin bis auf mikroskopische Reste reduziert.
Entgegen der Ansicht von den „stummen Fischen“ ist die Erzeugung von Tönen und die zwischenartliche Kommunikation mittels Lauten unter den Strahlenflosser weit verbreitet. Dies wurde bisher bei 172 der 470 Familien der Strahlenflosser nachgewiesen.[4]
Die Lophosteiformes und Naxilepis, bruchstückhafte Funde aus dem späten Silur (etwa 420 mya) von Europa und Sibirien bzw. China, galten einst als die ältesten fossilen Überreste von Strahlenflossern. Mittlerweile stuft man diese Vertreter jedoch als basale Knochenfische ein.[5][6] Meemannia, ursprünglich als primitiver Fleischflosser eingeordnet, zeigt einen strahlenflosserartigen Schädel und ist etwa 415 Millionen Jahre alt (Unterdevon).[7] Die ältesten Skelettfunde, die man sicher Strahlenflossern zuordnen kann, stammen aus dem Mitteldevon (etwa 380 mya) von Europa und Kanada (Cheirolepis). Weitere europäische Skelettfunde aus dieser Zeit sind Stegotrachelus, Moythomasia und Orvikuina.[1]
Zu den Strahelnflossern (Actinopterygii) gehören die folgenden natürlichen Gruppen:
Mit über 30.000 Arten sind die Teleostei die mit Abstand artenreichste Fischgruppe (96 %).[8] Ihre Diversität macht etwa 50 % der der Artenvielfalt aller heute lebenden Wirbeltiere aus. Insgesamt 15.150 Arten sind Süßwasserfische, 14.740 Arten kommen im Meer vor und 720 Arten sind in beiden Biotopen und im Brackwasser beheimatet.[9]
Das nachfolgende Kladogramm gibt eine Übersicht über die verwandtschaftlichen Beziehungen der verschiedenen Kladen von rezenten Strahlenflossern untereinander, sowie zwischen den Strahlenflossern und anderen rezenten Gruppen von Fischen und den Tetrapoden (Vierfüßer):
Wirbeltiere KiefermäulerSauropsiden (Reptilien, Vögel)
Amphibien (Lurche)
Polypteriformes (Flösselhechte, Flösselaal)
Acipenseriformes (Störe, Löffelstöre)
Lepisosteiformes (Knochenhechte)
Teleostei (Echte Knochenfische)
Knorpelfische (Haie, Rochen, Seekatzen)
Kieferlose Fische (Schleimaale, Neunaugen)
Im Folgenden wird die Systematik nach dem Standardwerk Fishes of the World dargestellt († = ausgestorben):[10]
Strahlenflosser (Actinopterygii)
Die Strahlenflosser (Actinopterygii) sind eine Klasse der Knochenfische (Osteichthyes).
Bis auf die Fleischflosser (Sarcopterygii) gehören alle Knochenfische zu diesem Taxon, das sind insgesamt annähernd die Hälfte aller Wirbeltierarten.
Die Strahlenflosser sind heute weltweit verbreitet und besiedeln alle aquatischen Habitate von der Tiefsee (bis etwa −8.400 Meter) bis ins Hochgebirge (bis etwa 4.500 Meter) und von Thermalquellen (+43 °C) bis zu den Polarmeeren (−1,8 °C). Sie sind in morphologischer, ökologischer und verhaltensbiologischer Hinsicht sehr variabel.
Actinopterygii è na classi di pisci e rapprisèntanu lu gruppu cchiù granni dî virtibrati, cumprinnennu cchiù di 27.000 speci di pisici chi s'attròvanu ntra l'acqui duci e marini. La sò carattirìstica principali, suggiruta dû sò nomu, è di pussèdiri pinni sustinuti di raji.
The Actinopterygii /ˌæktᵻnˌɒptəˈrɪdʒi.aɪ/, or ray-finned fishes, constitute a class or subclass o the bony fishes.
The ray-finned fishes are so cried acause thay possess lepidotrichia or "fin rays", thair fins being webs o skin supportit bi bony or horny spines ("rays"), as opponed tae the fleshy, lobed fins that characterize the class Sarcopterygii which an aa, however, possess lepidotrichia. These actinopterygian fin rays attach directly tae the proximal or basal skeletal elements, the radials, which represent the link or connection atween these fins an the internal skelet (e.g., pelvic an pectoral girdles).
In terms o nummers, actinopterygians are the dominant class o vertebrates, comprisin nearly 99% o the ower 30,000 species o fish (Davis, Brian 2010). Thay are ubiquitous throughoot freshwatter an marine environments frae the deep sea tae the heichest muntain streams. Extant species can range in size frae Paedocypris, at 8 mm (0.3 in), tae the massive ocean sunfish, at 2,300 kg (5,070 lb), an the lang-bodied oarfish, at 11 m (36 ft).
Actinopterygii es un superclasse de Osteichthyes.
Los actinopterigians son los peisses de nadarèlas raionadas. Son lo grop dominant amb 27 000 espècias pertot dins las aigas doças e los environaments marins. Son tradicionalament tractats coma una sosclassa dels osteictians, o peis ossós, mas coma lo grop es parafiletic pòdon èstre tractats coma una classa biologica completa.
Ang Actinopterygii ( maglaro / ˌ æ k t ɨ sa n ɒ p t ə r ɪ dʒ i. aɪ / ), o ray-may palikpik na isda, may isang klase o sub-class ng payat na payat isda.
Ang mga ray-may palikpik isda ay kaya tinatawag na dahil sila ay nagtataglay lepidotrichia o "palikpik ray", ang kanilang mga palikpik pagiging webs ng balat na suportado ng matinik o masungay spines ("ray"), bilang laban sa mataba, lobed palikpik na magpakilala sa klase Sarcopterygii na rin, gayunpaman, nagtataglay lepidotrichia. Maglakip ng direkta ang mga actinopterygian palikpik ray sa proximal o saligan ng kalansay elemento, ang mga radials, na kumakatawan sa link o koneksiyon sa pagitan ng mga palikpik at ang panloob na balangkas (halimbawa, pelvic at pektoral girdles).
Sa mga tuntunin ng mga numero, mga actinopterygians ang nangingibabaw na klase ng mga vertebrates, na binubuo ng halos 96% ng 25,000 species ng mga isda (Davis, Brian 2010). Sila ay nasa lahat ng pook sa buong sariwang tubig at kapaligiran ng marine mula sa deep sea sa pinakamataas na bundok stream. Maaaring saklaw ng mga nabubuhay pa na species sa laki mula sa Paedocypris, sa 8 millimeters (0.31 in), ang napakalaking Ocean Sunfish, sa 2300 kilo (£ 5100), at ang pang-bodied Oarfish, sa hindi bababa sa 11 metro (36 piye).
The Actinopterygii /ˌæktᵻnˌɒptəˈrɪdʒi.aɪ/, or ray-finned fishes, constitute a class or subclass o the bony fishes.
The ray-finned fishes are so cried acause thay possess lepidotrichia or "fin rays", thair fins being webs o skin supportit bi bony or horny spines ("rays"), as opponed tae the fleshy, lobed fins that characterize the class Sarcopterygii which an aa, however, possess lepidotrichia. These actinopterygian fin rays attach directly tae the proximal or basal skeletal elements, the radials, which represent the link or connection atween these fins an the internal skelet (e.g., pelvic an pectoral girdles).
In terms o nummers, actinopterygians are the dominant class o vertebrates, comprisin nearly 99% o the ower 30,000 species o fish (Davis, Brian 2010). Thay are ubiquitous throughoot freshwatter an marine environments frae the deep sea tae the heichest muntain streams. Extant species can range in size frae Paedocypris, at 8 mm (0.3 in), tae the massive ocean sunfish, at 2,300 kg (5,070 lb), an the lang-bodied oarfish, at 11 m (36 ft).
Los actinopterigians son los peisses de nadarèlas raionadas. Son lo grop dominant amb 27 000 espècias pertot dins las aigas doças e los environaments marins. Son tradicionalament tractats coma una sosclassa dels osteictians, o peis ossós, mas coma lo grop es parafiletic pòdon èstre tractats coma una classa biologica completa.
Classificacion classica Chondrostei Polypteriformes Acipenseriformes Semionotiformes Amiiformes Teleostei Osteoglossomorpha Osteoglossiformes Hiodontiformes Elopomorpha Elopiformes Albuliformes Notacanthiformes Anguilliformes Saccopharyngiformes Clupeomorpha Clupeiformes Ostariophysi Gonorynchiformes Cypriniformes Characiformes Gymnotiformes Siluriformes Protacanthopterygii Salmoniformes Esociformes Osmeriformes Sternopterygii Ateleopodiformes Stomiiformes Cyclosquamata Aulopiformes Scopelomorpha Myctophiformes Lampridiomorpha Lampridiformes Polymyxiomorpha Polymixiiformes Paracanthopterygii Percopsiformes Batrachoidiformes Lophiiformes Gadiformes Ophidiiformes Acanthopterygii Mugiliformes Atheriniformes Beloniformes Cyprinodontiformes Stephanoberyciformes Beryciformes Zeiformes Gasterosteiformes Synbranchiformes Tetraodontiformes Pleuronectiformes Scorpaeniformes PerciformesActinopterygii è na classi di pisci e rapprisèntanu lu gruppu cchiù granni dî virtibrati, cumprinnennu cchiù di 27.000 speci di pisici chi s'attròvanu ntra l'acqui duci e marini. La sò carattirìstica principali, suggiruta dû sò nomu, è di pussèdiri pinni sustinuti di raji.
Ko e ngaahi ika kaponga tala (actinopterygii) ko e pupunga mahuʻinga taha ia ʻo e ngaahi ika. Ko e konga ʻe taha ʻo e ngaahi ika huihui ʻoku toe, ko e ngaahi ika kaponga uoua ia.
Ko e ngaahi ika ʻe niʻihi ʻoku kau ki ai:
Masiyên perikên strîdar (Actinopterygii) çîneke masiyan e. Nêzîkî 30.000 cure dikevin vê çînê.
Masiyên perikên strîdar (Actinopterygii) çîneke masiyan e. Nêzîkî 30.000 cure dikevin vê çînê.
D Strahleflosser (Actinopterygii) si e Klass vo de Chnochefisch (Osteichthyes).
Bis uf d Fleischflosser (Sarcopterygii) und Chnorpelfisch (Chondrichthyes) ghöre alli rezänte (d. h. sonigi wo hüt läbe) Fisch zu däm Taxon, das si im Ganze fast d Helfti vo alle Wirbeldierarte.[1]
D Strahleflosser si hüt wältwit verbreitet und besiidle alli aquatische Habitat vo dr Diefsee (öbbe 11000 Meter) bis ins Hochgebirg (bis öbbe 4500 Meter) und vo Thermalquellene (+ 43 °C) bis zu de Polarmeer (− 1,8 °C). Si si in morphologischer, ökologischer und verhaltensbiologischer Hiisicht sehr variabel.[1]
D Strahleflosser (Actinopterygii) si e Klass vo de Chnochefisch (Osteichthyes).
Bis uf d Fleischflosser (Sarcopterygii) und Chnorpelfisch (Chondrichthyes) ghöre alli rezänte (d. h. sonigi wo hüt läbe) Fisch zu däm Taxon, das si im Ganze fast d Helfti vo alle Wirbeldierarte.
D Strahleflosser si hüt wältwit verbreitet und besiidle alli aquatische Habitat vo dr Diefsee (öbbe 11000 Meter) bis ins Hochgebirg (bis öbbe 4500 Meter) und vo Thermalquellene (+ 43 °C) bis zu de Polarmeer (− 1,8 °C). Si si in morphologischer, ökologischer und verhaltensbiologischer Hiisicht sehr variabel.
Stroalvinnign (Actinopterygii) zyn visn die azo genoemd wordn omdan z' e sôorte stroaln èn zitn in under vinn. Da zyn bêen- of hôornachtige structeurn die 't vel oendersteunn. De stroalvinnign zyn in antal de dominante klasse van de gewerveldn, mè weireldwyd bykan 30.000 sôortn. Ze leevn zowel in zout of in zoet woater, van de diepzêe toet in de bergbeekn.
De stroalvinnign worden oenderverdêeld in de volgnde ordes:
A miast bianfasker san strualflikerten (Actinopterygii). Bütj detdiar klas mä amanbi 30.000 slacher jaft at bluas noch ian ööder klas faan a bianfasker, det san a flääskflikerten (Sarcopterygii) mä 8 slacher.
Acipenseriformes, Albuliformes, Amiiformes, Anguilliformes, Ateleopodiformes, Atheriniformes, Aulopiformes, Batrachoidiformes, Beloniformes, Beryciformes, Cetomimiformes, Characiformes, Clupeiformes, Cypriniformes, Cyprinodontiformes, Elopiformes, Esociformes, Gadiformes, Gasterosteiformes, Gobiesociformes, Gonorhynchiformes, Gymnotiformes, Lampriformes, Lepisosteiformes, Lophiiformes, Mugiliformes, Myctophiformes, Notacanthiformes, Ophidiiformes, Osmeriformes, Osteoglossiformes, Perciformes, Percopsiformes, Pleuronectiformes, Polymixiiformes, Polypteriformes, Saccopharyngiformes, Salmoniformes, Scorpaeniformes, Siluriformes, Stephanoberyciformes, Stomiiformes, Synbranchiformes, Syngnathiformes, Tetraodontiformes, Zeiformes
A miast bianfasker san strualflikerten (Actinopterygii). Bütj detdiar klas mä amanbi 30.000 slacher jaft at bluas noch ian ööder klas faan a bianfasker, det san a flääskflikerten (Sarcopterygii) mä 8 slacher.
Wach'i wayt'ana (Actinopterygii) nisqakunaqa wach'i hina tulluyuq wayt'anayuq tullu challwakunam.
Wach'i wayt'ana (Actinopterygii) nisqakunaqa wach'i hina tulluyuq wayt'anayuq tullu challwakunam.
Зракоперките (науч. Actinopterygii) се група на коскени риби кои се познати и под името актинопи. Оваа група содржи околу половина од сите ‘рбетници и околу 96% од сите живи риби. Денешните зракоперкови риби се карактеризираат со присуството на зрачно распоредени ковчиња во перките (оттука и името), потоа единечна грбна перка, затворен сензорен канал во дентарната коска, посебно ткиво наречено ганоин и неколку други анатомски својства. Околу 40% од живите зракоперкови риби живеат исклучително во слатките води. Другите населуваат најмногу морски, соленикави или комбинирани живеалишта.
Фосилните податоци укажуваат на тоа дека зракоперковите риби се речиси стари како и доцниот силур (пред околу 420 милиони години). Фосилните зракоперкови риби се доста распространети, со што претставуваат најмногубројни фосили на ‘рбетници со целосен скелет. Многу помали групи на раните зракоперкови риби, како пикнодонтите, семионотиформите и палеонисциформите, се изумрени веќе десетици милиони години. Други зракоперкови групи, како Cheirolepiformes, се изумрени веќе речиси илјадници милиони години. Врз основа на фосилните податоци, најглавната диференцијација на оваа класа започнала во доцниот мезозоик.
Систематиката на зракоперковите риби (како и секоја друга систематика) е во постојан флукс. Меѓутоа, зракоперковите се класифицираат на следниот начин:
Зракоперките (науч. Actinopterygii) се група на коскени риби кои се познати и под името актинопи. Оваа група содржи околу половина од сите ‘рбетници и околу 96% од сите живи риби. Денешните зракоперкови риби се карактеризираат со присуството на зрачно распоредени ковчиња во перките (оттука и името), потоа единечна грбна перка, затворен сензорен канал во дентарната коска, посебно ткиво наречено ганоин и неколку други анатомски својства. Околу 40% од живите зракоперкови риби живеат исклучително во слатките води. Другите населуваат најмногу морски, соленикави или комбинирани живеалишта.
Фосилните податоци укажуваат на тоа дека зракоперковите риби се речиси стари како и доцниот силур (пред околу 420 милиони години). Фосилните зракоперкови риби се доста распространети, со што претставуваат најмногубројни фосили на ‘рбетници со целосен скелет. Многу помали групи на раните зракоперкови риби, како пикнодонтите, семионотиформите и палеонисциформите, се изумрени веќе десетици милиони години. Други зракоперкови групи, како Cheirolepiformes, се изумрени веќе речиси илјадници милиони години. Врз основа на фосилните податоци, најглавната диференцијација на оваа класа започнала во доцниот мезозоик.
Чачылаканаттар — (лат. Actinopterygii) балыктардын бир классчасы.
ऐक्टिनोप्टरिजियाए (Actinopterygii) या किरण-फ़िन मछलियाँ (ray-finned fishes) वह हड्डीदार मछलियाँ होती हैं जिनके फ़िन (पर) का ढांचा उनके धड़ से किरणों की तरह निकलती कई हड्डियों से बना होता है जिसके ऊपर मांस और त्वचा लगी होती है। इनके विपरीत हड्डीदार मछलियों की दूसरी मुख्य श्रेणी है, जिसे सार्कोप्टरिजियाए (Sarcopterygii) या लोब-फ़िन मछलियाँ (lobe-finned fishes) कहते हैं, जिनमें फ़िन केवल एक मुख्य हड्डी से उनके धड़ से जुड़े होते है और उस हड्डी के इर्द-गिर्द फ़िन एक लोब (पालि) की तरह बना होता है।[1]
ऐक्टिनोप्टरिजियाए (Actinopterygii) या किरण-फ़िन मछलियाँ (ray-finned fishes) वह हड्डीदार मछलियाँ होती हैं जिनके फ़िन (पर) का ढांचा उनके धड़ से किरणों की तरह निकलती कई हड्डियों से बना होता है जिसके ऊपर मांस और त्वचा लगी होती है। इनके विपरीत हड्डीदार मछलियों की दूसरी मुख्य श्रेणी है, जिसे सार्कोप्टरिजियाए (Sarcopterygii) या लोब-फ़िन मछलियाँ (lobe-finned fishes) कहते हैं, जिनमें फ़िन केवल एक मुख्य हड्डी से उनके धड़ से जुड़े होते है और उस हड्डी के इर्द-गिर्द फ़िन एक लोब (पालि) की तरह बना होता है।
அக்டினோட்டெரிகீயை (Actinopterygii), என்பது நடுமுள் துடுப்புள்ள மீன்களைக் குறிக்கும். இம் முதுகுநாணி மீன்களின்(Osteichthyes)[1][2] ஒரு வகுப்பு ஆகும். எண்ணிக்கையைப் பொறுத்தவரை அக்டினோட்டெரிகீ வகுப்பு முதுகுநாணிகளுள் முக்கியமான ஒரு வகுப்பு ஆகும். 30,000க்கு மேற்பட்ட மீன் இனங்களுள் ஏறத்தாழ 99% இனங்கள் அக்டினோட்டெரிகீயை வகுப்புக்குள் அடங்குகின்றன.[3] இவ் வகுப்பைச் சேர்ந்த மீனினங்கள், நன்னீரிலும், கடல் சூழல்களிலும், ஆழமான கடல் பகுதிகளில் இருந்து மலையுச்சிச் சிற்றாறுகள் வரை எங்கும் பரவிக் காணப்படுகின்றன. அளவைப் பொறுத்தவரை, 8 மில்லிமீட்டரே நீளம் கொண்ட பீடொசிப்பிரிசு இனத்திலிருந்து, 2300 கிலோ கிராம் நிறை கொண்ட பெருங்கடல் சூரியமீன் (Ocean Sunfish), 11 மீட்டர் நீளம் கொண்ட ஓர்மீன் (Oarfish) வரையில் பல்வேறு வகையான இவ்வகுப்பில் உள்ளன.
அக்டினோட்டெரிகீயை (Actinopterygii), என்பது நடுமுள் துடுப்புள்ள மீன்களைக் குறிக்கும். இம் முதுகுநாணி மீன்களின்(Osteichthyes) ஒரு வகுப்பு ஆகும். எண்ணிக்கையைப் பொறுத்தவரை அக்டினோட்டெரிகீ வகுப்பு முதுகுநாணிகளுள் முக்கியமான ஒரு வகுப்பு ஆகும். 30,000க்கு மேற்பட்ட மீன் இனங்களுள் ஏறத்தாழ 99% இனங்கள் அக்டினோட்டெரிகீயை வகுப்புக்குள் அடங்குகின்றன. இவ் வகுப்பைச் சேர்ந்த மீனினங்கள், நன்னீரிலும், கடல் சூழல்களிலும், ஆழமான கடல் பகுதிகளில் இருந்து மலையுச்சிச் சிற்றாறுகள் வரை எங்கும் பரவிக் காணப்படுகின்றன. அளவைப் பொறுத்தவரை, 8 மில்லிமீட்டரே நீளம் கொண்ட பீடொசிப்பிரிசு இனத்திலிருந்து, 2300 கிலோ கிராம் நிறை கொண்ட பெருங்கடல் சூரியமீன் (Ocean Sunfish), 11 மீட்டர் நீளம் கொண்ட ஓர்மீன் (Oarfish) வரையில் பல்வேறு வகையான இவ்வகுப்பில் உள்ளன.
Taxonavigaçion
Actinopterygii
Maseyê roştperrıkıni (be Lat.: Actinopterygii), maseyê ke awe miyan de û şewe de bereqiyenê, namey inano.
De straelvinnigen zien de hroste klasse binn'n de beênvisachtegen. De naem straelvinnigen kom di vandaen dan deze vissen straelen in der vinnen ène. Dit zien beên- of oôrnachtege structuren die an de vinnen in den uud ondersteun'n. Ierbie verschill'n ze van de kwastvinnigen, die an vleêsachtege vinnen ène. De straelvinnigen komm'n overal in zoet en zeêwaeter voe, en zien bie bieni 30.000 soôrten veruut de hroste klasse van de hewurvelden.
De straelvinnigen zien de hroste klasse binn'n de beênvisachtegen. De naem straelvinnigen kom di vandaen dan deze vissen straelen in der vinnen ène. Dit zien beên- of oôrnachtege structuren die an de vinnen in den uud ondersteun'n. Ierbie verschill'n ze van de kwastvinnigen, die an vleêsachtege vinnen ène. De straelvinnigen komm'n overal in zoet en zeêwaeter voe, en zien bie bieni 30.000 soôrten veruut de hroste klasse van de hewurvelden.
Actinopterygii (/ˌæktɪnɒptəˈrɪdʒiaɪ/; from actino- 'having rays', and Ancient Greek πτέρυξ (ptérux) 'wing, fins'), members of which are known as ray-finned fishes, is a class of bony fish.[2] They comprise over 50% of living vertebrate species.[3]
The ray-finned fishes are so called because their fins are webs of skin supported by bony or horny spines (rays), as opposed to the fleshy, lobed fins that characterize the class Sarcopterygii (lobe-finned fish). These actinopterygian fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the link or connection between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).
By species count, actinopterygians dominate the vertebrates, and they constitute nearly 99% of the over 30,000 species of fish.[4] They are ubiquitous throughout freshwater and marine environments from the deep sea to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm (0.3 in), to the massive ocean sunfish, at 2,300 kg (5,070 lb), and the long-bodied oarfish, at 11 m (36 ft). The vast majority of Actinopterygii (~99%) are teleosts.
Ray-finned fishes occur in many variant forms. The main features of typical ray-finned fish are shown in the adjacent diagram. The swim bladder is a more derived structure than the lung.[5]
Ray-finned fishes have many different types of scales; but all teleosts have leptoid scales. The outer part of these scales fan out with bony ridges, while the inner part is crossed with fibrous connective tissue. Leptoid scales are thinner and more transparent than other types of scales, and lack the hardened enamel or dentine-like layers found in the scales of many other fish. Unlike ganoid scales, which are found in non-teleost actinopterygians, new scales are added in concentric layers as the fish grows.[6]
Ray-finned and lobe-finned fishes sometimes possesses lungs used for aerial respiration. Only bichirs retain ventrally budding lungs.[5]
Ray-finned fish vary in size and shape, in their feeding specializations, and in the number and arrangement of their ray-fins.
Tuna are streamlined for straight line speed with a deeply forked tail
The swordfish is even faster and more streamlined than the tuna
Flatfish have developed partially symmetric dorsal and pelvic fins
The four-eyed fish Anableps anableps can see both below and above the water surface
Fangtooth are indifferent swimmers who try to ambush their prey
The first spine of the dorsal fin of anglerfish is modified like a fishing rod with a lure
European conger are ray-finned fish
Seahorses are in the extended pipefish family
The "flying fish" Exocoetus obtusirostris has specialized pectoral fins for gliding
The hoodwinker sunfish Mola tecta has no caudal fin
The Jurassic †Leedsichthys was a filter-feeder and the largest ray-finned fish to have ever lived
Lactoria fornasini is a poisonous species of boxfish
In nearly all ray-finned fish, the sexes are separate, and in most species the females spawn eggs that are fertilized externally, typically with the male inseminating the eggs after they are laid. Development then proceeds with a free-swimming larval stage.[7] However other patterns of ontogeny exist, with one of the commonest being sequential hermaphroditism. In most cases this involves protogyny, fish starting life as females and converting to males at some stage, triggered by some internal or external factor. Protandry, where a fish converts from male to female, is much less common than protogyny.[8]
Most families use external rather than internal fertilization.[9] Of the oviparous teleosts, most (79%) do not provide parental care.[10] Viviparity, ovoviviparity, or some form of parental care for eggs, whether by the male, the female, or both parents is seen in a significant fraction (21%) of the 422 teleost families; no care is likely the ancestral condition.[10] The oldest case of viviparity in ray-finned fish is found in Middle Triassic species of †Saurichthys.[11] Viviparity is relatively rare and is found in about 6% of living teleost species; male care is far more common than female care.[10][12] Male territoriality "preadapts" a species for evolving male parental care.[13][14]
There are a few examples of fish that self-fertilise. The mangrove rivulus is an amphibious, simultaneous hermaphrodite, producing both eggs and spawn and having internal fertilisation. This mode of reproduction may be related to the fish's habit of spending long periods out of water in the mangrove forests it inhabits. Males are occasionally produced at temperatures below 19 °C (66 °F) and can fertilise eggs that are then spawned by the female. This maintains genetic variability in a species that is otherwise highly inbred.[15]
Actinopterygii is divided into the classes Cladistia and Actinopteri. The latter comprises the subclasses Chondrostei and Neopterygii. The Neopterygii, in turn, is divided into the infraclasses Holostei and Teleostei. During the Mesozoic (Triassic, Jurassic, Cretaceous) and Cenozoic the teleosts in particular diversified widely. As a result, 96% of living fish species are teleosts (40% of all fish species belong to the teleost subgroup Acanthomorpha), while all other groups of actinopterygians represent depauperate lineages.[16]
The classification of ray-finned fishes can be summarized as follows:
The cladogram below shows the main clades of living actinopterygians and their evolutionary relationships to other extant groups of fishes and the four-limbed vertebrates (tetrapods).[17][18] The latter include mostly terrestrial species but also groups that became secondarily aquatic (e.g. Whales and Dolphins). Tetrapods evolved from a group of bony fish during the Devonian period.[19] Approximate divergence dates for the different actinopterygian clades (in millions of years, mya) are from Near et al., 2012.[17]
Vertebrates Jawed vertebrates Euteleostomi Sarcopterygii Rhipidistia Tetrapods Amniota Actinistia (lobe‑fins) Actinopterygii CladistiaPolypteriformes (bichirs, reedfishes)
Actinopteri ChondrosteiAcipenseriformes (sturgeons, paddlefishes)
Neopterygii HolosteiCartilaginous fishes (sharks, rays, ratfish)
Jaw-less fishes (hagfish, lampreys)
The polypterids (bichirs and reedfish) are the sister lineage of all other actinopterygians, the Acipenseriformes (sturgeons and paddlefishes) are the sister lineage of Neopterygii, and Holostei (bowfin and gars) are the sister lineage of teleosts. The Elopomorpha (eels and tarpons) appear to be the most basal teleosts.[17]
The earliest known fossil actinopterygian is Andreolepis hedei, dating back 420 million years (Late Silurian), remains of which have been found in Russia, Sweden, and Estonia.[20] Crown group actinopterygians most likely originated near the Devonian-Carboniferous boundary.[21] The earliest fossil relatives of modern teleosts are from the Triassic period (Prohalecites, Pholidophorus),[22][23] although it is suspected that teleosts originated already during the Paleozoic Era.[17]
The listing below is a summary of all extinct (indicated by a dagger, †) and living groups of Actinopterygii with their respective taxonomic rank. The taxonomy follows Phylogenetic Classification of Bony Fishes[18][26] with notes when this differs from Nelson,[3] ITIS[27] and FishBase[28] and extinct groups from Van der Laan 2016[29] and Xu 2021.[30]
Actinopterygii (/ˌæktɪnɒptəˈrɪdʒiaɪ/; from actino- 'having rays', and Ancient Greek πτέρυξ (ptérux) 'wing, fins'), members of which are known as ray-finned fishes, is a class of bony fish. They comprise over 50% of living vertebrate species.
The ray-finned fishes are so called because their fins are webs of skin supported by bony or horny spines (rays), as opposed to the fleshy, lobed fins that characterize the class Sarcopterygii (lobe-finned fish). These actinopterygian fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the link or connection between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).
By species count, actinopterygians dominate the vertebrates, and they constitute nearly 99% of the over 30,000 species of fish. They are ubiquitous throughout freshwater and marine environments from the deep sea to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm (0.3 in), to the massive ocean sunfish, at 2,300 kg (5,070 lb), and the long-bodied oarfish, at 11 m (36 ft). The vast majority of Actinopterygii (~99%) are teleosts.
Aktinopterigoj (Actinopterygii) estas grandega grupo de ostaj fiŝoj, kaj unu el la plej grandaj grupoj el la vertebruloj kun pli ol 27 mil da specioj. La plejmulto de la fiŝoj estas aktinopteriga, dum la dua klaso de ostaj fiŝoj estas sarkopterigoj. La superklaso fiŝoj inkludas krom la ostaj fiŝoj la kartilagajn fiŝojn.
La nomo de la grupo devenas de la grekaj vortoj aktis (radio) kaj pterygion (flugileto), signifante ke tiuj fiŝoj havas naĝilojn similajn al etaj flugiloj kaj subtenatajn per ostecaj, malmolaj kaj radiaj strioj,
Aliaj tratoj de tiuj fiŝoj estas komunaj kun sarkopterigoj (ekzemple: brankoj kun operkuloj, skeleto ne nur kartilaga ktp).
La Aktinopterigoj enhavas tri subklasojn, la Ĥondrosteojn, la Holosteojn kaj la Teleosteojn. (Foje, la sciencistoj mencias nur du subklasojn, unuigante Olosteojn kaj Teleosteojn en Neopterigiojn.) Pli ol 90% el la konataj specoj de nuntempaj fiŝoj apartenas al Teleosteoj.
Tiu grupo estis la ĉefa grupo de fiŝoj de la Karbonio ĝis la Triaso, sed hodiaŭ enhavas nur malpli ol 10 genroj kaj ĉirkaŭ 50 specojn, vivantajn en riveroj kaj lagoj, ne en la maro.
(sub Neopterigioj por multaj sciencistoj)
Tiu grupo enhavas sume nur 3 genrojn.
(sub Neopterigioj por multaj sciencistoj)
AVERTO. Nur malmultaj familioj estas menciataj sube; kaj nur kelke da ĝenroj kiel ekzemploj de la anoj de ĉiu familio.
Aktinopterigoj (Actinopterygii) estas grandega grupo de ostaj fiŝoj, kaj unu el la plej grandaj grupoj el la vertebruloj kun pli ol 27 mil da specioj. La plejmulto de la fiŝoj estas aktinopteriga, dum la dua klaso de ostaj fiŝoj estas sarkopterigoj. La superklaso fiŝoj inkludas krom la ostaj fiŝoj la kartilagajn fiŝojn.
En tiu fiŝo estas bone videblaj la malmolaj radioj subtenantaj la flankajn kaj dorsan naĝilojnLa nomo de la grupo devenas de la grekaj vortoj aktis (radio) kaj pterygion (flugileto), signifante ke tiuj fiŝoj havas naĝilojn similajn al etaj flugiloj kaj subtenatajn per ostecaj, malmolaj kaj radiaj strioj,
Aliaj tratoj de tiuj fiŝoj estas komunaj kun sarkopterigoj (ekzemple: brankoj kun operkuloj, skeleto ne nur kartilaga ktp).
Los actinopterigios (Actinopterygii, del griego ακτινος aktinοs, «radial» y πτερυγιον pterygion, «ala») son una clase de peces óseos (Osteichthyes). Son el grupo dominante de los vertebrados, con más de 27 000 especies actuales, y han desarrollado estrategias adaptativas que les han permitido colonizar toda clase de ambientes acuáticos, tanto marinos como de agua dulce y salobres. Las especies más conocidas de peces pertenecen a este grupo: truchas, salmones, sardinas, lucios, percas, arenques, atunes, cíclidos, peces planos, carpas, anguilas, etc.
La característica principal de los actinopterigios es la posesión de un esqueleto de espinas óseas en sus aletas. De hecho, el término Actinopterygii significa "aletas radiadas". Tienen el cráneo cartilaginoso (en parte calcificado) recubierto por huesos dérmicos, y un solo par de aberturas branquiales cubiertas por un opérculo. También se caracterizan por presentar escamas ganoideas (carácter autapomórfico, es decir, exclusivo del grupo) que presentan ganoína, tejido óseo esponjoso y tejido óseo laminar. En los peces actuales la escama ganoidea se reduce (leptoidea) presentándose dos tipos: cicloideas y ctenoideas, en las cuales sólo se presentan tejido óseo laminar, sin ganoína ni esponjoso.
La taxonomía es compleja para un grupo con tantas especies y diversidad. En la mayoría de las clasificaciones taxonómicas se han reconocido tres subdivisiones de la clase Actinopterygii: Chondrostei, Holostei y Teleostei. Actualmente se han reagrupado en dos, pues los holósteos son un grupo parafilético, por lo que tiende a ser abandonada por los sistemas taxonómicos modernos basados en la cladística, que sólo admite grupos monofiléticos.
Actualmente se aceptan dos subclases dentro de los actinopterigios:
Tradicionalmente, los actinopterigios se agrupaban junto con los sarcopterigios en clado Osteictios, pero tal agrupación es parafilética y tiende a ser abandonada.
A continuación se incluye un listado de los grupos hasta el nivel de órdenes, tabulados de la forma que aparenta coincidir con la secuencia evolutiva hasta el nivel de superorden. La lista está recopilada de FishBase[1] con anotaciones en las divergencias respecto a Fishes of the World[2] y ITIS-Acinopterygii.[3]
Infraclase Holostei
Infraclase Teleostei
Los actinopterigios (Actinopterygii, del griego ακτινος aktinοs, «radial» y πτερυγιον pterygion, «ala») son una clase de peces óseos (Osteichthyes). Son el grupo dominante de los vertebrados, con más de 27 000 especies actuales, y han desarrollado estrategias adaptativas que les han permitido colonizar toda clase de ambientes acuáticos, tanto marinos como de agua dulce y salobres. Las especies más conocidas de peces pertenecen a este grupo: truchas, salmones, sardinas, lucios, percas, arenques, atunes, cíclidos, peces planos, carpas, anguilas, etc.
Kiiruimsed ehk aktinopterüügid (Actinopterygii) on luukalade klass keelikloomade hõimkonnast. Kiiruimsete nimetus johtub sellest, et nende uimedes on luustunud kiired, mis kinnituvad kehas asuvatele tugiluudele ehk basaalidele. Kiiruimsetele vastandatakse lihasuimsed (Sarcopterygii), kelle uimed on teistsuguse ehitusega.
Kiiruimsed on selgroogsete liigirikkaim klass, siia kuulub peaaegu 30 000 liiki. Kiiruimsed on ubikvistid ehk levinud kõikjal maailmas, asustades väga erinevaid veekogusid.
Kiiruimsete kehamõõtmed ulatuvad 8 mm-st (Paedocypris) kuni 11 m-ni (harilik heeringakuningas (Regalecus glesne). Guinnessi rekordite raamatus on rekordiks 17 m isend. Kehakaalu poolest on üks suurimaid kuukala (Mola mola), kelle keskmine kaal on umbes 1 tonn, kuid on leitud ka 2,3 tonniseid isendeid.
Enamiku kiiruimsete skelett on täielikult luustunud. Üheks diagnostiliseks tunnuseks on ka kiiruimsete ganoidsoomused.
Kiiruimsed ehk aktinopterüügid (Actinopterygii) on luukalade klass keelikloomade hõimkonnast. Kiiruimsete nimetus johtub sellest, et nende uimedes on luustunud kiired, mis kinnituvad kehas asuvatele tugiluudele ehk basaalidele. Kiiruimsetele vastandatakse lihasuimsed (Sarcopterygii), kelle uimed on teistsuguse ehitusega.
Kiiruimsed on selgroogsete liigirikkaim klass, siia kuulub peaaegu 30 000 liiki. Kiiruimsed on ubikvistid ehk levinud kõikjal maailmas, asustades väga erinevaid veekogusid.
Kiiruimsete kehamõõtmed ulatuvad 8 mm-st (Paedocypris) kuni 11 m-ni (harilik heeringakuningas (Regalecus glesne). Guinnessi rekordite raamatus on rekordiks 17 m isend. Kehakaalu poolest on üks suurimaid kuukala (Mola mola), kelle keskmine kaal on umbes 1 tonn, kuid on leitud ka 2,3 tonniseid isendeid.
Enamiku kiiruimsete skelett on täielikult luustunud. Üheks diagnostiliseks tunnuseks on ka kiiruimsete ganoidsoomused.
Aktinopterigio (Actinopterygii) (grezierazko actino eta pterygi euskaraz erradio eta hegats) arrain klase bat da. Klado hau, ornodunen artean, handiena da. 27.000 espezie baino gehiago dira. Ur gezan eta ur gazian bizi dira.
Bi azpiklase:
Infraklasea Holostei
Infraklasea Teleostei
Aktinopterigio (Actinopterygii) (grezierazko actino eta pterygi euskaraz erradio eta hegats) arrain klase bat da. Klado hau, ornodunen artean, handiena da. 27.000 espezie baino gehiago dira. Ur gezan eta ur gazian bizi dira.
Viuhkaeväiset (Actinopterygii) on toinen kahdesta luukaloihin (Osteichthyes) kuuluvasta luokasta, varsieväisten kalojen ohella. Viuhkaeväisten evät ovat varrettomat ja eväruotojen tukemat eivätkä sieraimet ole yhteydessä suuonteloon. Viuhkaeväisiin kuuluu valtaosa (noin 96 prosenttia) nykyisistä kaloista, yli 27 000 lajia.
Alla on lueteltu viuhkaeväisten kalojen lahkot ja esimerkkejä niihin kuuluvista heimoista ja lajeista. Lahkot ja niitä ylempien tasojen luokittelu (ala- ja osaluokat, ylälahkot) ovat pääosin FishBasen mukaiset.[1] Uusimpien tutkimusten mukaan monet luetelluista ryhmistä saattavat kuitenkin olla epäluonnollisia (parafyleettisiä), esimerkiksi Paracanthopterygii, Scorpaeniformes, ja Perciformes.[2]
Viuhkaeväiset (Actinopterygii) on toinen kahdesta luukaloihin (Osteichthyes) kuuluvasta luokasta, varsieväisten kalojen ohella. Viuhkaeväisten evät ovat varrettomat ja eväruotojen tukemat eivätkä sieraimet ole yhteydessä suuonteloon. Viuhkaeväisiin kuuluu valtaosa (noin 96 prosenttia) nykyisistä kaloista, yli 27 000 lajia.
Viuhkaeväisten evoluutio.Les actinoptérygiens (Actinopterygii) constituent la classe des poissons à nageoires rayonnées.
Groupe le plus diversifié des vertébrés, les actinoptérygiens sont aussi bien dulçaquicoles que marins.
Les actinoptérygiens composent, avec les sarcoptérygiens (« poissons à nageoires charnues » et tétrapodes), le groupe des eutéléostomes. Ils sont remplacés dans certaines classifications par les Actinopteri.
Le groupe des actinoptérygiens comprend notamment le groupe des téléostéens, auquel appartiennent la quasi-totalité des poissons communs.
Du grec ancien ἀκτίς, aktis (« rayon ») et πτέρυξ, pteryx (« aile, nageoire »).
Selon Catalogue of Life (12 août 2015)[6] (qui reprend la classification du World Register of Marine Species pour le taxon alternatif « Actinopteri ») :
Aldrovandia sp. (Notacanthiformes)
Chauliodus sp. (Stomiiformes)
Phylogénie des grands groupes actuels des Vertébrés d'après Betancur-R et al. (2017)[7] et Heimberg et al. (2010)[8] :
VertebrataCephalaspidomorphi (les lamproies)
Myxini (les myxines)
Chondrichthyes (les poissons cartilagineux)
Actinopterygii (les poissons à nageoires rayonnées)
Coelacanthi (les cœlacanthes)
Dipnoi (les dipneustes)
Tetrapoda (les tétrapodes)
Phylogénie des ordres de poissons à nageoires rayonnées (Actinopterygii) en-dehors du clade Neoteleostei, d'après Betancur-R et al. (2017)[9] :
◄ Actinopterygii CladisteiLes actinoptérygiens (Actinopterygii) constituent la classe des poissons à nageoires rayonnées.
Groupe le plus diversifié des vertébrés, les actinoptérygiens sont aussi bien dulçaquicoles que marins.
Les actinoptérygiens composent, avec les sarcoptérygiens (« poissons à nageoires charnues » et tétrapodes), le groupe des eutéléostomes. Ils sont remplacés dans certaines classifications par les Actinopteri.
Le groupe des actinoptérygiens comprend notamment le groupe des téléostéens, auquel appartiennent la quasi-totalité des poissons communs.
Áirítear na hActinopterygii (uimhir iolra de Actinopterygius) sa rang ina bhfuil na héisc gaeiteacha ar fáil.
Tacaíonn spíone nó lepidotrichia, a bhíonn comhdhéanta de cnámh nó d'adharc, eiteacha na n-iasc seo, murab ionann is na heití fheolmhara liopacha atá mar chomhartha sóirt ag na héisc san aicm Sarcopterygii ag a mbíonn lepidotrichia freisin acu. Greamaíonn ga-eiteacha na n-actinopterygii do díreach leis na heilimintí cnámharlaigh neasacha nó bunaidh, na radúlacha, a seasann don nasc nó an ceangal idir na heití seo agus an cnámharlach inmheánach (na criosanna peilbheacha agus brollaigh).
Go huimhriúil, is iad na hactinopterygii an rang is mó i dtreis sna veirteabraigh, a chuimsíonn beagnach 99% de na níos mó ná 30,000 speiceas. Tá siad uileláithreach ar fud na dtimpeallachtaí mara agus fionnuisce, ón fharraige mhór dhomhain chun na sruthanna sléibhe is airde. Téann méide na speiceas a mharthain i raon ó Paedocypris, ag 8 mm, go dtí an tIasc Gréine ollmhór, ag 2,300 kg, agus an Rámhach fad-chollainneach, ar 11 m.
Bíonn éisc gaeiteacha le fáil i bhfoirmeacha éagsúla go leor. Taispeántar sa léaráid, ar thaobh na láimhe clé, na gnéithe is mó den iasc gaeiteach tipiciúil
Go traidisiúnta bhí na hactinopterygii roinnte i bhfo-aicmí 'Chondrostei' agus 'Neopterygii' . Bhí na Neopterygii, faoi seach, roinnte sna hinfrearanganna 'Holostei' agus 'Teleostei' . Tugann roinnt fianaise moirfeolaíocha le fios go bhfuil na Neopterygii paraifíliginiteach; mar sin féin, d'eagraigh obair le déanaí, bunaithe ar ord na dtacsón, an seicheamh éabhlóideach síos go dtí leibhéal an oird, bunaithe go príomha ar an stair fhada an staidéir moirfeolaíocha. Tá an t-aicmiú seo, mar aon le tacsanomaíocht ar bith eile, bunaithe ar taighde fíliginiteach,ata ag síorathrú. Céad-Láithreáin Siolúracha atá ar marthain
Áirítear na hActinopterygii (uimhir iolra de Actinopterygius) sa rang ina bhfuil na héisc gaeiteacha ar fáil.
Tacaíonn spíone nó lepidotrichia, a bhíonn comhdhéanta de cnámh nó d'adharc, eiteacha na n-iasc seo, murab ionann is na heití fheolmhara liopacha atá mar chomhartha sóirt ag na héisc san aicm Sarcopterygii ag a mbíonn lepidotrichia freisin acu. Greamaíonn ga-eiteacha na n-actinopterygii do díreach leis na heilimintí cnámharlaigh neasacha nó bunaidh, na radúlacha, a seasann don nasc nó an ceangal idir na heití seo agus an cnámharlach inmheánach (na criosanna peilbheacha agus brollaigh).
Go huimhriúil, is iad na hactinopterygii an rang is mó i dtreis sna veirteabraigh, a chuimsíonn beagnach 99% de na níos mó ná 30,000 speiceas. Tá siad uileláithreach ar fud na dtimpeallachtaí mara agus fionnuisce, ón fharraige mhór dhomhain chun na sruthanna sléibhe is airde. Téann méide na speiceas a mharthain i raon ó Paedocypris, ag 8 mm, go dtí an tIasc Gréine ollmhór, ag 2,300 kg, agus an Rámhach fad-chollainneach, ar 11 m.
Os actinopterixios (Actinopterygii) son unha clase de peixes óseos (Osteichthyes).
Constitúen o grupo dominante entre os vertebrados, con máis de 27 000 especies actuais que desenvolveron estratexias adaptativas que lles permitiron colonizar toda clase de ambientes acuáticos, tanto mariños como dulciacuícolas.
Os peixes máis coñecidos pertencen a este grupo: troitas, salmóns, sardiñas, percas, arenques, atúns, linguados, carpas, anguías etc.
O termo Actinopterygii está formado polos elementos do latín científico aktino- que deriva do grego ακτίνος aktínοs, "raio" e -pterygii xenitivo plural derivado de πτερύγιον pterýgion, "aleta"; é dicir, literalmente "os de aletas con raios".
A característica principal dos actinopterixios é a presenza dun esqueleto de espiñas óseas nas aletas (o termo Actinopterygii significa "os de aletas radiadas"). Teñen o cranio parcialmente calcificado e recuberto por ósos dérmicos, e un só par de aberturas branquiais protexidas por un opérculo.
Posúen escamas ganoides (carácter autapomórfico, é dicir, exclusivo do grupo). Nos peixes modernos a escama ganoide redúcese (leptoidea) e preséntanse dous tipos distintos: cicloides e ctenoideas, nas que só hai tecido óseo laminar (sen a ganoína e o tecido óseo esponxoso das escamas ganoides).
A clasificación taxonómica dun grupo con tantas e tan diversas especies é complexa e está suxeita a controversias, comezando pola súa integración nos osteíctios, xunto aos sarcopterixios, tendo presente que a clase Osteichthyes se considera actualmente un grupo parafilético. O World Register of Marine Species considera sinónimos Actinopterygii e Osteichthyes.[1]
Na maioría das clasificacións taxonómicas recoñécense tres subdivisións da clase Actinopterygii: Chondrostei, Holostei e Teleostei. Actualmente reagrupáronse en dúas, pois os holósteos constitúen un grupo parafilético, polo que tende a ser abandonado nos sistemas taxonómicos modernos baesados na cladística, que só admite grupos monofiléticos.
Polo tanto na actualidade admítense dúas subclases dentro dos actinopterixios:
A continuación inclúse unha listaxe dos grupos até o nivel de ordes, tabulados da forma que aparenta coincidir coa secuencia evolutiva até o nivel de superorde. A lista está recompilada de FishBase[2] con anotacións nas diverxencias respecto a Fishes of the World [3] e ITIS.[4]
Infraclase Holostei
Infraclase Teleostei
Os actinopterixios (Actinopterygii) son unha clase de peixes óseos (Osteichthyes).
Constitúen o grupo dominante entre os vertebrados, con máis de 27 000 especies actuais que desenvolveron estratexias adaptativas que lles permitiron colonizar toda clase de ambientes acuáticos, tanto mariños como dulciacuícolas.
Os peixes máis coñecidos pertencen a este grupo: troitas, salmóns, sardiñas, percas, arenques, atúns, linguados, carpas, anguías etc.
Zrakoperke (Actinopterygii) su razred iz reda riba koštunjača. Ovom razredu pripada velika većina poznatih danas živućih ribljih vrsta.
Ime su dobile po načinu kako su im građene peraje. Kožna opna peraja razapeta je između manje ili više krutih koštanih šipčica, a vrlo često je na početku prve leđne peraje prva šipčica građena poput bodlje. Ta bodlja može stajati samostalno, prije prve leđne peraje, može biti integrirana u njen početak, no kod pojedinih vrsta se tijekom evolucije potpuno povukla.
sinonimi: Holostei, Lepisosteiformes, Lepisostoidei
Zrakoperke (Actinopterygii) su razred iz reda riba koštunjača. Ovom razredu pripada velika većina poznatih danas živućih ribljih vrsta.
Ime su dobile po načinu kako su im građene peraje. Kožna opna peraja razapeta je između manje ili više krutih koštanih šipčica, a vrlo često je na početku prve leđne peraje prva šipčica građena poput bodlje. Ta bodlja može stajati samostalno, prije prve leđne peraje, može biti integrirana u njen početak, no kod pojedinih vrsta se tijekom evolucije potpuno povukla.
Actinopterygii (bentuk jamaknya dari Actinopterygius) merupakan kelas dalam taksonomi dari ikan bersirip kipas.
Actinopterygii mencakup banyak ikan yang dikenal awam sebagai ikan konsumsi maupun ikan hias/peliharaan. Secara evolusi, kelompok ini merupakan pengembangan lebih lanjut yang paling adaptif pada keadaan bumi pada masa kini. Sebagian besar jenis-jenis ikan yang hidup pada masa sekarang merupakan anggota kelompok ini.
Daftar di bawah mengikuti Phylogenetic Classification of Bony Fishes[1] dengan catatan jika ini berbeda dari Nelson,[2] ITIS[3] dan FishBase.[4]
Actinopterygii (bentuk jamaknya dari Actinopterygius) merupakan kelas dalam taksonomi dari ikan bersirip kipas.
Actinopterygii mencakup banyak ikan yang dikenal awam sebagai ikan konsumsi maupun ikan hias/peliharaan. Secara evolusi, kelompok ini merupakan pengembangan lebih lanjut yang paling adaptif pada keadaan bumi pada masa kini. Sebagian besar jenis-jenis ikan yang hidup pada masa sekarang merupakan anggota kelompok ini.
Geisluggar (fræðiheiti: Actinopterygii) eru fiskar og stærsti hópur hryggdýra, með um 27.000 tegundir sem finnast um allt í vatni og sjó. Þeir eru einu dýrin sem hafa sundmaga.
Geisluggar (fræðiheiti: Actinopterygii) eru fiskar og stærsti hópur hryggdýra, með um 27.000 tegundir sem finnast um allt í vatni og sjó. Þeir eru einu dýrin sem hafa sundmaga.
Gli attinopterigi (Actinopterygii Cope, 1887) sono una classe di vertebrati, comprendente la maggior parte dei pesci ossei viventi. Il loro nome deriva dal greco aktis = raggio + pterygion, diminutivo di pteryx = ala, e fa riferimento alla loro principale caratteristica comune che è di possedere pinne sostenute da raggi.
Gli attinopterigi ebbero origine nel Siluriano superiore[1], ma queste forme sono note solo da scaglie (Dialipina, Andreolepis). Soltanto a partire dal Devoniano medio gli attinopterigi divennero abbondanti, con forme come Cheirolepis e Moythomasia. Gli attinopterigi più primitivi (Palaeonisciformes), dotati di corpi rivestiti di pesanti squame ganoidi, si diffusero tra il Carbonifero ed il Triassico; accanto a queste forme vivevano pesci leggermente più evoluti (Canobius, Saurichthys, Perleidus, Birgeria e i cosiddetti Chondrostei). Forme ancor più evolute ("olostei") ne presero il posto tra il Triassico ed il Giurassico. A partire dal Giurassico si diffuse il gruppo di pesci oggi più rappresentato, quello dei teleostei, preceduti da pesci dalle caratteristiche intermedie (Hypsocormus, Thrissops, Pholidophorus, Leptolepis). Nel corso del Cretaceo superiore e del Cenozoico si diffusero tutte le forme note attualmente, nei mari e nelle acque dolci.
La loro principale caratteristica, suggerita anche dal nome, è di possedere pinne sostenute da raggi. Questi raggi (lepidotrichi) sono articolati a diversi elementi ossei o cartilaginei paralleli tra loro, detti radiali, il che li differenzia dai pesci a pinne carnose (Sarcopterygii).
Altra caratteristica di questa classe è la presenza di una vescica natatoria, una sacca polmonare modificata contenente una miscela di gas, che consente una sofisticata regolazione dell'assetto idrodinamico.
Gli Attinopterigi sono inoltre accomunati dalla presenza di un leggero e flessibile rivestimento di scaglie, costituite da sottili placche ossee.
Al di là di queste caratteristiche comuni si presentano con una ampia variabilità di forme.
La classe degli Attinopterigi ha una distribuzione ubiquitaria: popolano sia le acque salate che quelle dolci, dalle acque tropicali a quelle gelide dell'Artico, dai mari alle paludi, dai laghi d'alta montagna ai torrenti acidi.
La classificazione tradizionale, basata su caratteristiche morfologiche e fisiologiche, suddivide gli Attinopterigi in due sottoclassi, Chondrostei e Neopterygii. I Neopterygii sono a loro volta suddivisi in due infraclassi, Holostei e Teleostei. Quest'ultimo è senz'altro il raggruppamento più numeroso, comprendendo la gran parte delle specie di attinopterigi viventi.
Classe Actinopterygii
La classificazione filogenetica, basata su caratteristiche indagabili con gli strumenti della moderna biologia molecolare, propone una suddivisione degli Attinopterigi in base ai loro rapporti evolutivi, rappresentati in forma di albero filogenetico.
La classificazione filogenetica, ancora in divenire, presenta diversi punti di contraddizione con la classificazione tradizionale.
▲ GNATHOSTOMATA └─o Actinopterygii ├─o Cladistii │ └─o Polypteriformes └─o Actinopteri └─o ├─o Chondrostei │ └─o Acipenseriformes └─o Neopterygii ├─o Ginglymodi │ └─o Lepisosteiformes └─o Halecostomi ├─o Halecomorpha │ └─o Amiiformes └─o └─o TELEOSTEI ►
▲ GNATHOSTOMATA └─o Actinopterygii ├─o Cladistii │ ├─o Guildayichthyiformes (clade estinto) │ └─o Polypteriformes └─o Actinopteri ├─o Tarrasiiformes (clade estinto) └─o ├─o Cheirolepiformes (clade estinto) └─o ├─o Paramblypteriformes (clade estinto) └─o ├─o Mansfieldiscus (clade estinto) ├─o Mimia (clade estinto) ├─o Melanecta (clade estinto) └─o ├─o │ ├─o Aesopichthyidae (clade estinto) │ └─o Rhadinichthyidae (clade estinto) └─o ├─o Moythomasia (clade estinto) └─o ├─o Woodichthys (clade estinto) └─o ├─o Kentuckia (clade estinto) └─o ├─o Pteronisculus (clade estinto) └─o ├─o Phanerorhynchiformes (clade estinto) ├─? Luganoiiformes (clade estinto) │ ├─o Luganoiidae (clade estinto) │ ├─o Habroichtyidae (clade estinto) │ └─o Thoracopteridae (clade estinto) ├─? Haplolepiformes (clade estinto) ├─? Ptycholepiformes (clade estinto) └─o ├─o Amblypteridae (clade estinto) └─o ├─o │ ├─o Redfieldiidae (clade estinto) │ └─o │ ├─o │ │ ├─o Amphicentridae (clade estinto) │ │ └─? Dorypteriformes (clade estinto) │ └─o Platysomoidei (clade estinto) │ ├─o Bobasatraniidae (clade estinto) │ ├─o Chirodontidae (clade estinto) │ └─o Platysomidae (clade estinto) └─o ├─o Chondrostei │ ├─o Birgeriidae (clade estinto) │ └─o │ ├─o Saurichthyiformes (clade estinto) │ └─o Acipenseriformes │ ├─? Errolichthyidae (clade estinto) │ └─o │ ├─o Chondrosteidae (clade estinto) │ └─o Acipenseristomi │ ├─o Peipiaosteidae (clade estinto) │ │ ├─o Stichopterinae (clade estinto) │ │ └─o Spherosteinae (clade estinto) │ └─o Acipenseroidei │ ├─o Acipenseridae │ │ ├─o Husinae │ │ └─o Acipenserinae │ │ ├─o Acipenserini │ │ └─o Scaphirhychini │ └─o Polyodontidae │ ├─o Protopsephuri (clade estinto) │ └─o Polyodonti │ ├─o Paleopsephurinae (clade estinto) │ └─o Polydontinae │ ├─o Psephurini │ └─o Polyodontini └─o ├─? Palaeonisciformes (clade estinto) │ ├─o Aeduellidae (clade estinto) │ ├─o Commentryidae (clade estinto) │ ├─o Acrolepidae │ ├─o Canobiidae (clade estinto) │ ├─o Elonichthyidae (clade estinto) │ ├─o Palaeoniscidae (clade estinto) │ ├─o Pygopteridae (clade estinto) │ └─o Rhabdolepidae (clade estinto) └─o ├─o Pholidopleuriformes (clade estinto) └─o ├─o Peltopleuriformes (clade estinto) │ ├─? Polzbergiidae (clade estinto) │ ├─o Peltopleuridae (clade estinto) │ └─o │ ├─o Habroichthys (clade estinto) │ └─o Thoracopteridae (clade estinto) └─o ├─o Perleidiformes (clade estinto) │ ├─? Aetheodontidae (clade estinto) │ ├─? Platysiagidae (clade estinto) │ ├─o Cleithrolepidae (clade estinto) │ └─o Perleididae (clade estinto) └─o Neopterygii ├─o Ginglymodi │ ├─o Macrosemiiformes (clade estinto) │ └─o Lepisosteiformes └─o Halecostomi ├─o Halecomorpha │ ├─o Parasemionotiformes (clade estinto) │ └─o │ ├─o Ionoscopiformes (clade estinto) │ │ ├─o Ionoscopidae (clade estinto) │ │ └─o │ │ ├─o Oshuniidae (clade estinto) │ │ └─o Ophiopsidae (clade estinto) │ └─o Amiiformes │ ├─o Caturoidea (clade estinto) │ │ ├─o Liodesmidae (clade estinto) │ │ └─o Caturidae (clade estinto) │ └─o Amioidea │ ├─o Sinamiidae (clade estinto) │ └─o Amiidae │ ├─o Amiopsinae (clade estinto) │ └─o Amiida │ ├─o Solnhofenamiinae (clade estinto) │ └─o Amiista │ ├─o Amiinae │ └─o Vidalamiinae (clade estinto) │ ├─o Calamopleurini (clade estinto) │ └─o Vidalamiini (clade estinto) └─o ├─o │ ├─o Semionotiformes (clade estinto) │ │ ├─o Dapediidae (clade estinto) │ │ └─o │ │ ├─o Acentrophoridae (clade estinto) │ │ └─o Semionotidae (clade estinto) │ └─o Pycnodontiformes (clade estinto) │ ├─? Hadrodontidae (clade estinto) │ ├─o Paramesturus (clade estinto) │ └─o │ ├─o Mesturus (clade estinto) │ └─o │ ├─o Micropycnodon (clade estinto) │ └─o │ ├─o Gyrodontidae (clade estinto) │ └─o │ ├─o Arduafrons prominoris (clade estinto) │ └─o │ ├─o Brembodontidae (clade estinto) │ └─o Pycnodontoidei (clade estinto) │ ├─o Eomesodon (clade estinto) │ └─o Pycnodontoidea (clade estinto) │ ├─o Coccodontidae (clade estinto) │ └─o Pycnodontidae (clade estinto) └─o ├─? Pachycormiformes (clade estinto) │ └─o TELEOSTEI ►
Gli attinopterigi (Actinopterygii Cope, 1887) sono una classe di vertebrati, comprendente la maggior parte dei pesci ossei viventi. Il loro nome deriva dal greco aktis = raggio + pterygion, diminutivo di pteryx = ala, e fa riferimento alla loro principale caratteristica comune che è di possedere pinne sostenute da raggi.
Actinopterygii (Palaeograece: ἀκτίς 'radius' + πτέρυξ 'pinna') sunt pisces pinnis radiatis praediti, inter vertebrata grex dominans, cui sunt 27 000 specierum aquae dulcis et salsae.
Actinopterygii (Palaeograece: ἀκτίς 'radius' + πτέρυξ 'pinna') sunt pisces pinnis radiatis praediti, inter vertebrata grex dominans, cui sunt 27 000 specierum aquae dulcis et salsae.
Stipinpelekės žuvys (Actinopterygii) – kaulinių žuvų (Osteichthyes) klasė. Šiai klasei priklauso didžioji dauguma žinomų, neišmirusių žuvų rūšių. Jos yra dominuojantys stuburiniai vandens gyvūnai, sudarantys apie pusę visų žinomų stuburinių rūšių. Iš viso apie 20-27 tūkst. rūšių, gyvenančių tiek gėlame, tiek jūros vandenyje. Klasei priklauso didžiausios kada nors gyvenusios žuvys (Leedsichthys), dabar išnykusios.
Stipinpelekės žuvys (Actinopterygii) – kaulinių žuvų (Osteichthyes) klasė. Šiai klasei priklauso didžioji dauguma žinomų, neišmirusių žuvų rūšių. Jos yra dominuojantys stuburiniai vandens gyvūnai, sudarantys apie pusę visų žinomų stuburinių rūšių. Iš viso apie 20-27 tūkst. rūšių, gyvenančių tiek gėlame, tiek jūros vandenyje. Klasei priklauso didžiausios kada nors gyvenusios žuvys (Leedsichthys), dabar išnykusios.
Starspurzivis (Actinopterygii) ir lielākā kaulzivju virsklase.[1] Līdz ar jaunākajiem ģenētiskajiem atklājumiem zivju sistemātikā ieviestas ievērojamas izmaiņas. Kādreizējā starspurzivju klase kļuvusi par virsklasi, un saskaņā ar 2016. gada sistemātiku starspurzivju virsklase dalās divās klasēs: starspurēs (Actinopteri) un niedrzivīs (Cladistia).[2]
Šī ir arī lielākā mugurkaulnieku klase, kurā ir vairāk nekā 30 000 sugu, kas sastāda 96—99% no visām mūsdienās zināmajām zivīm.[3][4] Latvijā konstatēts ap 80 sugām, kas iedalās 12 kārtās un 32 dzimtās. Starspures apdzīvo visu tipu ūdenstilpes, no okeāniem līdz strautiem, pazemes avotiem un sāļajiem ezeriem.
Vissenākās starspuru fosilijas pieder aizvēsturiskajai Andreolepis hedei, kura dzīvoja pirms 420 milj. gadiem silūra periodā paleozoja ērā. Šīs sugas fosilijas ir atrastas Igaunijā, Zviedrijā un Krievijā.[1] Tomēr par dominējošo zivju grupu starspures kļuva tikai karbona periodā.[4]
Ķermeņa forma starspurēm ir ārkārtīgi daudzveidīga. Mazākā no tām ir tikai 8 mm gara (Sumatras kūdras purvu zivtiņa[5]), bet smagākās svars sasniedz 2300 kg (mēnesszivs[6]) un garākajai ir 11 metri (siļķu karalim[7]).
Ass skeletu parasti veido kaula mugurkauls, un tikai nedaudzām sugām saglabājas horda vai tās paliekas. Pāra peldspuru iekšējam skeletam nav centrālās ass, bet tas sastāv no radiāliem elementiem. Pāra un nepāra spuru daivas balsta kaula stari — lepidotrihijas. Šī īpašība izmantota starspuru nosaukumam.
Sekundārā plecu josla ir labi attīstīta, primārā — vāji. Krūšu spuru skelets ir regresējis; bazālijas ir neattīstītas un tā rezultātā radiālijas pievienojas tieši pie joslas. Iegurņa josla ir vienkāršojusies līdz pāra kaula plātnītei, bet pašu vēdera spuru skelets sastāv tikai no spuru stariem, jo šeit nav ne bazāliju, ne arī radiāliju. Aste parasti homocerkāla (senākajām formām — heterocerkāla); reizēm astes daivas var reducēties. Galvaskauss — hiostilisks. Hoānu nav. Ir stari, kas balsta žaunu membrānu.
Lielākai dalu šo zivju klāj plānas (cikloīdās vai ktenoīdās) kaula zvīņas. Nedaudzām sugām zvīņas klāj emaljveida viela — ganoīns. Šādas zvīņas sauc par ganoīdām. Reizēm zvīņas var saaugt, veidojot kaula plātnītes. Savukārt citām sugām zvīņas ir izzudušas.
Galvas smadzenēm ir zivīm tipiskā uzbūve: priekšējām smadzenēm ir pilnīgi epiteliāls jumts, kuram nav nervu vielas, smadzenītes un vidussmadzenes relatīvi lielas. Sevišķi lielas ir redzes daivas.
Zarnā izzūd spirāliskais vārstulis, rudimenta veidā saglabājoties tikai senākajām grupām, toties zarna kļūst garāka. Kloākas nav, zarna atveras uz āru ar anālo atveri. Kā barības vada mugurdaļas izaugums attīstās hidrostatiskais orgāns — peldpūslis, kas atsevišķām sugām var būt sekundāri reducējies. Žaunu starpsienas vai nu mazas vai arī biežāk to vispār nav, tā ka žaunu lapiņas atrodas tieši uz žaunu lokiem. Atsevišķām retām sugām ir izveidojušās plaušas.
Sirds arteriālais konuss ir tikai senāko grupu pārstāvjiem. Jaunākajām formām no arteriālā konusa paliek tikai divi vārstuļi, vienlaicīgi attīstās aortas sākumdaļas sieniņas pabiezinājums — aortas sīpols. Pāra kopulācijas orgānu tēviņiem nav. Apsēklošana (ar retiem izņēmumiem) ārējā, ikri sīki.
Starspurzivju virsklase (Actinopterygii)[2]
Starspurzivis (Actinopterygii) ir lielākā kaulzivju virsklase. Līdz ar jaunākajiem ģenētiskajiem atklājumiem zivju sistemātikā ieviestas ievērojamas izmaiņas. Kādreizējā starspurzivju klase kļuvusi par virsklasi, un saskaņā ar 2016. gada sistemātiku starspurzivju virsklase dalās divās klasēs: starspurēs (Actinopteri) un niedrzivīs (Cladistia).
Šī ir arī lielākā mugurkaulnieku klase, kurā ir vairāk nekā 30 000 sugu, kas sastāda 96—99% no visām mūsdienās zināmajām zivīm. Latvijā konstatēts ap 80 sugām, kas iedalās 12 kārtās un 32 dzimtās. Starspures apdzīvo visu tipu ūdenstilpes, no okeāniem līdz strautiem, pazemes avotiem un sāļajiem ezeriem.
Straalvinnigen (Actinopterygii) vormen een klasse van dieren binnen de gewervelden (Chordata). Ze worden zo genoemd omdat de vissen stralen in hun vinnen bezitten. Deze stralen zijn been- of hoornachtige structuren in de vinnen die de huid ondersteunen, in tegenstelling tot de vleesachtige vinnen, die karakteristiek zijn voor vissen uit de orde Sarcopterygii. Met bijna 30.000 soorten zijn de straalvinnigen de dominante klasse gewervelden. Ze zijn vertegenwoordigd in zowel zoet als zout water, en van de diepzee tot de hoogstgelegen bergbeken.
Traditioneel worden de straalvinnigen in drie groepen opgesplitst: De Chondrostei (Kraakbeenganoïden), Holostei (Beenganoïden) en de Teleostei (Beenvissen). Uit sommige morfologische onderzoeken blijkt dat de tweede groep parafyletisch is, en daarom een ongeldige onderverdeling. Uit recenter werk, op basis van DNA- en mitochondriaal genoomonderzoek, blijkt echter dat deze indeling wel weer kan worden gehandhaafd. Volgens ITIS worden de ordes Amiiformes (Moddersnoeken) en Lepisosteiformes (Beensnoeken) echter als losse ordes ingedeeld in de onderklasse Neopterygii.
De straalvinnigen worden onderverdeeld in de volgende ordes[1]:
Straalvinnigen (Actinopterygii) vormen een klasse van dieren binnen de gewervelden (Chordata). Ze worden zo genoemd omdat de vissen stralen in hun vinnen bezitten. Deze stralen zijn been- of hoornachtige structuren in de vinnen die de huid ondersteunen, in tegenstelling tot de vleesachtige vinnen, die karakteristiek zijn voor vissen uit de orde Sarcopterygii. Met bijna 30.000 soorten zijn de straalvinnigen de dominante klasse gewervelden. Ze zijn vertegenwoordigd in zowel zoet als zout water, en van de diepzee tot de hoogstgelegen bergbeken.
Strålefinnefiskar (Actinopterygii) er ei klasse beinfisk.
Gruppa vert kjenneteikna av at finnane deira består av hud strekt mellom bein- eller hornpiggar (finnestrålar), i motsetnad til dei kjøtfulle finnane til kvastfinnefiskane Sarcopterygii. Til skilnad frå bruskfisk kan strålefinnefisk røra på finnane sine med musklar dei har med finnerøtene.
Strålefinnefisken vert tradisjonelt oppdelt i to underklassar: Chondrostei, som består av stør og spadestør, og Neopterygii, som omfattar dei fleste beinfisk me kjenner i dag.
Strålefinnefiskar (Actinopterygii) er ei klasse beinfisk.
Gruppa vert kjenneteikna av at finnane deira består av hud strekt mellom bein- eller hornpiggar (finnestrålar), i motsetnad til dei kjøtfulle finnane til kvastfinnefiskane Sarcopterygii. Til skilnad frå bruskfisk kan strålefinnefisk røra på finnane sine med musklar dei har med finnerøtene.
Strålefinnefisken vert tradisjonelt oppdelt i to underklassar: Chondrostei, som består av stør og spadestør, og Neopterygii, som omfattar dei fleste beinfisk me kjenner i dag.
Strålefinnefisker utgjør ikke bare hovedvekten av alle fisker, men også av alle virveldyr (målt både i antall arter og i biomasse). Gruppens navn kommer av at finnene støttes av mange finnestråler (ikke bare av én som hos kvastfinnefisker).
Sammen med to veldig artsfattige grupper, kvastfinne- og lungefisker, sammenfattes strålefinnefiskene ofte som beinfisker. Stamformen til strålefinnefiskene oppsto trolig i ferskvann.[1]
Mesteparten av strålefinnefiskene (99,8 % av artene) finner man blant de egentlige beinfiskene (Teleostei). Disse danner en naturlig gruppe med mange avledete fellestrekk. De resterende små gruppene ble tidligere omtalt som ganoider, og inndelt i bruskganoider («Chondrostei»: bikirer og størfisker) og beinganoider («Holostei»: pansergjedder og dynnfisken). Siden 1970-tallet vet man at disse gruppene er kunstige og utgjør grader av utvikling (grader) heller enn sant slektskap (klader). Slektskapsforholdene mellom strålefinnefiskene er som følger (i hierarkisk skrivemåte):
Strålefinnefisker utgjør ikke bare hovedvekten av alle fisker, men også av alle virveldyr (målt både i antall arter og i biomasse). Gruppens navn kommer av at finnene støttes av mange finnestråler (ikke bare av én som hos kvastfinnefisker).
Sammen med to veldig artsfattige grupper, kvastfinne- og lungefisker, sammenfattes strålefinnefiskene ofte som beinfisker. Stamformen til strålefinnefiskene oppsto trolig i ferskvann.
Promieniopłetwe[3], kostnopromieniste[4], kostnopromienne[5] (Actinopterygii, z gr. aktina – promień i pterygio – płetwa) – gromada ryb kostnoszkieletowych (Osteichthyes) o płetwach wspartych na promieniach kostnych, obejmująca większość (około 30 tys.) współcześnie żyjących gatunków ryb. Wykazują znaczne zróżnicowanie morfologiczne. Zasiedlają wszystkie typy wód słodkich, słonawych i słonych. Od mięśniopłetwych odróżnia je budowa płetw i sposób poruszania.
Płetwy ryb promieniopłetwych są rozpięte na szkielecie z delikatnych promieni z kości skórnych (lepidotrychia), bezpośrednio połączonych z pasem barkowym. Ciało większości gatunków pokryte jest łuskami cykloidalnymi, ktenoidalnymi lub płytkami kostnymi, skóra niektórych jest naga, a u najstarszych ewolucyjnie, w większości już wymarłych gatunków, występują łuski ganoidalne. Szkielet jest dobrze ukształtowany, w całości kostny u form rozwiniętych, a u bardziej pierwotnych częściowo chrzęstny. Tryskawki i nozdrza wewnętrzne zazwyczaj nie występują[3][2]. Większość ma pęcherz pławny. Zastawka w jelicie spotykana jest jedynie u najstarszych form. Występują trzy otolity[6].
Ryby promieniopłetwe pojawiły się w wodach słodkich w późnym sylurze, około 420 mln lat temu. Najstarsze z odkrytych gatunków to Andreolepis hedei i Lophosteus superbus. Kompletny szkielet ryby zaliczonej do promieniopłetwych odkryto w skałach z wczesnego dewonu[7]. W karbonie zdominowały wody śródlądowe, a niektóre formy (prawieczkokształtne) przystosowały się do życia w morzach, które w triasie stały się głównym ośrodkiem ich rozwoju. Podczas gdy większość kostnochrzęstnych żyła w erze paleozoicznej i triasie, Neopterygii, choć znane już od końca permu najburzliwszy okres różnicowania przechodziły w triasie i jurze. Właśnie wówczas zaznaczyła się tendencja do redukcji liczby, grubości i wielkości łusek. Zaistniałe zmiany Neopterygii przyczyniły się do usprawnienia płetw (stąd nazwa Neopterygii i postulowana polska nazwa „nowopłetwe”). Płetwa ogonowa staje się symetryczna (w przeciwieństwie do heterocerkicznej u kostnochrzęstnych) i wykształca się skostniały kręgosłup. Gatunki zaliczane tradycyjnie do przejściowców (jak amia i niszczuka) są obecnie coraz częściej uznawane za prymitywne formy Neopterygii.
W mezozoiku i kenozoiku promieniopłetwe rozwijały się z rosnącym powodzeniem. Obecnie są dominującymi kręgowcami w większości zbiorników wodnych na Ziemi.
W tradycyjnej klasyfikacji Actinopterygii dzielone były na:
Według najnowszych tendencji kladystycznych tradycyjnie przedstawiona grupa promieniopłetwych nie jest jednak grupą monofiletyczną (z powodu parafiletycznych przejściowców), a tym samym nie stanowią taksonu naturalnego.
Przez długi czas proponowany był podział na:
Chondrostei okazały się być taksonem parafiletycznym i są obecnie dzielone na dwie odrębne grupy.
Dopiero tak zdefiniowany takson jest uznawany za monofiletyczny[2]:
Niezależnie od przyjętej klasyfikacji biologicznej gromadę ryb promieniopłetwych dzieli się na rzędy. W poniższej tabeli przedstawiono wszystkie rzędy ze wskazaniem różnic pomiędzy klasyfikacjami Integrated Taxonomic Information System[1], FishBase, J. S. Nelsona w czwartej edycji Fishes of the World[2] i W. Eschmeyera (Catalog of Fishes)[8].
Kladogram współczesnych promieniopłetwych[9].
ActinopterygiiPromieniopłetwe, kostnopromieniste, kostnopromienne (Actinopterygii, z gr. aktina – promień i pterygio – płetwa) – gromada ryb kostnoszkieletowych (Osteichthyes) o płetwach wspartych na promieniach kostnych, obejmująca większość (około 30 tys.) współcześnie żyjących gatunków ryb. Wykazują znaczne zróżnicowanie morfologiczne. Zasiedlają wszystkie typy wód słodkich, słonawych i słonych. Od mięśniopłetwych odróżnia je budowa płetw i sposób poruszania.
Os Actinopterygii ou actinopterígeos (do grego aktis, raio + pteryx, nadadeira; asa) são uma classe de peixes com nadadeiras suportadas por "raios" ou lepidotríquias, esqueleto interno tipicamente calcificado e aberturas branquiais protegidas por um opérculo ósseo. São o grupo dominante dos vertebrados, com mais de 27 mil espécies presentes em todos os ambientes aquáticos. São tratados tradicionalmente como uma subclasse de Osteichthyes, ou peixes com ossos, mas como aquele grupo é parafilético, eles podem ser tratados como uma classe verdadeira.[1]
Os peixes com barbatanas raiadas são muito variados em tamanho e forma, e no número de suas barbatanas suportadas por raios e na maneira como eles os organizam.
O atum está desenhando em velocidade de linha reta com uma cauda profundamente bifurcada
O espadarte é ainda mais rápido e aerodinâmico que o atum
Salmão gera força suficiente com sua poderosa barbatana caudal para saltar obstáculos durante as migrações nos rios
O bacalhau possui três barbatanas dorsal e duas anais, o que lhes confere grande manobrabilidade
Os peixes achatadosos desenvolveram barbatanas dorsal e pélvica parcialmente simétricas
Os peixes-lanterna por debaixo da camada adiposa da barbatana têm uma placa de suporte cartilaginosa; alguns géneros têm o osso supramaxilar muito pequeno; com placa sobocular presente em todos; a barbatana anal está implantada abaixo ou ligeiramente por detrás do final da base da barbatana dorsal
Os peixes-ogro são nadadores indiferentes que tentam emboscar suas presas
A primeira coluna da barbatana dorsal do peixe-diabo negro é modificada como uma vara de pescar com isca
Congro-europeu são peixes com barbatanas de raios
Tradicionalmente, foram reconhecidos quatro grupos de Actinopterygii: Chondrostei, Cladistia, Holostei e Teleostei (ou teleósteos). O segundo grupo é parafilético e tende a sua utilização a ser abandonada. Quase todos os peixes vivos são teleósteos.
Para conhecer toda a linhagem actualmente reconhecida dos Actinopterygii, ver: National Center for Biotechnology Information
Os Actinopterygii ou actinopterígeos (do grego aktis, raio + pteryx, nadadeira; asa) são uma classe de peixes com nadadeiras suportadas por "raios" ou lepidotríquias, esqueleto interno tipicamente calcificado e aberturas branquiais protegidas por um opérculo ósseo. São o grupo dominante dos vertebrados, com mais de 27 mil espécies presentes em todos os ambientes aquáticos. São tratados tradicionalmente como uma subclasse de Osteichthyes, ou peixes com ossos, mas como aquele grupo é parafilético, eles podem ser tratados como uma classe verdadeira.
Actinopterigienii sau actinopterigii (Actinopterygii) (din latina actino = rază + și greaca pterygii = aripă, aripioară sau înotătoare) este o clasă de pești osoși care cuprinde majoritatea (96%) peștilor actuali. Denumirea provine de la prezența radiilor osoase sau cartilaginoase ce susțin înotătoarele perechi, dispuse ca niște raze și care se articulează direct de centura scapulară. Sunt adaptați la ape dulci, salmastre și marine. Scheletul intern și extern parțial sau total osificat. Corpul este acoperit cu solzi cicloizi, ctenoizi sau ganoizi (solzii cosmoizi și placoizi lipsesc la acești pești). Înotătoarele perechi au, cu excepția lui Polypterus, bază lată (tip euribazal) și sunt formate după tipul uniseriat, razele osoase sau cartilaginoase fiind așezate într-o singură serie în înotătoarele perechi, pe câteva piese bazale, de la care se îndreaptă paralel sau divergent spre capătul liber al înotătoarelor. Coada este de obicei homocercă, uneori heterocercă și foarte rar gefirocercă. Cloaca lipsește. Vezica aeriană este prezentă. Plămânii și nările interne lipsesc. Spiraculul s-a păstrat numai la câteva specii. Au apărut în silurianul superior (cu 420 milioane ani în urmă).
Actinopterigienii sau actinopterigii (Actinopterygii) (din latina actino = rază + și greaca pterygii = aripă, aripioară sau înotătoare) este o clasă de pești osoși care cuprinde majoritatea (96%) peștilor actuali. Denumirea provine de la prezența radiilor osoase sau cartilaginoase ce susțin înotătoarele perechi, dispuse ca niște raze și care se articulează direct de centura scapulară. Sunt adaptați la ape dulci, salmastre și marine. Scheletul intern și extern parțial sau total osificat. Corpul este acoperit cu solzi cicloizi, ctenoizi sau ganoizi (solzii cosmoizi și placoizi lipsesc la acești pești). Înotătoarele perechi au, cu excepția lui Polypterus, bază lată (tip euribazal) și sunt formate după tipul uniseriat, razele osoase sau cartilaginoase fiind așezate într-o singură serie în înotătoarele perechi, pe câteva piese bazale, de la care se îndreaptă paralel sau divergent spre capătul liber al înotătoarelor. Coada este de obicei homocercă, uneori heterocercă și foarte rar gefirocercă. Cloaca lipsește. Vezica aeriană este prezentă. Plămânii și nările interne lipsesc. Spiraculul s-a păstrat numai la câteva specii. Au apărut în silurianul superior (cu 420 milioane ani în urmă).
Lúčoplutvovce alebo lúčoplutvé (ryby) (Actinopterygii) sú hlavná skupina (trieda, podtrieda) rýb v užšom zmysle. Do tejto skupiny patria takmer všetky dnes žijúce ryby v užšom zmysle a vyše polovica všetkých dnes žijúcich stavovcov.
Pozri aj charakteristiku pod ryby (Osteichthyes)
Základné znaky v rámci rýb:
U nás sa najčastejšie vyskytujú: kapor obyčajný (Cyprinus carpio), lieň obyčajný (Tinca tinca), jalec hlavatý (Leuciscus cephalus), mrena obyčajná (Barbus barbus), ostriež obyčajný (Perca fluviatilis), zubáč obyčajný (Stizostedion lucioperca), pstruhy (Salmo spp.), šťuka obyčajná (Esox lucius) a iné.
Systematika je prevažne podľa Benton 2004/2005 a Nelson 2006[1]. Slovenské názvy viacerých skupín sa nepodarilo zistiť.
Lúčoplutvovce alebo lúčoplutvé (ryby) (Actinopterygii) sú hlavná skupina (trieda, podtrieda) rýb v užšom zmysle. Do tejto skupiny patria takmer všetky dnes žijúce ryby v užšom zmysle a vyše polovica všetkých dnes žijúcich stavovcov.
Chondrostei (mnogoplavutarji in sorodniki)
Neopterygii (prvobitne žarkoplavutarice)
Za rodove glej besedilo.
Žarkoplavutarice (znanstveno ime Actinopterygii) so največja skupina rib. Šteje preko 13000 vrst v več kot 250 družinah[1]. Skupne lastnosti so: gibljiva zgornja čeljust, ktenoidne luske, trni v plavutih. Večina naprednejših predstavnic ima koščeno ogrodje, zato jih skupaj z mesnatoplavutaricami imenujemo tudi ribe kostnice. Najdemo jih v vseh vodnih okoljih, v sladkih in slanih vodah.
Žarkoplavutarice imajo v plavalnih plavutih posebno oporo - koščene plavutnice.
Razvrščanje žarkoplavutaric, in seveda vseh ostalih vrst rib, še vedno ni povsem dorečeno. Razlike v razvrščanju se pojavljajo na vseh taksonomskih nivojih. Posledično nastaja veliko sinonimov. Tudi velika geografska razširjenost povečuje število večkratnih poimenovanj.
Tradicionalno so bile prepoznane tri skupine žarkoplavutaric: Chondrostei, Holostei in Teleostei. Nekateri morfološki dokazi kažejo, da je druga skupina parafiletska in da jo je treba opustiti. Vendar pa nedavna dela, ki temeljijo na bolj popolno vzorčenih fosilnih taksonih in na analizi zaporedja DNK podatkov, podpirajo njeno pripoznanje. Skoraj vse živeče ribe kostnice pripadajo pravim kostnicam (Teleostei).
Seznam različnih skupin, ki je naveden spodaj, je urejen do nivoja redov. Ta razvrstitev, kot katera koli druga taksonomska razvrstitev temelji na filogenetskih raziskavah. Mnoge od teh skupin skupin na višjih ravneh, niso bile podprte v sedanji morfološki in molekularnih literaturi. Primeri parafiletske skupine ali nenaravne skupine vključujejo Paracanthopterygii, Scorpaeniformes in Perciformes[2]. Seznam je narejen na podlagi FishBase [3] z opombami, kadar se ta razlikuje od Nelsona [4] in ITISa[5].
|month=
ni upoštevan (pomoč) |month=
ni upoštevan (pomoč) Žarkoplavutarice (znanstveno ime Actinopterygii) so največja skupina rib. Šteje preko 13000 vrst v več kot 250 družinah. Skupne lastnosti so: gibljiva zgornja čeljust, ktenoidne luske, trni v plavutih. Večina naprednejših predstavnic ima koščeno ogrodje, zato jih skupaj z mesnatoplavutaricami imenujemo tudi ribe kostnice. Najdemo jih v vseh vodnih okoljih, v sladkih in slanih vodah.
Žarkoplavutarice imajo v plavalnih plavutih posebno oporo - koščene plavutnice.
Strålfeniga fiskar (Actinopterygii) är en underklass inom klassen benfiskar, vilka utmärks av att de har fenstrålar till skillnad mot köttfeningar (Sarcopterygii), som har bröstfenor med en benstav som bas.
Indelas i ordningar:[1]
Strålfeniga fiskar (Actinopterygii) är en underklass inom klassen benfiskar, vilka utmärks av att de har fenstrålar till skillnad mot köttfeningar (Sarcopterygii), som har bröstfenor med en benstav som bas.
Indelas i ordningar:
Infraklass Fengäddor (Brachiopterygii eller Cladistia) Ordning Fengäddor (Polypteriformes) Infraklass Broskganoider (Chondrostei) Ordning Störartade fiskar (Acipenseriformes) Infraklass Neopterygii Avdelning Ginglymodi Ordning Bengäddor (Lepisosteiformes) Avdelning Halecostomi Underavdelning Halecomorphi Ordning Bågfenor (Amiiformes) Underavdelning Egentliga benfiskar (Teleostei) Infraavdelningen Osteoglossomorpha Ordningen Bentungeartade fiskar (Osteoglossiformes) Infraavdelningen Elopomorpha Ordningen Tarponartade fiskar (Elopiformes) Ordningen Piggålsartade fiskar (Notacanthiformes) Ordningen Ålartade fiskar (Anguilliformes) Infraavdelningen Clupeomorpha Ordningen Sillartade fiskar (Clupeiformes) Infraavdelningen Euteleostei Överordningen Ostariofyser (Ostariophysi) Ordningen Sandfiskartade fiskar (Gonorynchiformes) Ordningen Karpartade fiskar (Cypriniformes) Ordningen Laxkarpar (Characiformes) Ordningen Malartade fiskar (Siluriformes) Överordningen Protacanthopterygii Ordningen Laxartade fiskar (Salmoniformes) Överordningen Stenopterygii Ordningen Drakfiskartade fiskar (Stomiiformes) Överordningen Cyclosquamata Ordningen Aulopiformes Överordningen Scopelomorpha Ordningen Prickfiskartade fiskar (Myctophiformes) Överordningen Paracanthopterygii Ordningen Laxabborrartade fiskar (Percopsiformes) Ordningen Torskartade fiskar (Gadiformes) Ordningen Ormfiskartade fiskar (Ophidiiformes) Ordningen Paddfiskartade fiskar (Batrachoidiformes) Ordningen Marulkartade fiskar (Lophiiformes) Ordningen Dubbelsugarartade fiskar (Gobiesociformes) Överordningen Taggfeniga fiskar (Acanthopterygii) Ordningen Näbbgäddartade fiskar (Beloniformes) Ordningen Tandkarpartade fiskar (Cyprinodontiformes) Ordningen Silversideartade fiskar (Atheriniformes) Ordningen Glansfiskartade fiskar (Lampridiformes) Ordningen Beryxartade fiskar (Beryciformes) Ordningen Sanktpersfiskartade fiskar (Zeiformes) Ordningen Spiggartade fiskar (Gasterosteiformes) Ordningen Flygsimpeartade fiskar (Dactylopteriformes) Ordningen Sumpålsartade fiskar (Synbranchiformes) Ordningen Kindpansrade fiskar (Scorpaeniformes) Ordningen Abborrartade fiskar (Perciformes) Ordningen Plattfiskar (Pleuronectiformes) Ordningen Blåsfiskartade fiskar (Tetraodontiformes)Işınsal yüzgeçliler (Actinopterygii), yüzme keseleri oluşmuş olan bir balık sınıfı.
Balık türlerinin çoğu bu sınıfa aittir. Bu kese, vücut ağırlığını hafifleterek yüzmede kolaylık sağlar ve yüzgeç hareketini rahatlatır. Işınlarla destekli ve uç kısımları deriyle kaplı olan yüzgeçler, çoğunlukla yüzmeyi yönlendirme görevindedir. Burun delikleri, birkaç tür haricinde ağız boşluğuna açılmaz. Deri mukus bezleriyle donatılmıştır ve sikloid, ktenoid veya ganoid mersin balıklarında yapıda pullar bulunur.
Işınsal yüzgeçliler (Actinopterygii), yüzme keseleri oluşmuş olan bir balık sınıfı.
Balık türlerinin çoğu bu sınıfa aittir. Bu kese, vücut ağırlığını hafifleterek yüzmede kolaylık sağlar ve yüzgeç hareketini rahatlatır. Işınlarla destekli ve uç kısımları deriyle kaplı olan yüzgeçler, çoğunlukla yüzmeyi yönlendirme görevindedir. Burun delikleri, birkaç tür haricinde ağız boşluğuna açılmaz. Deri mukus bezleriyle donatılmıştır ve sikloid, ktenoid veya ganoid mersin balıklarında yapıda pullar bulunur.
Хорда повністю не зберігається (є тільки в осетрових). Тіла хребців зазвичай є. Верхньощелепний апарат рухливо з'єднаний з черепом (гіостилія або амфістилія). Луска ганоїдна, циклоїдна або ктеноїдна, інколи шкіра гола або вкрита кістковими пластинками. Парні плавці без м'язистих лопастей біля основи (є тільки в багатопероподібних). Спинний плавець переважно один, але інколи їх може бути два або три. Хвіст гетероцеркальний у давніх і гомоцеркальний у молодших груп. Плавальний міхур зазвичай є, розрізняють дві групи рядів — примітивніших «відкритоміхурних» та більш просунутих «закритоміхурних». Хоан немає. Анальний і сечостатевий отвори роздільні. Спіральний клапан кишечника і артеріальний конус серця характерні тільки для ганоїдних і нижчих кісткових риб.
Живуть у морях і прісних водах. Багато видів променеперих — традиційні об'єкти промислу.
Променепері — споріднена група до хоанових (Choanata). Променеперих нерідко об'єднують із частиною хоанових, а саме — з лопатеперими (Sarcopterygii), до яких належать целакантові та дводишні, у клас кісткових риб. За філогенетичними класифікаціями такий клас не є таксоном, це лише града (збірна група).
Викопні форми відомі із середнього девону. Тривала еволюція, що супроводжувалася широкою адаптивною радіацією, обумовила велику різноманітність променеперих за морфологією та екологічними особливостями. Клас об'єднує близько 97% видів риб сучасної фауни.
Клас поділяють на два підкласи: Хрящові ганоїди та Новопері, 37 сучасних рядів, близько 430 родин. Система класу розроблена недостатньо — різні автори визнають від 33 до 60 рядів (10—16 вимерлих).
Lớp Cá vây tia (danh pháp khoa học: Actinopterygii; /ˌæktɪnˌɒptəˈrɪdʒi.aɪ/) là một lớp chứa các loài cá xương có vây tia. Về số lượng, chúng là nhóm chiếm đa số trong số các động vật có xương sống, với khoảng 33.200 loài đã biết được bắt gặp ở mọi môi trường nước,[1] từ các ao, hồ, đầm nước ngọt đến các môi trường nước mặn của biển và đại dương.
Theo truyền thống, lớp Cá vây tia (Actinopterygii) đã từng được chia làm các phân lớp Chondrostei và Neopterygii. Neopterygii lại chia thành hai phân thứ lớp/cận lớp Holostei và Teleostei. Một số bằng chứng hình thái học cho thấy Neopterygii dường như là cận ngành, nhưng các phân tích phát sinh chủng loài gần đây cho thấy nó là đơn ngành.[2][3] Holostei hiện nay bị giới hạn trong phạm vi chỉ là những dạng gần với Chondrostei còn tồn tại hơn là các nhóm khác. Gần như tất cả các loài cá còn tồn tại ngày nay đều là cá xương thật sự (Teleostei).
Danh sách các nhóm khác nhau được đưa ra dưới đây, giảm dần theo trật tự của các bộ, được sắp xếp theo trật tự mà người ta tin là thể hiện đúng trật tự tiến hóa theo mức siêu bộ. Danh sách này lập theo FishBase [4] với các ghi chú khi có khác biệt với Nelson[5] và ITIS[6].
Phát sinh chủng loài của cá vây tia (Actinopterygii) vẫn là khía cạnh có vấn đề. Theo truyền thống, người ta cho rằng các bộ Amiiformes và Lepisosteiformes có quan hệ họ hàng gần và gộp chúng cùng vài nhánh đã tuyệt chủng khác trong nhóm gọi là Holostei[10][11]. Một số phân tích hình thái lại cho rằng Amiiformes có quan hệ họ hàng gần nhất với Teleostei còn Lepisosteiformes có quan hệ họ hàng gần nhất với nhánh chứa cả Teleostei lẫn Amiiformes[12][13]. Tuy nhiên, các phân tích hình thái khác và phân tích phát sinh chủng loài phân tử lại cho thấy tính đơn ngành của Holostei[14][15].
Cây phát sinh chủng loài vẽ theo Broughton và ctv (2013)[2], Betancur-R. và ctv (2013)[3]:
Euteleostomi
Sarcopterygii (gồm cả Tetrapoda)
Elopocephala
Osteoglossocephala
Lớp Cá vây tia (danh pháp khoa học: Actinopterygii; /ˌæktɪnˌɒptəˈrɪdʒi.aɪ/) là một lớp chứa các loài cá xương có vây tia. Về số lượng, chúng là nhóm chiếm đa số trong số các động vật có xương sống, với khoảng 33.200 loài đã biết được bắt gặp ở mọi môi trường nước, từ các ao, hồ, đầm nước ngọt đến các môi trường nước mặn của biển và đại dương.
Лучепёрые рыбы[1] (лат. Actinopterygii) — класс рыб из группы костных рыб[2][3]. Подавляющее большинство известных современных видов рыб (свыше 20 000 или около 95 %) относятся к лучепёрым[4]. Живут в морских и пресных водах по всему миру. Многие лучепёрые рыбы являются объектом промысла[5]. Размеры живущих ныне видов колеблются от 8 мм (Paedocypris) до 11 м (ремнетелые), а вес достигает 2300 кг (рыба-луна). Научное название класса происходит от др.-греч. ἀκτίς «луч» и πτερόν «перо, крыло» и связано со строением плавников этих рыб (центральная ось базальных элементов скелета в парных плавниках отсутствует)[6].
Наиболее древняя находка ископаемых лучепёрых рыб имеет возраст 420 млн лет (конец Силурийского периода). Это хищная рыба Andreolepis hedei из отряда палеонискообразных (Palaeonisciformes). Останки этого вида были найдены в России, Швеции и Эстонии[7].
В пермском и триасовом периодах были широко распространены лучепёрые рыбы, обладавшие ганоидной чешуей. На смену им около 200 млн лет назад появились костистые рыбы[4], к которым в настоящий момент относят подавляющее большинство (95 %) современных рыб [6]. В ходе длительной эволюции, сопровождавшейся широкой адаптивной радиацией, возникло большое разнообразие лучепёрых рыб[5].
В отличие от лопастепёрых, другого класса костных рыб, лучепёрые, как правило, обладают костным позвоночником, и только у немногих сохраняется хорда или её остатки[4]. Верхнечелюстной аппарат имеет подвижное сочленение с черепом. Кожа бывает покрыта чешуёй (ганоидной, циклоидной или ктеноидной), иногда голая или покрыта костными пластинками. Хоаны отсутствуют. Плавники парные, мускулистые лопасти у основания есть только у многоперообразных. Количество спинных плавников колеблется от 1 до 3 (чаще всего 1). У древних представителей хвостовой плавник гетероцеркальный, а у более молодых — гомоцеркальный. Обычно имеется плавательный пузырь[5]. Анальное и мочеполовые отверстия, как правило, разделены[4].
Класс лучепёрых рыб разделяют на два подкласса: хрящевые ганоиды, или хрящекостные рыбы (Chondrostei) и новопёрые рыбы (Neopterygii)[2]. Первый подкласс включает в себя более древние по происхождению отряды рыб. Большинство же отрядов принадлежит к более молодой группе — новопёрым рыбам. В этом подклассе выделяются 2 инфракласса: костные ганоиды (Holostei) и костистые рыбы (Teleostei).
Подкласс Хрящевые ганоиды, или Хрящекостные рыбы (Chondrostei) включает 2 современных и 12 ископаемых отрядов[8][9]:
Подкласс Новопёрые рыбы (Neopterygii)
Ископаемые отряды костистых рыб[13]:
Ископаемые отряды лучепёрых рыб с неопределённой принадлежностью к подклассам[14]:
Ископаемые виды с неопределённой принадлежностью:
Лучепёрые рыбы (лат. Actinopterygii) — класс рыб из группы костных рыб. Подавляющее большинство известных современных видов рыб (свыше 20 000 или около 95 %) относятся к лучепёрым. Живут в морских и пресных водах по всему миру. Многие лучепёрые рыбы являются объектом промысла. Размеры живущих ныне видов колеблются от 8 мм (Paedocypris) до 11 м (ремнетелые), а вес достигает 2300 кг (рыба-луна). Научное название класса происходит от др.-греч. ἀκτίς «луч» и πτερόν «перо, крыло» и связано со строением плавников этих рыб (центральная ось базальных элементов скелета в парных плавниках отсутствует).
輻鰭魚又名条鳍鱼,为辐鳍鱼总纲(學名:Actinopterygii)鱼类的通称,是一类鰭呈放射狀的硬骨魚。輻鰭魚是脊椎動物中種類最多的,种数几乎占现存3万多种鱼类的99%,遍及淡水及海水環境。
在不同的分类系统中,辐鳍鱼的分类层级从下纲、亚纲、纲到总纲不等。基本上,广义的辐鳍鱼(Actinopterygii)包含了腕鳍鱼,而狭义的辐鳍鱼(Actinopteri)则成为腕鳍鱼的姐妹群。
依照2017年《硬骨鱼支序分类法》,本总纲与其它硬骨鱼的演化关系如下[1][2][3]:
硬骨鱼高纲 Osteichthyes 辐鳍鱼总纲 Actinopterygii 辐鳍鱼纲 Actinopteri 新鳍亚纲 Neopterygii真骨下纲 Teleostei
全骨下纲 Holostei
软质亚纲 Chondroste
腕鳍鱼纲 Cladistia
肉鳍鱼总纲 Sarcopterygii 肺鱼四足纲 Dipnotetrapodomorpha肺鱼亚纲 Dipnomorpha
四足形亚纲 Tetrapodomorpha
腔棘魚綱 Coelacanthimorpha
傳統上,輻鰭魚分為三個類群:軟骨硬鱗附類、全骨附類和真骨附類。一些形態學上的證據認為第二類為併系群,所以應該廢除;然而,最近從完整粒線體基因中來分析DNA序列的研究卻傾向支持第二類的存在。幾乎所有現存的硬骨魚類皆為真骨附類。
以下是輻鰭魚綱分類的列表,各階層的排列順序均依演化順序排列:
注:鱸形目是輻鰭魚綱中最多種的目,佔大約40%。
輻鰭魚又名条鳍鱼,为辐鳍鱼总纲(學名:Actinopterygii)鱼类的通称,是一类鰭呈放射狀的硬骨魚。輻鰭魚是脊椎動物中種類最多的,种数几乎占现存3万多种鱼类的99%,遍及淡水及海水環境。
在不同的分类系统中,辐鳍鱼的分类层级从下纲、亚纲、纲到总纲不等。基本上,广义的辐鳍鱼(Actinopterygii)包含了腕鳍鱼,而狭义的辐鳍鱼(Actinopteri)则成为腕鳍鱼的姐妹群。
条鰭綱(じょうきこう、Actinopterygii)は、脊椎動物亜門の下位分類群の一つ。現生の魚類の大部分にあたる2万6,891種が所属し、肉鰭綱と合わせ硬骨魚類と総称される。およそ4億年前のシルル紀後期に出現して以降、多様な進化および水中環境への適応を遂げた条鰭綱の魚類(条鰭類)は、現代のあらゆる海洋・陸水域で繁栄するグループとなっている。
このグループはかつて硬骨魚綱の下に条鰭亜綱として設置されていたが、現在では側系統群である硬骨魚綱を廃し、条鰭綱と肉鰭綱に分割する体系が一般的となっている。条鰭類は原則として、硬骨化の進んだ内部骨格と、鰭条および鰭膜によって支えられた鰭をもち、肺の代わりに鰾(ひょう/うきぶくろ)をもつなどの特徴を有している[2]。
最古の条鰭綱魚類は古生代のシルル紀後期に出現したとみられ、Andreolepis 属など5属が知られている。続くデボン紀から中生代三畳紀にかけて栄えた軟質亜綱の仲間は、ジュラ紀終盤までにチョウザメ目を残しほとんどが絶滅している。白亜紀以降は、高い運動能力と効率的な摂餌機構を発達させた新鰭亜綱の仲間が支配的な地位を獲得し、水圏のあらゆる環境に適応放散を果たした[3]。新鰭亜綱の魚類は、現代では約2万6800種を擁する脊椎動物亜門の中で最大のグループとなっている[3]。
条鰭綱はシーラカンスやハイギョの仲間が所属する肉鰭綱と合わせて硬骨魚類とも呼ばれ、その骨格は一部の原始的な分類群を除き、ほぼ完全に硬骨によって構成されている[4]。鱗の形態は硬鱗、円鱗あるいは櫛鱗など多様で、鱗をもたないグループも多い。鰭は担鰭骨に支えられる鰭条と、鰭条同士をつなぐ鰭膜によって構成される。ポリプテルス目を除き、胸鰭の射出骨は肩甲骨・烏口骨複合体と接続する。ほとんどの仲間は間鰓蓋骨と鰓条骨をもつ[5]。咽頭板を欠き、鼻孔は頭部の比較的上方に位置し内鼻孔をもたない[6]。
これまでに多くの分類学的研究が蓄積されているが[7][8][9]、形態学的特徴の相同性に関する知見はいまだ不充分で、条鰭綱の起源、および内部の系統関係は今後さらに見直しが進むものと考えられている[6]。
条鰭綱には分岐鰭亜綱・軟質亜綱・新鰭亜綱の3亜綱が置かれ、その下に44目453科4289属2万6891種の現生種が所属し、うち44%は淡水魚である[6]。分岐鰭亜綱・軟質亜綱はポリプテルス・チョウザメなど一部の原始的な条鰭類からなり、新鰭亜綱には白亜紀以降に爆発的な種分化を遂げた大多数の硬骨魚類が含まれる。条鰭綱が単系統群であることは概ね受け入れられているが、ひとまとめのグループとして特徴づける形質は決して強固なものではない[6]。
条鰭綱は、(肉鰭綱+四肢動物)の姉妹群であり、両者の特徴を兼ね備えた Psarolepis などの化石群が、共通祖先の候補と考えられている。条鰭綱に所属しながらも、内部での位置付けが不明(incertae sedis)な群として、白亜紀の Diplospondichthys などが知られる。
以下に現生種を含む分類群を、系統順位に沿って目の単位まで示す。各グループの詳細、内部に含まれる絶滅群については、それぞれの項目を参照のこと。
条鰭綱(じょうきこう、Actinopterygii)は、脊椎動物亜門の下位分類群の一つ。現生の魚類の大部分にあたる2万6,891種が所属し、肉鰭綱と合わせ硬骨魚類と総称される。およそ4億年前のシルル紀後期に出現して以降、多様な進化および水中環境への適応を遂げた条鰭綱の魚類(条鰭類)は、現代のあらゆる海洋・陸水域で繁栄するグループとなっている。
このグループはかつて硬骨魚綱の下に条鰭亜綱として設置されていたが、現在では側系統群である硬骨魚綱を廃し、条鰭綱と肉鰭綱に分割する体系が一般的となっている。条鰭類は原則として、硬骨化の進んだ内部骨格と、鰭条および鰭膜によって支えられた鰭をもち、肺の代わりに鰾(ひょう/うきぶくろ)をもつなどの特徴を有している。
조기어류(條鰭魚類)는 조기어강(條鰭魚綱, Actinopterygii)에 속하는 척삭동물의 총칭이다. 분류상으로는 전통적인 분류법으로는 경골어강이었으나, 경골어류가 진화계통학적으로 공통 조상을 가지지 못하는 분류군임이 밝혀져서 조기어류는 하나의 강으로 분리되었다.
완기어류
육기어류 Dipnotetrapodomorpha2016년 현재, 계통 분류는 다음과 같다.[1]
조기어류 신기어류 전골어류 진골어류 당멸치상목 Osteoglossocephalai 골설어상목 Clupeocephala Otomorpha 골표류
태그; "deepfin"이 다른 콘텐츠로 여러 번 정의되었습니다